Deconstructing Paxos*

Romain Boichat† Partha Dutta† Svend Frølund* Rachid Guerraoui††
† Swiss Federal Institute of Technology, CH-1015 Lausanne
* Hewlett-Packard Laboratories, 1501 Page Mill Rd, Palo Alto

Abstract

The Paxos part-time parliament protocol of Lamport provides a non trivial but very practical way to implement fault-tolerant deterministic services over a distributed message passing system. This paper deconstructs Paxos and modularly reconstructs more resilient and efficient variants of it, which can furthermore be customised for specific system configurations. The deconstruction consists in factoring out the key algorithmic principles of Paxos within three abstractions: round-based register, round-based consensus, and weak leader election. Our modularisation helps better understand, improve and adapt the protocol. We show how to (1) alleviate the need for forced logs if some processes remain up for sufficiently long, (2) augment the resilience of the protocol against unstable processes, (3) enable single process decision with shared commodity disks, and (4) reduce the number of communication steps during stable periods of the system.

Keywords: Distributed systems, fault-tolerance, replication, Paxos, modularisation, abstraction.

Contact author: Romain Boichat. E-mail: Romain.Boichat@epfl.ch, Tel (Fax): +41 21 693 6702 (70).

* The Island of Paxos used to host a great civilisation, which was unfortunately destroyed by a foreign invasion. A famous archaeologist reported on interesting parts of the history of Paxons and particularly described their sophisticated part-time parliament [13]. Paxos legislators maintained consistent copies of the parliamentary records, despite their frequent forays from the chamber and the forgetfulness of their messengers. Although recent studies explored the use of powerful tools to reason about the correctness of the parliament protocol [14, 19], our desire to better understand the Paxon civilisation motivated us to revisit the Island and spend some time deciphering the ancient manuscripts of the legislative system. We discovered that Paxons had precisely codified various aspects of their parliament protocol which enabled them easily adapt the protocol to specific functioning modes throughout the seasons. In particular, during winter, the parliament was heated and some legislators did never leave the chamber: their guaranteed presence helped alleviate the need for expensive writing of decrees on ledgers. This was easy to obtain precisely because the subprotocol used to “store and lock” decrees was precisely codified. In spring, and with the blooming days coming, some legislators could not stop leaving and entering the parliament and their indiscipline prevented progress in the protocol. However, because the election subprotocol used to choose the parliament president was factored out and precisely codified, the protocol could easily be adapted to cope with indisciplined legislators. During summer, very few legislators were in the parliament and it was hardly possible to pass any decree because of the lack of the necessary majority. Fortunately, it was easy to modify the subprotocol used to store and lock decrees and devise a powerful technique where a single legislator could pass decrees by directly accessing the ledgers of other legislators. Fall was a protest period and citizens wanted a faster procedure to pass decrees. Paxons noticed that, in most periods, messengers did not loose messages and legislators replied in time. They could devise a variant of the protocol that reduced the number of communication steps needed to pass decrees during those periods. This powerful optimisation was obtained through a simple refinement of the subprotocol used to propose new decrees.

†This work was partially supported by the Swiss National Fund grant No. 510 207.

1
1 Introduction

The Paxos part-time parliament protocol of Lamport [13] provides a very powerful way to implement a highly-available deterministic service over a system of non-malicious processes communicating through message passing. Replicas follow the state-machine pattern (also called active replication) [23]. Each correct replica computes every request and returns the result to the corresponding client which selects the first returned result. Paxos maintains replica consistency by ensuring total order delivery of requests. It does so even during unstable periods of the system, e.g., even if messages are delayed or lost and processes crash and recover. During stable periods, Paxos rapidly achieves progress.\(^1\) As pointed out in [14, 19] however, Paxos is very complicated and it is difficult to factor out the abstractions that comprise the protocol. Deconstructing the protocol and identifying those abstractions is an appealing objective towards a practical implementation of it.

We would often like variants of the protocol that are optimised, even more resilient, or particularly customised for specific system configurations. Incorporating those adaptations seems very difficult unless Paxos is “modularised”. In particular:

1. The original protocol copes with a temporary total crash of the system, and ensures consistency among the processes that recover by using forced logs on stable storage (typical sources of overhead). One would imagine a cheaper protocol that does not rely on any forced log in a system model where a subset of the processes never crash. This would intuitively reflect the practical assumption that only part of the total system can be down at any point in time, or indirectly, that the system configuration has a “large” number of replicas.\(^2\)

2. The protocol might not achieve progress if some process keeps crashing and recovering indefinitely, i.e., “unstable” process. It is very tempting to explore the feasibility of a more resilient variant of the protocol that copes with such processes.

3. The progress of the protocol also relies on the assumption that a majority of the processes eventually remain up (for sufficiently long). A closer look at this requirement reveals that only an access to a majority of disks is actually needed [6]. That is, in a system architecture that offers shared (commodity) disks, progress could be ensured with a single correct process and a majority of correct disks.\(^3\)

4. In stable periods of the system (where “enough” processes communicate in a timely manner), the original protocol requires two round-trip communication steps among the replicas to agree on a given order for a request. In fact, the protocol could be optimised in such a way that only one round-trip communication would be needed in stable periods.

Rather than modify the protocol as a monolithic entity for every specific situation, we would like to modify it in a modular way. This goes through identifying the adequate abstractions underlying the protocol (deconstruction),\(^4\) in fact, the liveness of the protocol relies on partial synchrony assumptions whereas safety does not: Paxos is “indulgent” in the sense of [7].\(^5\) Note that such a configuration does not preclude the possibility of process crash-recovery. There is here a trade-off that reflects the real-world setting: fewer processes + forced logs vs more processes without forced logs.\(^6\)

This typically makes sense if we have shared SCSI disks (some parallel database systems use this approach for fail-over when they mount each others disks) or if we have some notion of network-attached storage.
and using those abstractions as modular building blocks to obtain variants of the protocol (reconstruction). This is very challenging if the aim is indeed to come out with a protocol that is both modular and practical. As we will discuss in Section 7, previous consensus-based modularisation tentatives [14, 19] were not faithful to the original protocol (performance wise), and hence not adequate for practical implementations and optimisations. This paper presents three abstractions underlying Paxos: round-based register, weak leader election, and round-based consensus. Roughly speaking, round-based consensus encapsulates the sub-protocol used in Paxos to “agree” on the order (it is strictly weaker than the original notion of consensus [5]); the round-based register encapsulates the sub-protocol used to “store and lock” the agreement value, and the weak leader election encapsulates the sub-protocol used to eventually choose a unique “leader” that will succeed in storing and locking a decision value in the register (it is strictly weaker than the original notion of leader election [22]). Decoupling these abstractions and giving their specification is at the heart of our faithful deconstruction of Paxos, and our subsequent modular reconstructions.

- **Faithful deconstruction.** We describe a modular replication protocol that is faithful to the original Paxos protocol. While it helps better understand the subtle algorithmic principles of Paxos, our modularisation is not achieved at the expenses of efficiency or resilience. Our modular protocol has the same efficiency and resilience properties as the original Paxos protocol. For presentation simplicity, we first present a crash-stop version of Paxos, and then we obtain a modular version of the “real” (crash-recovery resilient) Paxos mainly by reconfiguring the implementation of our round-based register abstraction.

- **Modular reconstructions.** We show how to build interesting variants of Paxos from our abstractions. In fact, we obtain the four variants mentioned earlier simply by modifying specific abstraction implementations or sub-typing these abstractions. The first variant alleviates the need for stable storage, and mainly requires changing the implementation of the round-based register abstraction. The second variant deals with unstable processes, and mainly requires changing the weak leader election abstraction implementation. The third variant ensures progress with a single process and a majority of disks, and only requires the modification of the round-based register implementation. Our fourth variant optimises the protocol for stable periods such that only one round-trip communication is needed among replicas. We obtain this variant by sub-typing round-based consensus and round-based register. Interestingly, except the first and the third variant (which make contradicting assumptions), all other variant pairs are orthogonal and can be combined. In particular, variants 2 and 4 can generally be applied to the protocol, independently of the underlying system configuration.

- **Concise specifications.** We give precise specifications of our abstractions, and prove correctness of our modular protocol in terms of these specifications. Thus, not only do we modularise Paxos, we also modularise its correctness proofs. Interestingly, our deconstruction helps separate key assumptions that underly the correctness of Paxos. The “correct majority” assumption is encapsulated within the round-based register whereas the “eventual synchrony” (or failure detector) assumption is encapsulated within the weak leader election. Furthermore, we introduce a specification of total order broadcast that faithfully captures the properties of Paxos.

4 This can be viewed as a general way to transform a crash-stop resilient algorithm into a crash-recovery resilient algorithm.
5 What we actually show here is that the (rather complicated) Disk Paxos protocol [6] can be viewed as a specific variant of our modular protocol.
6 Lamport pointed out informally this optimisation in [13], without however describing how it does apply to Paxos. Our modularisation helps factor out the actual modules to which this optimisation applies.
• **Framework implementation.** Identifying the basic abstractions underlying Paxos naturally leads to a framework implementation of the protocol [12]. We obtain specific variants of the protocol simply by composing basic classes. We give and discuss some performance measures of our implementation.

The rest of the paper is organised as follows. Section 2 describes the model and the problem specification. Section 3 gives the specification of our abstractions. We show how to implement these specifications in a crash-stop model in Section 4, and how to transpose the implementation in a more general crash–recovery model in Section 5. Section 6 describes four interesting variants of the protocol. Section 7 discusses related work and concludes the paper with some final remarks. Appendix A gives some performance measurements of our framework implementation. Appendix B gives an implementation of the failure detector Ω in a crash-recovery model with partial asynchrony assumptions.

2 Model

2.1 Processes

We consider a set of processes $\Pi = \{p_1, p_2, ..., p_n\}$. At any given time, a process is either up or down. When it is up, a process progresses at its own speed behaving according to its specification (i.e., it correctly executes its program). Note that we do not make here any assumption on the relative speed of processes. While being up, a process can fail by crashing; it then stops executing its program and becomes down. A process that is down can later recover; it then becomes up again and restarts by executing a recovery procedure. The occurrence of a crash (resp. recovery) event makes a process transit from up to down (resp. from down to up). A process p_i is unstable if it crashes and recovers infinitely many times. We define an always-up process as a process that never crashes. We say that a process p_i is correct if there is a time after which the process is permanently up. A process is faulty if it is not correct, i.e., either eventually always-down or unstable.

A process is equipped with two local memories: a volatile memory and a stable storage. The primitives store and retrieve allow a process that is up to access its stable storage. When it crashes, a process loses the content of its volatile memory; the content of its stable storage is however not affected by the crash and can be retrieved by the process upon recovery.

2.2 Link Properties

Processes exchange information and synchronise by sending and receiving messages through channels. We assume the existence of a bidirectional channel between every pair of processes. We assume that every message m includes the following fields: the identity of its sender, denoted $sender(m)$, and a local identification number, denoted $id(m)$. These fields make every message unique. Channels can lose or drop messages and there is no upper bound on message transmission delays. We assume the same channel definitions as in [1], which ensure the following properties between every pair of processes p_i and p_j:

No creation: If p_j receives a message m from p_i at time t, then p_i sent m to p_j before time t.

7In practice, a process is required to stay up long enough for the computation to terminate. In asynchronous systems however, characterising the notion of “long enough” is impossible.
Finite duplication: If \(p_i \) sends a message \(m \) to \(p_j \) only a finite number of times, then \(p_j \) receives \(m \) only a finite number of times.

Fair loss: If \(p_i \) sends a message \(m \) to \(p_j \) an infinite number of times and \(p_j \) is correct, then \(p_j \) receives \(m \) from \(p_i \) an infinite number of times.

These properties characterise the links between processes and are independent of the process failure pattern occurring in the execution. The last two properties are sometimes called, respectively, finite duplication and weak loss, e.g., in [16]. They reflect the usefulness of the communication channel. Without these properties, any interesting distributed problem would be trivially impossible to solve. By introducing the notion of correct process into the fair loss property, we define the conditions under which a message is delivered to its recipient process. Indeed, the delivery of a message requires the recipient process to be running at the time the channel attempts to deliver it, and therefore depends on the failure pattern occurring in the execution. The fair loss property indicates that a message can be lost, either because the channel may not attempt to deliver the message or because the recipient process may be down when the channel attempts to deliver the message to it. In both cases, the channel is said to commit an omission failure.

We assume the presence of a discrete global clock whose range ticks \(\mathcal{T} \) is the set of natural numbers. This clock is used to simplify presentation and not to introduce time synchrony, since processes cannot access the global clock. We will indeed introduce some partial synchrony assumptions (otherwise, fault-tolerant agreement and total order are impossible [5]), but these assumptions will be encapsulated inside our weak leader election abstraction and used only to ensure progress (liveness).

3 Abstractions: Specifications

Our deconstruction of Paxos is based on three abstractions: a round-based register, a weak leader election and a round-based consensus. These “shared memory” abstractions export operations that are invoked by the processes implementing the replicated service.\(^8\)

Roughly speaking, Paxos ensures that all processes deliver messages in the same order. The round-based consensus encapsulates the subprotocol used to “agree” on the order; the round-based register encapsulates the subprotocol used (within round-based consensus) to “store” and “lock” the agreement value (i.e., the order); and the weak leader election encapsulates the subprotocol used to eventually choose a unique leader that succeeds in storing and locking a final decision value in the register. We give here the specifications of these abstractions, together with the specification of the problem we solve using these abstractions, i.e., total order delivery. (Implementations are given in the next sections.) The specifications rely on the notion of process correctness: we assume that processes fail only by crashing, and a process is correct if there is a time after which the process is always-up (i.e., not crashed).\(^9\) (Details about our system model are also given in optional Appendix A.)

\(^8\)As in [11], we say that an operation invocation inv2 follows (is subsequent to) an operation invocation inv1, if inv2 was called after inv1 has returned. Otherwise, the invocations are concurrent.

\(^9\)Note that the validity period of this definition is the duration of a protocol execution, i.e., in practice, a process is correct if it eventually remains up long enough for the protocol to terminate.
3.1 Round-Based Register

Like a standard register, a round-based register has two operations: \textit{read()} and \textit{write()}. These operations are invoked by the processes in the system. Unlike a standard register, the operation invocations of a round-based register (1) take as a parameter an integer (i.e., a round number), and (2) may commit or abort. The commit/abort outcome reflects the success or the failure of the operation. More precisely:

- The \textit{read()} operation takes as input an integer \(k \). It returns a pair \((\text{status}, v)\) where \(\text{status} \in \{\text{yes}, \text{no}\} \) and \(v \in V \) represents the set of possible values for the register; \(\bot \in V \) is the initial value of the register. If \textit{read}(k) returns \((\text{yes}, v)\) (resp. \((\text{no}, v)\)), we say that \textit{read}(k) \textit{commits} (resp. \textit{aborts}) with \(v \).

- The \textit{write()} operation takes as input an integer \(k \) and a value \(v \in V \). It returns \(\text{status} \in \{\text{yes}, \text{no}\} \). If \textit{write}(k, v) returns \text{yes} (resp. \text{no}), we say that \textit{write}(k, v) \textit{commits} (resp. \textit{aborts}).\(^{10}\)

In the following, we describe the properties of the round-based register. These properties define the conditions under which the operations can abort or commit. Indirectly, these conditions relate the values read and written on the register. We first describe the condition under which an invocation can abort. Roughly speaking, an operation invocation aborts only if there is a conflicting invocation. Like in [13], the notion of “conflict” is defined here in terms of round-numbers associated with the operations. The following condition captures the intuition that a \textit{read()} (resp. a \textit{write()}) conflicts with any other operation (\textit{read()} or \textit{write()}) made with a strictly higher round number. More precisely:

- \textbf{Read-write-abort:} If \textit{read}(k) or \textit{write}(k, \#) aborts, then some operation \textit{read}(k') or \textit{write}(k', \#) was invoked with \(k' > k \).

We describe below the conditions under which the operations can commit. Intuitively, a \textit{read()} that commits returns the value written by a “previous” \textit{write()}, or the initial value \(\bot \) if no \textit{write()} has been invoked. A \textit{write()} that commits forces a subsequent \textit{read()} to return the value written, unless this value has been overwritten. More precisely:

- \textbf{Read-write-commit:} If \textit{read}(k) or \textit{write}(k, \#) commits, then no subsequent \textit{read}(k') or \textit{write}(k', \#) can commit with \(k' < k \).\(^{11}\)

- \textbf{Read-commit:} If \textit{read}(k) commits with \(v \neq \bot \), then some \textit{write}(k', v) with \(k' \leq k \) was invoked.

- \textbf{Write-commit:} If \textit{write}(k, v) commits and no subsequent \textit{write}(k', \#) is invoked with \(k' \geq k \), then any \textit{read}(k'') that commits, commits with \(v \) if \(k'' > k \).

The read-write commit condition expresses the fact that, to commit an operation, a process must use a round-number that is higher than any round-number of an already committed invocation. The read-commit condition captures the \footnote{Note that even if a \textit{write()} aborts, its value might be subsequently read, i.e., the \textit{write()} operation is not atomic.}\footnote{Note that we deliberately do not restrict the case where different processes perform invocations with the same round number. Paxos indeed assumes round number uniqueness as we will see in Section 4.}

\footnotesize
\begin{center}
\begin{tabular}{|c|c|}
\hline
3.1 Round-Based Register & \\
\hline
\end{tabular}
\end{center}
intuition that no value can be read unless it has been “previously” written. If there has not been any such write, then the initial value \(\perp \) is returned. The write-commit condition captures the intuition that, if a value is (successfully) written, then, unless there is a subsequent write, every subsequent successfully read must return that value. Informally, the two conditions ensure that the value read is the “last” value written.

To illustrate the behaviour of a round-based register, consider the example of Figure 1. Three processes \(p_1, p_2 \) and \(p_3 \) access the same round-based register. Process \(p_1 \) invokes \(\text{write}(1, X) \) before any process invokes any operation on the register: operation \(\text{write}(1, X) \) commits and the value of the register is \(X \): \(p_1 \) gets \(\text{yes} \) as a return value. Later, \(p_2 \) invokes \(\text{read}(2) \) on the register: the operation commits and \(p_2 \) gets \((\text{yes}, X) \) as a return value. If \(p_3 \) later invokes \(\text{write}(1, Y) \), then the operation aborts: the return value is \(\text{no} \) (because \(p_2 \) has invoked \(\text{read}(2) \)). The register value remains \(X \). If \(p_3 \) later invokes \(\text{write}(3, Y) \), then the operation commits: the new register value is \(Y \).

![Figure 1. Round-based register example](image)

3.2 Round-Based Consensus

We introduce below our round-based consensus abstraction. This abstraction captures the subprotocol used in Paxos to agree on a total order. We represent our consensus notion in the form of a shared object with one operation: \(\text{propose}() \) [10]. This operation takes as input an integer (i.e., a round number) and an initial value in a domain \(V \) (i.e., a proposition for the consensus). It returns a status in \(\{\text{yes}, \text{no}\} \) and a value in \(V \). We say that a process \(p_i \) proposes a value \(\text{init}_i \) for round \(k \) when \(p_i \) invokes function \(\text{propose}() \) with \(k \) and \(\text{init}_i \) as parameters. We say that \(p_i \) decides \(v \) in round \(k \) (or commits round \(k \)) when \(p_i \) returns from the function \(\text{propose}() \) with \(\text{yes} \) and \(v \). If the invocation of \(\text{propose}(k, v) \) returns \(\text{no} \) at \(p_i \), we say that \(p_i \) aborts round \(k \). Round-based consensus has the following properties:

- **Validity**: If a process decides a value \(v \), then \(v \) was proposed by some process.

- **Agreement**: No two processes decide differently.

- **Termination**: If a process aborts round \(k \), then some process has proposed (some value) in a round \(k' > k \); if a process \(p_i \) commits round \(k \), then no process can subsequently commit round \(k' < k \).

The agreement and validity properties of our round-based consensus abstraction are similar to those of the traditional consensus abstraction [10]. Our termination property is however strictly weaker. If processes keep concurrently proposing values with increasing round numbers, then no process might be able to decide any value. In a sense, our notion of consensus has a conditional termination property. In the rest of the paper, when no ambiguity is possible, we shall simply use the term consensus instead of round-based consensus.
In Figure 2, process p_2 commits consensus with value Y for round 2. Process p_1 then triggers consensus by invoking $propose(1, X)$ but aborts because process p_2 proposed with a higher round number and prevents p_1 from committing. Process p_1 then proposes with value X for round 4, and this time p_1 commits. Process p_3 aborts when it proposes with value Z for round 3.

\[\text{Figure 2. Round-based consensus example}\]

3.3 Weak Leader Election

Intuitively, a weak leader election abstraction is a shared object that elects a leader among a set of processes. It encapsulates the subprotocol used in Paxos to choose a process that decides on the ordering of messages. The weak leader election object has one operation, named $leader()$, which returns a process identifier, denoting the current leader. When the operation returns p_j at time t and process p_i, we say that p_j is leader for p_i at time t (or p_i elects p_j at time t). We say that a process p_i is an eventual perpetual leader if (1) p_i is correct, and (2) eventually every invocation of $leader()$ returns p_i. Weak leader election satisfies the following property: Some process is an eventual perpetual leader.

It is important to notice that the property above does not prevent the case where, for an arbitrary period of time, various processes are simultaneously leaders. However, there must be a time after which the processes agree on some unique correct leader. Figure 3 depicts a scenario where every process elects process p_1, and then p_1 crashes; eventually every process elects then process p_2. When the leader does not change and there is a majority of processes that remains up, we say that the system is in a stable period. Otherwise, we say that the system is in an unstable period.

\[\text{Figure 3. Weak leader election example}\]

3.4 Total Order Delivery

The main problem solved by the actual Paxos protocol is to ensure total order delivery of messages (i.e., requests broadcast to replicas). Total order broadcast is defined by two primitives: $TO-Broadcast$ and $TO-Deliver$. We say

12 In this sense our weak leader election specification is strictly weaker than the notion of leader election introduced in [22].
13 In fact, Paxos also deals with causal order delivery of messages, but we do not consider that issue here.
that a process TO-Broadcasts a message \(m \) when it invokes \(TO-Broadcast \) with \(m \) as an input parameter. We say that a process TO-Delivers a message \(m \) when it returns from the invocation of \(TO-Deliver \) with \(m \) as an output parameter.

Our total order broadcast protocol has the following properties:

- **Termination:** If a process \(p_i \) TO-Broadcasts a message \(m \) and then \(p_i \) does not crash, then \(p_i \) eventually TO-Delivers \(m \).
- **Agreement:** If a process TO-Delivers a message \(m \), then every correct process eventually TO-Delivers \(m \).
- **Validity:** For any message \(m \), (i) every process \(p_i \) that TO-Delivers \(m \), TO-Delivers \(m \) only if \(m \) was previously TO-Broadcast by some process, and (ii) every process \(p_i \) TO-Delivers \(m \) at most once.
- **Total order:** Let \(p_i \) and \(p_j \) be any two processes that TO-Deliver some message \(m \). If \(p_i \) TO-Delivers some message \(m' \) before \(m \), then \(p_j \) also TO-Delivers \(m' \) before \(m \).

It is important to notice that the total order property we consider here is slightly stronger from the one introduced in [9]. In [9], it is stated that if any processes \(p_i \) and \(p_j \) both TO-Deliver messages \(m \) and \(m' \), then \(p_i \) TO-Delivers \(m \) before \(m' \) if and only if \(p_j \) TO-Delivers \(m \) before \(m' \). With this property, nothing prevents a process \(p_i \) from TO-Delivering the sequence of messages \(m_1; m_2; m_3 \) whereas another (faulty) process TO-Delivers \(m_1; m_3 \) without ever delivering \(m_2 \). Our specification clearly excludes that scenario and more faithfully captures the (uniform) guarantee offered by Paxos [13].

4 Abstractions: Implementations

In the following, we give wait-free [10] implementations of our three abstractions and show how they can be used to implement a simple variant of the Paxos protocol in the particular case of a crash-stop model (following the architecture of Figure 4). We will show how to step to the crash-recovery model in the next section.

<table>
<thead>
<tr>
<th>Paxos</th>
<th>Weak Leader Election</th>
<th>Round-Based Consensus</th>
<th>Round-Based Register</th>
<th>Communication</th>
</tr>
</thead>
</table>

Figure 4. Architecture

We simply assume here that messages are not lost or duplicated and processes that crash halt their activities and never recover. We also assume that a majority of the processes do never crash and, for the implementation of our weak leader election abstraction, we assume the failure detector \(\Omega \) introduced in [2].

4.1 Round-Based Register

The algorithm of Figure 5 implements the abstraction of a round-based register. The algorithm works intuitively as follows. Every process \(p_i \) has a copy of the register value, denoted by \(v_i \), and initialised to \(\perp \). A process reads or
Figure 5. A wait-free round-based register in the crash-stop model

writes a value by accessing a majority of the copies with a round number. According to the actual round-number, a process p_i might "accept" or not the access to its local copy v_i. Every process p_i has a variable read_i that represents the highest round number of a $\text{read}(\cdot)$ "accepted" by p_i, and a variable write_i that represents the highest round number of a $\text{write}(\cdot)$ "accepted" by p_i. The algorithm is made up of two procedures ($\text{read}(\cdot)$ and $\text{write}(\cdot)$) and two tasks that handle READ and WRITE messages. Each task is executed in one atomic step to avoid mutual exclusion problems for the common variables.

Proposition 1. The algorithm of Figure 5 implements a round-based register.

The proof is based on lemmata 2, 3, 4, and 5.

Lemma 2. Read-write-abort: If $\text{read}(k)$ or $\text{write}(k, \ast)$ aborts, then some operation $\text{read}(k')$ or $\text{write}(k', \ast)$ was invoked with $k' > k$.

Proof. Assume that some process p_j invokes a $\text{read}(k)$ (resp. $\text{write}(k, \ast)$) that returns no (i.e., aborts). By the algorithm of Figure 5, this can only happen if some process p_i has a value $\text{read}_i > k$ or $\text{write}_i > k$, which means that some process has invoked $\text{read}(k')$ or $\text{write}(k')$ with $k' > k$.

Lemma 3. Read-write-commit: If $\text{read}(k)$ or $\text{write}(k, \ast)$ commits, then no subsequent $\text{read}(k')$ or $\text{write}(k', \ast)$ can commit with $k' < k$.

Proof. Let process p_i be any process that commits $\text{read}(k)$ (resp. $\text{write}(k, \ast)$). This means that a majority of the
processes have “accepted” read(k) (resp. write(k, *)). For a process \(p_j \) to commit read(k') or write(k', *) with \(k' < k \), a majority of the processes must “accept” read(k') (resp. write(k', *)). Hence, at least one process must “accept” read(k) (resp. write(k, *)) and then read(k') (resp. write(k', *)) with \(k' < k \) which is impossible by the algorithm of Figure 5: a contradiction.

Lemma 4. Read-commit: If read(k) commits with \(v \neq \bot \), then some operation write(k', v) was invoked with \(k' \leq k \).

Proof. By the algorithm of Figure 5, if some process \(p_j \) commits read(k) with \(v \neq \bot \), then some process \(p_i \) must have sent to \(p_j \) a message [ackREAD, k, writej, v] then some process \(p_m \) must have invoked write(k', v) with \(k' \leq k \), otherwise \(p_i \) would have sent [nackREAD, k] to \(p_j \) or [ackREAD, k, 0, \bot].

Lemma 5. Write-commit: If write(k, v) commits and no subsequent write(k', *) is invoked with \(k' \geq k \), then any read(k") that commits, commits with \(v \) if \(k" > k \).

Proof. Assume that some process \(p_i \) commits write(k, v), and assume that no subsequent write(k', *) has been invoked with \(k' \geq k \) and that for some \(k" > k \) some process \(p_j \) commits read(k") with \(v' \). Assume by contradiction that \(v \neq v' \). Since read(k") commits with \(v' \), by the read-commit property, some write(k', v') was invoked before or at the same round \(k" \). However, this is impossible since we assumed that no write(k', *) operation with \(k' \geq k \) has been invoked, i.e., \(v_i \) remains unchanged to \(v \): a contradiction.

Proof of Proposition 1. Directly from lemmata 2, 3, 4 and 5.

Proposition 6. With a majority of correct processes, the implementation of Figure 5 is wait-free.

Proof. The only wait statements of the protocol are the guard lines that depicts the waiting for a majority of replies. These are non-blocking since we assume a majority of correct processes. Indeed, a majority of correct processes always send a message to the requesting process either of type [ackREAD, nackREAD], or of type [ackWRITE, nackWRITE].

4.2 Round-Based Consensus

The algorithm of Figure 6 implements a round-based consensus object that relies on a wait-free round-based register. As in [13, 19], we assume round number uniqueness, i.e., a process \(p_i \) proposes only for round \(k - i, k - i + N, k - i + 2N, ... \). The basic idea of the algorithm is the following. For a process \(p_i \) to propose a value for a round \(k \), \(p_i \) first reads the value of the register with \(k \), and if the read(\(k \)) operation commits, \(p_i \) invokes a write(\(k \)) with \(k \) and \(v \) (or \(p_i \)’s initial value if no value has been written). If the write(\(k \)) operation commits, then the process decides the value written (i.e., returns this value). Otherwise, \(p_i \) aborts and returns no (line 7).

Proposition 7. The algorithm of Figure 6 implements a wait-free round-based consensus.

The proof is based on lemmata 8, 9 and 10.
Lemma 8. Validity: If a process decides a value v, then v was proposed by some process.

Proof. Let p_i be a process that decides some value v. By the algorithm of Figure 6, either (a) v is the value proposed by p_i, in which case validity is satisfied, or (b) v has been read by p_i in the register. Consider case (b), by the read-commit property of the register, some process p_j must have invoked some $\text{write}(\cdot)$ operation. Let p_j be the the first process that invokes $\text{write}(k_0, \ast)$ with k_0 equal to the smallest k ever invoked for $\text{write}(k, v)$. By the algorithm of Figure 6, there are two cases to consider: either (a) v is the value proposed by p_j, in which case validity is satisfied, or (b) v has been read by p_j in the register. For case (b), by the read-commit property of the register, for p_j to read v, some process p_m must have invoked $\text{write}(k', v)$ with $k' \leq k_0$: a contradiction. Therefore, v is the value proposed by p_j and validity is ensured.

Lemma 9. Agreement: No two processes decide differently.

Proof. Assume by contradiction that two processes p_i and p_j decide two different values v and v'. Let p_i decides after committing $\text{write}(k, v)$ and p_j decides after committing $\text{write}(k', v')$. Assume without loss of generality that $k' > k$ (remember that we assume round-number uniqueness) and k' is the smallest round number that is higher than k. By the algorithm of Figure 6 p_j must have committed $\text{read}(k')$ with v' before committing $\text{write}(k', v')$. However, by the write-commit property, $\text{read}(k')$ must return v (since no process has invoked any $\text{write}(k'', \ast)$: a contradiction. Therefore, v is the value proposed by p_j and validity is ensured.

Lemma 10. Termination: If a process p_i aborts in a round k, then some process has proposed (some value) a round $k' > k$; if a process p_i commits a round k, then no process can subsequently commit a round $k' < k$.

Proof. For the first part, assume that a process p_i aborts a round k. By the algorithm of Figure 6, this means that p_i aborts $\text{read}(k)$ or $\text{write}(k, \ast)$. By the read-write-abort property, some process must have proposed in a round $k' > k$. Consider now the second part. Assume that a process p_i commits a round k. By the the algorithm of Figure 6 and the read-write-commit property, no process can subsequently commit any $\text{read}(k')$ or $\text{write}(k', \ast)$ with $k' < k'$. Hence no process can subsequently commit a round $k' < k$.

Proof of Proposition 7. Termination, agreement and validity follows from lemmata 8, 9 and 10. The implementation of round-based consensus is wait-free since it is based on a wait-free round-based register and does not introduce any “wait” statement.

4.3 Weak Leader Election

Figure 7 describes a simple implementation of a wait-free weak leader election. The protocol relies on the assumptions (i) that at least one process is correct and (ii) the existence of failure detector Ω [2]: Ω outputs (at each process) a list of trusted processes, i.e., processes that are trusted to be up. Failure detector Ω satisfies the following property: There is a time after which exactly one correct process is always trusted by every correct process. Our weak leader election relies on Ω in the following way. The output of failure detector Ω at process p_i is denoted by Ω_i. If Ω_i is not

14It was shown in [2] that Ω is the weakest failure detector to solve consensus and total order broadcast in a crash-stop system model. Failure detector Ω can be implemented in a message passing system with partial synchrony assumptions [3].
empty, \textit{leader()} returns the first process from the trusted list; in any other case, \textit{leader()} returns \(p_i \).

1: \textbf{procedure} consensus() \quad \{\text{constructor for each process \(p_i \)}\}
2: \quad x \leftarrow \bot, \text{reg} \leftarrow \text{new register()}
3: \quad \text{procedure propose\((k, \text{init}_i) \)}
4: \quad \text{if reg.read\((k) = (\text{yes}, v) \) then}
5: \quad \quad \text{if (\(v = \bot \)) then \(v \leftarrow \text{init}_i \)}
6: \quad \quad \text{if (reg.write\((k, v) = \text{yes} \)) then return(\text{yes}, v)}
7: \quad \text{return(\text{no}, \text{init}_i)}

\textbf{Figure 6.} A wait-free round-based consensus using a wait-free round-based register

1: \textbf{procedure} leader() \quad \{\text{for each process \(p_i \)}\}
2: \quad \text{if \(\Omega_i \neq \bot \) then return(first(\(\Omega_i \))) else return(\(p_i \))}

\textbf{Figure 7.} A wait-free weak leader election with \(\Omega \)

\textbf{Proposition 11.} With failure detector \(\Omega \) and the assumption that at least one process is correct, the algorithm of Figure 7 implements a wait-free weak leader election.

\textbf{Proof.} Follows from the property of \(\Omega \) [2]. \hfill \Box

4.4 A Simple Variant of Paxos

The algorithm of Figure 9 can be viewed as a simple and modular version of Paxos in a crash-stop model (whereas the original Paxos protocol considers a crash-recovery model - see next section). The algorithm uses a series of consecutive round-based consensus (or simply consensus) instances: each consensus instance being used to agree on a batch of messages. Every process differentiates consecutive consensus instances by maintaining a local counter (\(K \)): each value of the counter corresponds to a specific consensus instance. Consensus instances are triggered according to the output of the weak leader election protocol: only leaders trigger consensus instances.

We give here an intuitive description of the algorithm. When a process \(p_i \) \text{TO-Broadcasts} a message \(m, p_i \) consults the leader election protocol and sends \(m \) to leader \(p_j \). When \(p_j \) receives \(m \), \(p_j \) triggers a new consensus instance by proposing all messages that it received (and not yet \text{TO-Delivered}) as an input for consensus. In fact, \(p_j \) starts a new task \text{propose} (\(K^{th} \)) that keeps on trying to commit consensus \(K \) for this batch, as long as \(p_j \) remains leader. If consensus commits, \(p_j \) sends the decision to every process. Otherwise, task \text{propose} periodically invokes consensus, unless \(p_j \) stops being leader or some consensus instance commits. When \(p_i \) elects another process \(p_k \), \(p_i \) sends to \(p_k \) every message that \(p_i \) received, and not yet \text{TO-Delivered}. By the weak leader election property, eventually every correct process elects the eventual perpetual leader \(p_1 \), and sends its messages to \(p_1 \). By the round-based consensus specification, eventually \(p_1 \) commits consensus and sends the decision to every process. Once \(p_1 \) receives a decision for the \(K^{th} \) batch of messages, \(p_1 \) stops task \text{propose} for this batch. Process \(p_1 \) \text{TO-Delivers} this batch of messages only if it is the next one that was expected, i.e., if \(p_1 \) has already \text{TO-Delivered} messages of batch \(K-1 \). If it is not the case, \(p_i \) waits for the next expected batch (\text{nextBatch}) to respect total order. Within a batch of messages, processes \text{TO-Deliver} messages using a deterministic ordering function.
Note that in order to decide on a batch of messages, more than one consensus round might be necessary; consensus rounds are differentiated with integer k. Due to round number uniqueness, no process can propose twice for the same round k.\(^{15}\) Note also than an array of round-based registers is used in the total order broadcast protocol: each round-based register corresponds to the “store and lock” of a given consensus instance. Finally, note that a process p_i instantiates a round-based register when (i) p_i instantiates a round-based consensus, or (ii) p_i receives for the first time a message for the K^{th} consensus, i.e., K^{th} register of the array.

Figure 8 depicts four typical execution schemes of the algorithm. We assume for all cases that (i) process p_1 TO-Broadcasts a message m, (ii) process p_5 is the eventual perpetual leader and (iii) $K = 1$. ($prop(*)$ stands in the figures for $propose(*)$.) In Figure 8(a), p_1 elects itself, triggers a new consensus instance by invoking $propose(1, m)$, commits, and sends the decision to all. In Figure 8(b), p_1 elects p_5 and sends m to p_5. Process p_5 then invokes $propose(5, m)$, commits, then sends the decision to all. In Figure 8(c), p_1 first elects p_3 and sends m to p_3. In this case however, p_3 does not elect itself and therefore does nothing. Later on, p_1 elects p_5 and then sends m to p_5. As for case (b), p_5 commits consensus and sends the decision to every process. Note that p_3 could have sent m to p_5 if p_3 had elected p_5. Finally, in Figure 8(d), p_1 elects p_3 (which does not elect itself), then p_1 elects p_2, which elects itself and invokes $propose(2, m)$ but aborts. Finally, p_1 elects p_5, and, as for case (c), p_5 commits consensus and sends the decision to all.

\(^{15}\)Allowing two processes to propose for the same round could violate agreement. For example, process p_1 invokes $propose(1, v)$ and commits, and process p_2 invokes $propose(1, v')$. The termination property of consensus allows p_2 to commit: agreement would indeed be violated.
Precise description. We give here more details about the algorithm of Figure 9. We first describe the main data structure, and then the main parts of the algorithm. Each process p_i maintains a variable TO_delivered that contains the messages that were TO-Delivered. When p_i receives a message m, p_i adds m to the set Received which keeps track of all messages that need to be TO-Delivered. Thus $\text{Received} - \text{TO_delivered}$, denoted TO_undelivered, contains the set of messages that were submitted for total order broadcast, but are not yet TO-Delivered. The batches that have been decided but not yet TO-Delivered are put in the set $\text{AwaitingToBeDelivered}$. The variable nextBatch keeps track of the next expected batch in order to respect the total order property.

There are four main parts in the protocol: (a) task launch starts16 task propose if the process p_i is leader, or if p_i is not leader, sends the messages it received to the leader; (b) task propose keeps on starting round-based consensus while p_i is leader, until a decision is reached; (c) primitive receive handles received messages, and stops task propose once p_i receives a decision; and (d) primitive deliver TO-Delivers messages. Each part is described below in more details. Initially, when a process p_i TO-Broadcasts a message m, p_i puts m into the set Received which has the effect of changing the predicate of guard line 16.

- In task launch, process p_i periodically checks whether the set TO_undelivered contains messages (line 16), or whether p_i elects another leader. Note that the loop is executed only once for each received message to avoid that p_i keeps on proposing (create new consensus instance) for an unchanged TO_undelivered set. First, if the leader changes, p_i sends all the messages it received to the leader. Otherwise before starting a new consensus instance, p_i first verifies at line 21 if it already received the decision or already TO-Delivered it. Process p_i then either (a) increments the batch number to initiate a consensus for a new batch of messages ($\text{nextBatch} + 1$) if p_i is the leader, i.e., p_i starts task propose with TO_undelivered as the next batch ($\text{nextBatch} + 1$) of messages; or (b) if p_i is not leader, then p_i sends the messages it received to the leader.

- In task propose, a process p_i periodically invokes consensus (proposes) if p_i is leader. By the property of weak leader election, one of the correct processes (p_j) will be the eventual perpetual leader. Once p_i is elected by each correct process, p_i receives all batches of messages from the correct processes, proposes and commits consensus (line 33) and then sends the decision to all (line 36).

- In the primitive receive, when process p_i receives the decision of consensus (line 38), p_i first stops task propose_K: p_i does not stop other batches (task propose) - i.e., this could influence the result of some other consensus instances (line 36). Process p_i then verifies that the decision received is the next decision that was expected (nextBatch). Otherwise, there are two cases to consider: (i) p_i is ahead, or (ii) p_i is lagging. For case (i), if p_i is ahead (i.e., receives a decision from a lower batch), p_i sends to p_j an UPDATE message for each batch that p_j is missing (line 42). For case (ii), if p_i receives a future batch, p_i buffers the messages of the batch in the set $\text{AwaitingToBeDelivered}$ and p_i also sends to p_j an UPDATE message with nextBatch in order for p_j to update itself (p_i) when p_j receives this “on purpose lagging” message. Process p_i waits until it gets the next expected batch in order to satisfy the total order property.

16When we say that a new task is started, we mean a new instance of the task with its own variables (since there can be more than one batch of messages being treated at the same time). Moreover, the variable TO_delivered means the union of all arrays $\text{TO_delivered}[K]$.

15
In the primitive deliver, process \(p_i \) TO-Delivers only the messages that were not already TO-Delivered (line 8 or 13) following the same deterministic order. We assume that \(p_i \) removes all messages that appear twice in the same batch of messages.

Proposition 12. The algorithm of Figure 9 satisfies the termination, agreement, validity and total order properties.

We assume here a system model where messages keep being broadcast indefinitely. This assumption precisely what enables us to ensure the uniformity of agreement without additional forced logs and communication steps. The proof is based on lemmata 13, 15, 16 and 17.

Lemma 13. Termination: If a process \(p_i \) TO-Broadcasts a message \(m \) and then \(p_i \) does not crash, then \(p_i \) eventually TO-Delivers \(m \).

The proof is based on lemma 14.

Lemma 14. If the eventual perpetual leader proposes a batch of messages, it eventually decides.

Proof. Assume by contradiction that process \(p_i \) is the eventual perpetual leader that proposes a batch of messages and never decides. By the algorithm of Figure 9, \(p_i \) keeps incrementing round number \(k \) (line 35). Let \(k_0 \) be the smallest round number reached by \(p_i \) such that no process else than \(p_i \) ever invokes any operation. By the algorithm of Figure 9, such round number exists because, unless it is leader, no other process invokes any operation on the consensus. By the termination property of consensus and since the implementation of consensus is wait-free, \(p_i \) commits \(\text{propose}(k, \ast) \), which means that \(p_i \) decides a value: a contradiction.

Proof of Lemma 13. Suppose by contradiction that \(p_i \) TO-Broadcasts a message \(m \) but never TO-Delivers \(m \). Remember that every time \(p_i \) elects a new process, \(p_i \) sends \(m \) to this new leader. By the weak leader property, eventually \(p_i \) elects the eventual perpetual leader process \(p_l \) and \(p_i \) sends \(m \) to \(p_l \). By lemma 14, \(p_l \) proposes, decides and sends the decision to all processes. There are now two cases to consider: (a) \(p_l \) does not crash, or (b) \(p_l \) crashes. For case (a), by the properties of the channels, \(p_i \) receives the decision from \(p_l \) and TO-Delivers \(m \): a contradiction. For case (b), if \(p_l \) crashes, \(p_i \) was not an eventual perpetual leader: a contradiction.

Lemma 15. Agreement: If a process TO-Delivers a message \(m \), then every correct process eventually TO-Delivers \(m \).

Proof. Suppose by contradiction that process \(p_i \) TO-Delivers \(m \) and let \(p_j \) be any correct process that does not TO-Deliver \(m \). Process \(p_i \) must have received the decision from some process \(p_k \) (\(p_k \) could be \(p_i \)). There are two cases to consider: (a) \(p_k \) is a correct process, or (b) \(p_k \) is a faulty process. For case (a), since \(p_k \) TO-Delivered \(m \), by the reliable properties of the channels, every correct process receives the decision and TO-Delivers \(m \): a contradiction. For case (b), since we assume that new messages keep coming, the eventual perpetual leader \(p_l \) TO-Delivers \(m \) and therefore sends at some time the decision to every correct process: a contradiction. As explained earlier, due to round number uniqueness, no two processes can propose for the same round, therefore every correct process decides the same value for consensus.
Lemma 16. Validity: For any message \(m \), (i) every process \(p_i \) that TO-Delivers \(m \), TO-Delivers \(m \) only if \(m \) was previously TO-Broadcast by some process, and (ii) every process \(p_i \) TO-Delivers \(m \) at most once.

Proof. For the first part (i), suppose by contradiction that some process \(p_i \) TO-Delivers a message \(m \) that was not TO-Broadcast by any process. For a message \(m \) to be TO-Delivered, by the algorithm of Figure 9, \(m \) must be decided through round-based consensus. By the validity property of consensus, \(m \) has to be proposed (line 27). In order to be proposed, \(m \) has to be in the set \(\text{TO_undelivered} \) (line 19); then to be in the set \(\text{TO_undelivered} \), \(m \) has to be in the set \(\text{Received} \) (line 42). Finally, for \(m \) to be in set \(\text{Received} \), \(m \) has to be TO-Broadcast or sent (lines 6 & 22). Ultimately, for \(m \) to be sent, \(m \) must be TO-Broadcast: a contradiction. For the second part (ii), \(p_i \) cannot TO-Deliver more than once a message \(m \). This is impossible since line 8 removes all the messages that have been already TO-Delivered. Of course, we assume that \(p_i \) distinguishes all messages that appear twice in the variable \(\text{msgSet} \).

Lemma 17. Total order: Let \(p_i \) and \(p_j \) be any two processes that TO-Deliver some message \(m \). If \(p_i \) TO-Delivers some message \(m' \) before \(m \), then \(p_j \) also TO-Delivers \(m' \) before \(m \).

Proof. Suppose by contradiction that \(p_i \) TO-Delivers a message \(m \) before a message \(m' \) and \(p_j \) TO-Delivers \(m' \) before \(m \). There are two cases to consider: (a) \(m \) and \(m' \) are in the same message set, and (b) \(m \) and \(m' \) are in different message sets. For case (a), since every process delivers messages following the same deterministic order, \(m \) is delivered before \(m' \) on both processes: a contradiction. For case (b), suppose that \(m \) is part of \(\text{msgSet}^K \) and \(m' \) is part of \(\text{msgSet}^{K'} \) where \(K < K' \). For \(m \) to be TO-Delivered, \(\text{msgSet}^K \) has to be received as a \text{DECIDE} or \text{UPDATE} message (line 32). If \(p_i \) TO-Delivers \(m \) before \(m' \), then \(p_j \) cannot TO-Deliver \(m' \) before \(m \) since the predicate of guard line 34 forbids \(p_j \) to TO-Deliver batches of messages out of order: a contradiction. Nevertheless, \(p_j \) could receive the \(K^{th} \) batch of messages before the \(K'^{th} \) batch of messages, but the batch would be put in the set \(\text{AwaitingtoBeDelivered} \).

Proof of Proposition 12. Directly from the lemmata 13, 15, 16 and 17.

5 A Faithful Deconstruction of Paxos

This section describes a faithful and modular deconstruction of Paxos [13]. It is modular in the sense that it builds upon our abstractions: the specifications of these are not changed, only their implementations are slightly modified. It is faithful in the sense that it captures the practical spirit of the original Paxos protocol: it tolerates temporary crashes of links and processes. Just like with the original Paxos protocol, we preclude the possibility of unstable processes: either processes are correct (eventually always-up), or they eventually crash and never recover. We will come back to this assumption in the next section.

To step from the crash-stop model to the crash-recovery model, we mainly adapt the round-based register and slightly modify the global protocol to deal with recovery (in shade in Figure 10(a)). Every process performs some forced logs so that it can consistently retrieve its state when it recovers. To cope with temporary link failures, we build upon a retransmission module, associated with two primitives \text{s-send} and \text{s-receive}: if a process \(p_i \) \text{s-sends} a message to a correct process \(p_j \) and \(p_i \) does not crash, the message is eventually \text{s-received}.
1: For each process p_i:
2: procedure initialization
3: Received[] ← ∅; $TO_{delivered}[] ← ∅$; $start\ task\ [\text{launch}]$
4: $TO_{undelivered} ← ∅$; $\text{AwaitingToBeDelivered[]} ← ∅$; $K ← 1$; nextBatch ← 1
5: procedure $TO-$Broadcast(m)
6: Received ← Received ∪ m
7: procedure delivering($msgSet$)
8: $TO_{delivered}[$nextBatch$] ← msgSet - $TO_{delivered}$,
9: atomically deliver all messages in $TO_{delivered}[$nextBatch$] in some deterministic order
10: $TO_{delivered}[$nextBatch$,$$TO_{delivered}[$nextBatch$]]$
11: nextBatch ← nextBatch +1
12: while $\text{AwaitingToBeDelivered}[\text{nextBatch}] \neq ∅$ do
13: $TO_{delivered}[$nextBatch$] ←$ $\text{AwaitingToBeDelivered}[$nextBatch$]$
14: nextBatch ← nextBatch +1
15: task launch \{while loop executed only once if Received does not change\}
16: while $\text{Received} - TO_{delivered} \neq ∅$ or leader has changed do
17: if $K = \text{nextBatch} \land \text{AwaitingToBeDelivered}[$$K$] \neq ∅ and $TO_{delivered}[$$K$] \neq ∅ do
18: $K ← K +1$
19: if $\text{leader()} = p_i$ then
20: while propose$_K$ is active do
21: $K ← K +1$
22: $\text{start task propose}_K$($K$,$p_i$,$TO_{delivered}$,$K ← K +1$)
23: $\text{send}($$TO_{undelivered}\text{to leader()}$)
24: propose_L(L,1,$msgSet$)
25: committed ← false; consensus$_L ← \text{new consensus}()$
26: if not committed do
27: if $\text{leader()} = p_i$ then
28: if consensus$_L$,proposed,$msgSet) (\text{yes, returnedMsgSet})$ then
29: committed ← true
30: l ← $1 + N$
31: $\text{send}($$\text{decision}_L$, returned$MsgSet$)\text{ to all processes}$
32: upon receive m from p_j do
33: if $m \Rightarrow \text{DECISION}_{\text{nextBatch}},msgSet^{K_p_j}$ or $m = (\text{UPDATE}_{K_p_j},TO_{delivered}[K_p_j])$ then
34: if $\text{task progress}_{p_j}$ is active then stop task propose$_{p_j}$
35: if $\text{K}^j_{p_j} \neq \text{nextBatch}$ then \{p$_j$ is ahead or behind\}
36: if $\text{K}^j_{p_j} \neq \text{nextBatch}$ then \{p$_j$ is behind\}
37: for all L such that $\text{K}^j_{p_j} \neq L \leq \text{nextBatch}$: send(update$_L$,$TO_{deliver}[L]) to p_j \{$p_j \neq p_i$\}
38: else $\text{AwaitingToBeDelivered}[$$K_p_j$] = msgSet$^{K_p_j} \Rightarrow \text{send}($$\text{update}$nextBatch$-1$,$TO_{deliver}[$nextBatch$-1$]) to p_j \{$p_j \neq p_i$\}
39: else $\text{deliver(msgSet}^{K_p_j}$)
40: else \{Consensus messages are added to the consensus box\}
41: $\text{Received} ← \text{Received} ∪ m$

Figure 9. A modular crash-stop variant of Paxos

Figure 10. The impact of a crash-recovery model
5.1 Retransmission Module

We describe here a retransmission module that encapsulates retransmissions issues to deal with temporary crashes of communication links. The primitives of the retransmission module (s-send and s-receive) preserve the no creation and finite duplication properties of the underlying channels, and ensures the following property: Let p_i be any process that s-sends a message m to a process p_j, and then p_i does not crash. If p_j is correct, then p_j eventually s-receives m. Figure 11 gives the algorithm of the retransmission module. All messages that need to be retransmitted are put in the variable $xmitmsg$ with their destination in the set dst (line 5). Messages in $xmitmsg$ are erased once all recipients have acknowledged m, otherwise they are always retransmitted (lines 18-21). The no creation and finite duplication properties are trivially satisfied.

```plaintext
1: for each process $p_i$;
2: procedure initialisation:
3: $xmitmsg[]$, $dst[]$ ←⊥; start task [retransmit]
4: procedure s-send($Ê$)
5: if $Ê$ £ $xmitmsg$ then $xmitmsg ← xmitmsg \cup m$
6: if $p_j$ £ $dst[m]$ then $dst[m] ← dst[m] \cup p_j$
7: for all $p_j$ £ $dst[m]$ do
8: if $p_j$ = $p_i$ then
9: send $Ê$ to $p_j$
10: else simulate s-receive $Ê$ from $p_j$;
11: $dst[m] ← dst[m] \setminus p_j$
12: upon receive($m$) from $p_j$ do
13: if $m$ = ACK then
14: $dst[m] ← dst[m] \setminus p_j$
15: if $dst[m] = ⊥$ then $xmitmsg ← xmitmsg \setminus m$
16: else
17: s-receive($m$); send ACK($m$) to $p_j$
18: task retransmit
19: while true do
20: for all $m$ £ $xmitmsg$ do
21: s-send($m$)
```

Figure 11. Retransmission module

Proposition 18. Let p_i be any process that s-sends a message m to a process p_j, and then p_i does not crash. If p_j is correct, then p_j eventually s-receives m.

Proof. Suppose by contradiction that p_i s-sends a message m to a process p_j and then does not crash. Assume p_j is correct, yet p_j does not s-receive m. There are two cases to consider: (a) p_j does not crash, or (b) p_j crashes and eventually recovers and remains always-up. For case (a), by the fair loss properties of the links, p_j receives and then s-receives m: a contradiction. For case (b), since process p_i keeps on sending m to p_j, there is a time after which p_i sends m to p_j and none of them crash afterwards. As for case (a), by the fair loss property of the links, p_j eventually receives m, then p_j-receives m: a contradiction. □

Proposition 19. With a majority of correct processes, the algorithm of Figure 12 implements a wait-free round-based register.

Lemma 20. Read-write-abort: If $\text{read}(k)$ or $\text{write}(k, *)$ aborts, then some operation $\text{read}(k')$ or $\text{write}(k', *)$ was invoked with $k' > k$.

Lemma 21. Read-write-commit: If $\text{read}(k)$ or $\text{write}(k, *)$ commits, then no subsequent $\text{read}(k')$ or $\text{write}(k', *)$ can commit with $k' < k$.

19
1: procedure register()
2: \text{read}_i ← 0
3: \text{write}_i ← 0
4: \text{v}_i ← ⊥
5: procedure read(k)
6: s-send [READ,k] to all processes
7: wait until s-received [ackREAD,k] or [nackREAD,k] from \(\lceil (n+1)/2 \rceil\) processes
8: if s-received at least one [nackREAD,k] then
9: return (no, v)
10: else
11: select the [ackREAD,k', v] with the highest k'
12: return (ps, v)
13: procedure write(k, v)
14: s-send [WRITE,k, v] to all processes
15: wait until s-received [ackWRITE,k] or [nackWRITE,k] from \(\lceil (n+1)/2 \rceil\) processes
16: if s-received at least one [nackWRITE,k] then
17: return (no)
18: else
19: return (ps)
20: task wait until s-receive [READ,k] from \(p_j\)
21: if \(\text{write}_i > k\) or \(\text{read}_i > k\) then
22: s-send [nackREAD,k] to \(p_j\)
23: else
24: \(\text{read}_i ← k;\) store \((\text{read}_i)\)
25: s-send [ackREAD,k, write_i, v_i] to \(p_j\)
26: task wait until s-receive [WRITE,k, v] from \(p_j\)
27: if \(\text{write}_i > k\) or \(\text{read}_i > k\) then
28: s-send [nackWRITE,k] to \(p_j\)
29: else
30: \(\text{write}_i ← k\)
31: \(v_i ← v;\) store \((\text{write}_i, v_i)\)
32: s-send [ackWRITE,k] to \(p_j\)
33: upon recovery do
34: initialisation
35: retrieve \((\text{write}_i, \text{read}_i, v_i)\)

{modified from Figure 5}

\{constructor for each process \(p_i\)\}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{A wait-free round-based register in the crash-recovery model}
\end{figure}

Lemma 22. Read-commit: If \(\text{read}(k)\) commits with \(v \neq \perp\), then some operation \(\text{write}(k', v)\) was invoked with \(k' \leq k\).

Lemma 23. Write-commit: If \(\text{write}(k, v)\) commits and no subsequent \(\text{write}(k', *)\) is invoked with \(k' \geq k\), then any \(\text{read}(k'\perp)\) that commits, commits with \(v\) if \(k'' > k\).

The proofs for lemmata 20 through 23 are similar to those of lemmata 2 through 5 since: (a) if \(p_i\) invokes a \(\text{read}()\) or a \(\text{write}()\) operation and then does not crash, by the property of the retransmission module, \(p_i\) keeps on sending messages (e.g., READ messages for the \(\text{read}()\) operation) until it gets a majority of replies (e.g., ackREAD or nackREAD); (b) since all variables are logged before sending any positive acknowledgement messages, a process does not behave differently if it crashes and recovers. If a process crashes and recovers, it recovers its precedent state and therefore acts as if it did not crash.

5.2 Round-Based Register

The main differences with our crash-stop implementation given in the previous section are the following. As shown in Figure 10(b), a process logs the variables \(\text{read}_i, \text{write}_i\) and \(v_i\), in order to be able to recover consistently its precedent state after a crash. A recovery procedure re-initialises the process and retrieves all variables. The send (resp. receive) primitive is also replaced by the s-send (resp. s-receive) primitive.
5.3 Weak Leader Election

The implementation of the weak leader election does not change in the crash-recovery model. However, the failure detector Ω has only been defined in the crash-stop model [2]. Interestingly, its definition (there is a time after which exactly one correct process is always trusted by every correct process) does not change in a crash-recovery model (the notion of correctness changes though). We give in Appendix B an implementation of the failure detector Ω in a crash-recovery model with partial synchrony assumptions.

5.4 Modular Paxos

Figure 10(b) shows that compared to the crash-stop version, the total order broadcast protocol adds (i) a recovery procedure, and (ii) one forced log to store the set $TODelivered$ and the variable $nextBatch$. We now say that a process $TODelivers$ a message m when the process logs m. In a stable period, a process can $TODeliver$ a message after three forced logs and two round trip communication steps (if the leader is the process that broadcasts the message). Section 6.4 introduces a powerful optimisation that requires only two forced logs and one round-trip communication step.

Proposition 24. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of Figure 13 ensures the termination, agreement, validity and total order properties in a crash-recovery model without unstable processes.

Lemma 25. Termination: If a process p_i $TODelivers$ a message m and then p_i does not crash, then p_i eventually $TODelivers$ m.

Lemma 26. Agreement: If a process $TODelivers$ a message m, then every correct process eventually $TODelivers$ m.

Lemma 27. Validity: For any message m, (i) every process p_i that $TODelivers$ m, $TODelivers$ m only if m was previously $TODelivered$ by some process, and (ii) every process p_i $TODelivers$ m at most once.

Lemma 28. Total order: Let p_i and p_j be any two processes that $TODeliver$ some message m. If p_i $TODelivers$ some message m' before m then p_j also $TODelivers$ m' before m.

The proofs for lemmata 24 through 28 are identical to those of lemmata 13, 15, 16 and 17 since: (a) if p_i $TODelivers$ m and then does not crash; by the property of the retransmission module, p_i keeps on sending m to the leader, therefore the predicate at line 13 of Figure 13 becomes true at the eventual perpetual leader; (b) by the weak leader election property, one of the correct processes will be an eventual perpetual leader p_i that decides; by its definition, p_i is eventually always-up, and then eventually keeps on sending the decision to all processes, therefore all correct processes s-receive the decision (even those that crash and recover); (c) the implementation is build on a wait-free round-based register and on a wait-free round-based consensus that are tolerant to crash-recovery (without unstable processes); (d) when a process crashes and recovers, it retrieves its precedent state by retrieving $TODelivered$ and $nextBatch$; (e) the set $Received$ is set to $TODelivered$ otherwise the predicate of line 13 would never be false and would keep on proposing messages; and (f) since processes keep on broadcasting messages, the leader process eventually updates a process that has crashed an recovered with all lagging messages.
1: For each process \(p_i \):

2: \(\text{procedure} \) initialisation:

3: \(\text{Received}() \leftarrow \perp \); \(\mathcal{T}_0 \text{delivered}() \leftarrow \perp \); \(\text{start task}[\text{launch}] \)

4: \(\mathcal{T}_0 \text{delivered}\leftarrow \perp \); \(\text{if} \) \(\text{AwaitingToBeDelivered}[] \leftarrow \perp ; \ K \leftarrow 1 \); \(\text{nextBatch} \leftarrow 1 \)

5: \(\text{procedure} \) \(\mathcal{T}_0 \)-Broadcast\((m) \):

6: \(\text{Received} \leftarrow \text{Received} \cup m \)

7: \(\text{procedure} \) deliver\((msgSet) \):

8: \(\mathcal{T}_0 \text{delivered}[\text{nextBatch}] \leftarrow \text{msgSet} \cdot \mathcal{T}_0 \text{delivered} \); \(\text{atomically deliver all messages in} \mathcal{T}_0 \text{delivered}[\text{nextBatch}] \text{in some deterministic order} \)

9: \(\text{store}[\mathcal{T}_0 \text{delivered}\text{nextBatch}] \)

10: \(\text{nextBatch} \leftarrow \text{nextBatch} + 1 \)

11: \(\text{while} \) \(\text{AwaitingToBeDelivered}[\text{nextBatch}] \neq \perp \) \(\text{do} \)

12: \(\mathcal{T}_0 \text{delivered}[\text{nextBatch}] \leftarrow \text{AwaitingToBeDelivered}[\text{nextBatch}] \)

13: \(\text{store}[\mathcal{T}_0 \text{delivered}\text{nextBatch}] \)

14: \(\text{nextBatch} \leftarrow \text{nextBatch} + 1 \)

15: \(\text{if} \) \(\text{leader}(i) = p_i \) \(\text{then} \)

16: \(\text{while} \) \(\text{propose}_K \) \(\text{is active} \) \(\text{do} \)

17: \(K \leftarrow K + 1 \)

18: \(\text{start task} \) \(\text{propose}_K(K, p_i, \mathcal{T}_0 \text{delivered}[x]) ; K \leftarrow K + 1 \)

19: \(\text{else} \)

20: \(\text{s-send}(\mathcal{T}_0 \text{delivered}) \) \(\text{to leader}() \)

21: \(\text{task propose}(L, l, msgSet) \)

22: \(\text{committed} \leftarrow \text{false} \); \(\text{consensus}() \leftarrow \text{new consensus}() \)

23: \(\text{while} \) \(\text{not committed} \) \(\text{do} \)

24: \(\text{if} \) \(\text{leader}() = p_i \) \(\text{then} \)

25: \(\text{if} \) \(\text{consensus}(\text{proposed}, \text{msgSet}) = \text{yes}, \text{returnedMsgSet}() \) \(\text{then} \)

26: \(\text{committed} \leftarrow \text{true} \)

27: \(l \leftarrow l + N \)

28: \(\text{s-send}(\text{decision}, l, \text{returnedMsgSet}) \) \(\text{to all processes} \)

29: \(\text{upon s-receive m from p_j} \) \(\text{do} \)

30: \(\text{if} \) \(m = \text{decision}(\text{nextBatch}, \text{msgSet}(K, p_j)) \) \(\text{or} \) \(m = \text{update}(K, p_j, \mathcal{T}_0 \text{delivered}(K, p_j)) \) \(\text{then} \)

31: \(\text{if} \) \(\text{task propose}_{p_j} \) \(\text{is active then stop task} \) \(\text{propose}_{K, p_j} \)

32: \(\text{if} \) \(K < \text{nextBatch} \) \(\text{then} \)

33: \(\text{for all} \ L \) \(\text{sUCH} \) \(K < \text{nextBatch} \) \(\text{such that} \) \(K < \text{nextBatch} \) \(\text{then} \) \(\text{s-send}(\text{update}(L, \mathcal{T}_0 \text{delivered}(L))) \) \(\text{to} \) \(p_j \)

34: \(\text{else} \)

35: \(\text{if} \) \(\text{AwaitingToBeDelivered}[K, p_j] = \text{msgSet}(K, p_j) \) \(\text{then} \) \(\text{s-send}(\text{update}(\text{nextBatch}-1, \mathcal{T}_0 \text{delivered}(\text{nextBatch}-1))) \) \(\text{to} \) \(p_j \)

36: \(\text{else} \)

37: \(\text{delivered}(\text{msgSet}(K, p_j)) \)

38: \(\text{else} \)

39: \(\text{Received} \leftarrow \text{Received} \cup m \)

40: \(\text{upon recovery} \) \(\text{do} \) \(\text{added procedure to Figure 9} \)

41: \(\text{initialisation} \)

42: \(\text{retrieve}[\mathcal{T}_0 \text{delivered}, \text{nextBatch}] ; K \leftarrow \text{nextBatch} ; \text{nextBatch} \leftarrow \text{nextBatch} + 1 \); \(\text{Received} \leftarrow \mathcal{T}_0 \text{delivered} \)

\[\text{Figure 13. A modularisation of Paxos} \]
6 The Four Seasons

This section presents four interesting variants of the Paxos protocol. Subsection 6.1 describes a variant of the protocol that alleviates the need for stable storage under the assumption that some processes do never crash. This is obtained mainly by modifying the implementation of our round-based register. Subsection 6.2 describes a variant of the protocol that copes with unstable processes through a modification of our weak leader election implementation. Subsection 6.3 describes a variant of the protocol that guarantees progress even if only one process is correct. This is obtained through an implementation of our round-based register that assumes a decoupling between disks and processes, along the lines of [6]. Subsection 6.4 describes an optimised variant (Fast Paxos) of the protocol that is very efficient in stable periods. These variants are orthogonal, except 6.1 and 6.3 (because of their contradictory assumptions).

![Figure 14. Modified (in shade) modules from the crash-recovery variant](image-url)

6.1 Winter: Avoiding Stable Storage

Basically, we assume here that some of the processes do never crash and, instead of stable storage, we store the crucial information of the register inside “enough” processes (in main memory). The protocol assumes that the number of processes that never crash \(n_a \) is strictly greater than the number of faulty processes: \(n_f \). As depicted by Figure 14(a), the weak leader election and the round-based consensus remain unchanged. We mainly change the the round-based register implementation and we add to the Paxos protocol a recovery procedure that relies on initialisation messages instead of stable storage. Basically, a recovered process \(p_i \) asks all other processes to return the set of messages that they have TO-Delivered and \(p_i \) initialises its state using those messages.

Round-Based Consensus. The trick in the round-based register implementation is to ensure that the register’s value is “locked” in at least one process that does never crash. Intuitively, any \(\text{read}() \) or \(\text{write}() \) uses a threshold that guarantees this property, as we explain below. (The idea is inspired by [1].) When a process recovers, it stops participating in the protocol, except that it periodically broadcasts a RECOVERED message. When a process \(p_i \) receives such message from a process \(p_j \), \(p_i \) adds \(p_j \) to a set \(R_i \) of processes (known to have recovered). This scheme allows any process to count the number of recovered processes. While collecting ACKREAD or ACKWRITE messages, if \(p_i \) detects that a
new process p_k has recovered ($R_k \neq \text{Prev}R_k$), p_1 restarts the whole procedure of reading or writing. For p_i to commit a `read()` (resp. `write()` invocation), p_i must receive $\max(n_f + 1, n - n_f - |R_i|)$ ACKREAD (resp. ACKWRITE) messages.

1: The variable $\text{seqr}d$ (resp. $\text{seqr}w$) distinguishes the different phases where a process p_i has restarted to s-send READ (resp. WRITE) messages because p_i received.

2: procedure register() {
3: $\text{read}_i \leftarrow 0$
4: $\text{write}_i \leftarrow 0$
5: $v_i \leftarrow \bot$
6: \text{initilisation;} $R_i \leftarrow \bot$
7: \text{variable use to distinguish retrial, added to Figure 5}
8: procedure read() \{added to Figure 5\}
9: repeat
10: s-send [READ, k, seqrdp_i, v_i] to all processes
11: $\text{Prev}R_i \leftarrow R_i$
12: wait until s-received [ackREAD, k, seqrdp_i, v_i] or (nackREAD, k, seqrdp_i) from \text{max}$\max(n_f + 1, n - n_f - |R_i|)$ processes
13: until $R_i = \text{Prev}R_i$
14: if s-received at least one (nackREAD, k, seqrdp_i) then
15: return(v_i, v)
16: else
17: select the [ackREAD, k, seqrdp_i, v_i] with the highest k'
18: return(k, v)
19: procedure write(k, v) \{added to Figure 5\}
20: repeat
21: s-send [WRITE, k, seqrwp_i, v_i] to all processes
22: $\text{Prev}R_i \leftarrow R_i$
23: wait until s-received [ackWRITE, k, seqrwp_i, v_i] or (nackWRITE, k, seqrwp_i) from \text{max}$\max(n_f + 1, n - n_f - |R_i|)$ processes
24: until $R_i = \text{Prev}R_i$
25: if s-received at least one (nackWRITE, k, seqrwp_i) then
26: return(v_i)
27: else
28: return(v_i, v)
29: task wait until s-receive [READ, k, seqrdp_j, v_j] from p_j
30: if $\text{write}_j > k$ or $\text{read}_j > k$ then
31: s-send (nackREAD, k, seqrdp_j) to p_j
32: else
33: $\text{read}_i \leftarrow k$
34: s-send [ackREAD, k, seqrdp_j, write_i, v_i] to p_j
35: task wait until s-receive [WRITE, k, seqrwp_j, v_j] from p_j
36: if $\text{write}_j > k$ or $\text{read}_j > k$ then
37: s-send [ackWRITE, k, seqrwp_j] to p_j
38: else
39: $\text{write}_i \leftarrow k$
40: $v_i \leftarrow v$
41: s-send [ackWRITE, k, seqrwp_j] to p_j
42: \text{upon s-receive RECOVERED from p_j do} \{added procedures to Figure 5\}
43: $R_i \leftarrow R_i \cup p_j$
44: \text{upon recovery do}
45: \text{initialisation; read, -- \infty; write, -- \infty}
46: s-send RECOVERED to all processes

Figure 15. A wait-free round-based register in a crash-recovery model without stable storage

Proposition 29. The algorithm of Figure 15 implements a wait-free round-based register in a crash-recovery model without stable storage assuming that $n_a > n_f$.

Lemma 30. Read-write-abort: If `read(k)` or `write(k, *) aborts, then some operation `read(k')` or `write(k', *) was invoked with $k' > k$.

Lemma 31. Read-write-commit: If `read(k)` or `write(k, *) commits, then no subsequent `read(k')` or `write(k', *) can commit with $k' < k$.

Lemma 32. Read-commit: If `read(k)` commits with $v \neq \bot$, then some operation `write(k', v)` was invoked with $k' \leq k$.

24
Lemma 33. Write-commit: If \(\text{write}(k, v) \) commits and no subsequent \(\text{write}(k', \ast) \) is invoked with \(k' \geq k \), then any \(\text{read}(k') \) that commits, commits with \(v \) if \(k' > k \).

The proofs for lemmata 29 through 33 are identical to those of lemmata 20 through 23. They are based on the following aspects: (a) we assume that \(n_a > n_f \); (b) when a process crashes and recovers, it keeps on sending RECOV-ERED messages which ensures that a recovered process is never considered correct; and (c) since a process waits for the maximum between \(n_f + 1 \) and \(n - n_f - |R_i| \), the register’s value is always locked into an always-up process.

The Paxos Variant. Figure 16 presents a Paxos variant for the crash-recovery model without stable storage.

Figure 16. A variant of Paxos in a crash-recovery model without stable storage

Proposition 34. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of Figure 16 ensures the termination, agreement, validity and total order properties in a crash-recovery model (without any stable storage) assuming that \(n_a > n_f \).

Lemma 35. Termination: If a process \(p_i \) TO-Broadcasts a message \(m \) and then \(p_i \) does not crash, then \(p_i \) eventually
Lemma 36. Agreement: If a process TO-Delivers a message \(m \), then every correct process eventually TO-Delivers \(m \).

Lemma 37. Validity: For any message \(m \), (i) every process \(p_i \) that TO-Delivers \(m \), TO-Delivers \(m \) only if \(m \) was previously TO-Broadcast by some process, and (ii) every process \(p_i \) TO-Delivers \(m \) at most once.

Lemma 38. Total order: Let \(p_i \) and \(p_j \) be any two processes that TO-Deliver some message \(m \). If \(p_i \) TO-Delivers some message \(m' \) before \(m \), then \(p_j \) also TO-Delivers \(m' \) before \(m \).

The proofs for lemmata 34 through 38 are identical to those of lemmata 25 through 28 since the recovery procedure requests every participant to s-send back their state when they s-receive a RECOVERED message. A process that crashes and recovers receives the “latest state” from at least one always-up process.

6.2 Spring: Coping with Unstable Processes

We discuss here a Paxos variant that copes with unstable processes, i.e., processes that keep crashing and recovering forever. We adapt our modular protocol by simply changing the implementation of our weak leader election protocol as depicted in Figure 14(b). All our other modules remain unchanged.

Intuitively, the issue with unstable processes is the following. Consider an unstable process \(p_i \) (i.e., \(p_i \) keeps on crashing and recovering), and suppose that its \(\Omega_i \) module permanently outputs \(p_i \), whereas the correct processes permanently consider some other correct process \(p_j \) as leader. This is possible since \(\Omega \) does “only” guarantee that some correct process is always trusted by every correct process. For instance, an unstable process is free to permanently elect itself. The presence of two concurrent leaders can prevent the commitment of any consensus decision and hence prevent progress. We basically need to prevent unstable processes from being leaders after some time. We modify our new leader election protocol as follows: (a) every process \(p_k \) exchanges the output value of its \(\Omega_k \) with all other processes, and (b) the function \(\text{leader()} \) returns \(p_i \) only when a majority of processes thinks that \(p_i \) is leader. This idea, inspired by [8], assumes a majority of correct processes. Note that this assumption is now needed both in the implementation of the register and in the implementation of the leader election protocol.

We give the implementation of this new weak leader election in Figure 17 and it is easy to verify that the implementation is wait-free under the assumption that a majority of processes are correct. Now, the leader election exchanges the output of \(\Omega \) between every process. However, this exchange phase can be piggy-backed on the I-AM-ALIVE messages in the implementation of \(\Omega \) (see Appendix B). Thus, the exchange phase does not add any communication steps.

Proposition 39. The algorithm of Figure 17 ensures that some process is an eventual perpetual leader.

Proof. Suppose, by contradiction, there are more than one eventual perpetual leader or there is no eventual perpetual
leader. Consider the first case, suppose that there are forever two eventual perpetual leaders. This contradicts the definition of an eventual perpetual leader. Now, consider the second case where there is no eventual perpetual leader. By the property of failure detector, eventually all correct processes trusts only one correct process p_c. By line 3 of Figure 17, it is impossible for any process to elect forever a process other than p_c. The leader() function is non-blocking since there is a majority of correct processes. So eventually the invocation of leader() at every process returns in a bounded time (or the process crashes) and always returns p_c, so there is one eventual perpetual leader p_c: a contradiction.

6.3 Summer: Decoupling Disks and Processes

The Paxos protocol, ensures progress only if there is a time after which a majority of the processes are correct. The need for this majority is due to the fact that a process cannot decide on a given order for any two messages, unless this information is “stored and locked” at a majority of the processes. If disks and processes can be decoupled, which is considered a very reasonable assumption in some practical systems [6], a process might be able to decide on some order as long as it can “store and lock” that information within a majority of the disks. We simply modify the implementation of our round-based register (Figure 14(c)) to obtain a variant of Paxos that exploits that underlying configuration.

In this Paxos variant, we assume that disks can be directly (and remotely) accessed by processes, and failures of disks and processes are separated. Every process has an assigned block on each disk, and maintains a record $\text{block}[p_i]$ that contains three elements: read_i, write_i and $\text{disk}[d_j][p_k]$ denotes the block on disk d_j in which process p_k writes $\text{block}[p_k]$. We denote by $\text{read}_d()$ (resp. $\text{write}_d()$) the operation of reading (resp. writing) on a disk. As in [6], we assume that every disk ensures that (i) an operation $\text{write}_d(k, *)$ cannot overwrite a value of an earlier round $k’ < k$, and (ii) a process must wait for acknowledgements when performing a $\text{write}_d()$ operation, and (iii) $\text{write}_d()$ and $\text{read}_d()$ are atomic operations.

The round-based register protocol works as follows. For the read() operation, a process p_i tries to write_d on each disk p_j its $\text{block}[p_i]$ ($\forall p_j \text{ disk}[p_j][p_i]$). After writing, p_i reads d for any p_j and any p_k: $\text{disk}[p_j][p_k]$. If p_i reads a block with a round that is lower than the round of the highest write_i, the read() operation aborts. Otherwise, the read() commits and returns the value associated with the highest write_i. A similar scheme is used for the write() operation. Note that the round-based register implementation is simpler than the previous round-based register due to the usage of disks.

Proposition 40. The algorithm of Figure 18 implements a wait-free round-based register.

The proof is based on lemmata 41, 42, 43 and 44.

Lemma 41. Read-write-abort: If $\text{read}(k)$ or $\text{write}(k, *)$ aborts, then some operation $\text{read}(k’)$ or $\text{write}(k’, *)$ was invoked with $k’ > k$.

Proof. Assume that some process p_j invokes a $\text{read}(k)$ (resp. $\text{write}(k, *)$) that returns no (i.e., aborts). By the algorithm of Figure 18, this can only happen if some process p_i has a value $\text{read}_i > k$ or $\text{write}_i > k$ (line 6 and 11), which means that some process has invoked $\text{read}(k’)$ or $\text{write}(k’)$ with $k’ > k$. □
Figure 18. A wait-free round-based register built on commodity disks

Lemma 42. Read-write-commit: If \texttt{read}(k) or \texttt{write}(k, \ast) commits, then no subsequent \texttt{read}(k') or \texttt{write}(k', \ast) can commit with \(k' < k \).

Proof. Remember that we assume that a \texttt{write}(k', \ast) cannot overwrite \texttt{write}(k, \ast) with \(k' < k \). In the algorithm of Figure 18, \(p_i \) invokes \texttt{write}(\ast) in both procedures, therefore \(p_i \) cannot commit \texttt{read}(k') or \texttt{write}(k', \ast) with \(k' < k \). \qed

Lemma 43. Read-commit: If \texttt{read}(k) commits with \(v \neq \bot \), then some operation \texttt{write}(k', v') was invoked with \(k' \leq k \).

Proof. By the algorithm of Figure 18, if some process \(p_j \) commits \texttt{read}(k) with \(v \neq \bot \), then some process \(p_i \) must have \texttt{write}(\ast) to some disk since \(v_i \) is only modified in the \texttt{write}(\ast) operation. Otherwise \(v_{\max} \) would be equal \(\bot \). \qed

Lemma 44. Write-commit: If \texttt{write}(k, v) commits and no subsequent \texttt{write}(k', \ast) is invoked with \(k' \geq k \), then any \texttt{read}(k'') that commits, commits with \(v \) if \(k'' > k \).

Proof. Assume that some process \(p_i \) commits \texttt{write}(k, v), and assume that no subsequent \texttt{write}(k', \ast) has been invoked with \(k' \geq k \) and that for some \(k'' > k \) some process \(p_j \) commits \texttt{read}(k'') with \(v' \). Assume by contradiction that \(v \neq v' \). Since \texttt{read}(k'') commits with \(v' \), by the read-commit property, some \texttt{write}(k''', v') was invoked before or at the same round \(k'' \). However, this is impossible since we assumed that no \texttt{write}(k', \ast) operation with \(k' \geq k \) has been invoked, i.e., \(v_i \) remains unchanged to \(v \): a contradiction. \qed

Proof of Proposition 40. Directly from lemmata 41, 42, 43 and 44 and the fact that we assume a majority of correct disks. \qed

6.4 Fall: Fast Paxos

In Paxos, when a process \(p_i \) TO-Broadcasts a message \(m \), \(p_i \) sends \(m \) to the leader process \(p_l \). When \(p_l \) receives \(m \), \(p_l \) triggers a new round-based consensus instance by proposing a batch of messages. A round-based consensus is made up of two phases, a \texttt{read} phase and a \texttt{write} phase. The \texttt{read} phase figures out if some value was already written, while the \texttt{write} phase either writes a new value (if the register contained \(\bot \)) or rewrites the last written value. In the specific case of \(k - 1 \) (i.e., the first round), \(p_1 \) can safely invoke the \texttt{write}(1, \ast) operation without reading: indeed, if
any other process has read or written any value, the \texttt{write}(1, s) invocation of \(p_1 \) aborts. In this case, consensus (if it commits) can be reached significantly faster than in a “regular” scenario.

Interestingly, this optimisation can actually be applied whenever the system stabilises (even if processes do not know when that occurs). Indeed, the key idea behind that optimisation is that \(p_1 \) knows that writing directly at round 1 is safe because in case of any other write, \(p_1 \)’s write would be automatically aborted. In fact, once a leader gets elected and commits a value, the leader can send a new message to all processes indicating that, for the subsequent consensus instances, only this process can try to directly write onto the register. This new message can be piggy-backed onto the messages of the \texttt{write()} primitive, thus avoiding any additional communication steps. Moreover, the last decision is piggy-backed onto the next consensus invocation, thus saving one more communication step.

Hence, the optimised protocol goes through two modes. Whenever a leader \(p_i \) commits consensus (in the initial regular mode), it switches to the fast mode and tries to directly impose its value for next consensus. If the system is stable, \(p_i \) succeeds and hence needs only one forced log and one communication round trip. We introduce here a specific \texttt{fastpropose()} operation that invokes \texttt{write()} directly and ensures that only one process can invoke \texttt{fastpropose()} per consensus (independently of the round number). A \texttt{fastpropose()} invokes \texttt{write()} with a round number range between 1 and \(N \), while for \texttt{propose()}, i.e., regular \texttt{write()}, the round number range starts at \(N+1 \). This way, a process can differentiate a \texttt{write()} from a \texttt{propose()} or a \texttt{fastpropose()}. If the \texttt{fastpropose()} does not succeed, \(p_i \) goes back to the regular mode. We implement this mode switching by refining our round-based consensus and round-based register abstractions. We give here the intuition.

![Communication steps for a regular followed by a fast communication pattern](image)

Figure 19. Communication steps for a regular followed by a fast communication pattern

Basically, we change the initialisations of our round-based consensus and round-based register abstractions, and we add one specific operation \texttt{fastpropose()}. We use a boolean variable \texttt{fast} that is set to \texttt{true} (resp. \texttt{false}) to distinguish the two cases. Our modular Paxos protocol is also slightly modified to invoke the \texttt{fastpropose()} operation. Figure 19 depicts the different communication steps schemes; for clarity, we omit forced logs. Process \(p_1 \) executes a regular communication pattern for message \(m \) and then a fast communication pattern for the next consensus (message \(m' \)). First, \(p_3 \) elects \(p_1 \) and sends \(m \) to \(p_1 \). When \(p_1 \) commits consensus for batch \(L \) and \(\text{nextFast} \) is set to \texttt{true}, \(p_1 \) switches to the fast mode for batch \(L + 1 \). When \(p_3 \) \text{TO-Broadcasts} \(m' \), \(p_5 \) elects \(p_1 \) and sends \(m' \) to \(p_1 \). Process \(p_1 \) then
imposes the decision for batch $L + 1$ and piggy-backs the last decision (L) on the same message.

Fast Round-Based Register. The fast round-based register has similar `read()` and `write()` operations than a regular round-based register. A variable `permission` is added to the returned values of the `write()` primitive: `permission` is set to `true` if the variable v from the current and the next consensus are empty, otherwise it is set to `false`. `Permission` indicates to the upper layer that the process can directly invoke Fast Paxos for the next consensus. Fast round-based register has a different constructor since it extracts (if there is any) the decision that is piggy-backed from the invocation and simulates the reception of a `decide` message. The `write()` primitive is also slightly changed. If a process p_i receives a `nackWRITE` message, it returns `(no, false)`. If p_i gathers only `ackWRITE` message, then it returns `(yes, true)` only if p_i received only `ackWRITE` messages with `permission` set to `true`, otherwise p_i returns `(yes, false)`. Note that v_i is modified and stored after that `permission` is set, then only one process can perform a Fast Paxos per consensus. Note also that line 32 of Figure 20 prevents the violation of the agreement property.

```
1: procedure register() { constructor, for each process $p_j$ }
2:  read, ← 0
3:  writes, ← 0
4:  $v_j ← ⊥$
5:  if any, extract msgSet and $K_{p_j}$ and simulate the receive of a message (decide,$k_{p_j}$,msgSet)
6:  permission ← false { added from Figure 12 }
7:  procedure read($k$) { added from Figure 12 }
8:  s-send [READ,$k$] to all processes
9:  wait until received [ackREAD,$k$,*] or [nackREAD,$k$] from [(n+1)/2] processes
10:  if received at least one [nackREAD,$k$] then
11:     return(no,v)
12:  else
13:      select the [ackREAD,$k$,k',v] with the highest k'
14:     return(yes,v)
15:  procedure write($v$,v') { modified from Figure 12 }
16:  s-send [WRITE,$k$,v] to all processes
17:  wait until received [ackWRITE,$k$,v'] or [nackWRITE,$k$] from [(n+1)/2] processes
18:  if received at least one [nackWRITE,$k$] then
19:     return(no,false)
20:  else
21:      if received at least one [ackWRITE,$k$.false] then return(yes,false) else return(yes,true)
22:  task wait until receive [READ,$k$] from $p_j$
23:  if $write_e_j > k$ or read_e_j > k then
24:     s-send [nackREAD,$k$] to $p_j$
25:  else
26:     read_j ← k; store{read_j}
27:     s-send [ackREAD,$k$,write_e_j,v] to $p_j$
28:  task wait until received [WRITE,$k$,v'] from $p_j$
29:  if $write_e_j > k$ or read_e_j > k then
30:     s-send [nackWRITE,$k$] to $p_j$
31:  else
32:     if $k ≤ N$ then $write_e_j ← N + 1$ else $write_e_j ← k$
33:     permission ← ($v_i = ⊥$ and $v_{i+1} = ⊥$)
34:     $v_i ← v$; store{write_e_i,v_i}
35:     s-send [ackWRITE,$k$,permission] to $p_j$
36:  upon recovery do
37:     initialisation
38:     retrieve{write_e_j,read_e_j,v_j}
```

Figure 20. Wait-free fast round-based register

Fast Round-Based Consensus. Fast round-based consensus has a parameterised constructor: fast that indicates if the mode is fast or not. The new constructor instantiates a new register using the fast parameter. Fast round-based consensus exports the primitive `propose()` of a regular round-based consensus (augmented with the return value
nextFast) plus a new primitive fastpropose() that takes as input an integer and an initial value v (i.e., a proposition for the fast consensus). It returns a status in \{yes, no\}, a value v' and a boolean value nextFast. A process \(p_i \) can perform Fast Paxos for batch \(L+1 \) only if \(p_i \) commits consensus for batch \(L \) and with nextFast set to true. Moreover, nextFast is set in such a way that for a particular batch \(L \), it returns true only once independently of the number of invocation of propose() or fastpropose(). The fastpropose() primitive is a propose() primitive that satisfies the validity and agreement properties of the regular propose() primitive plus the following Fast Termination property if fastpropose() is invoked only with round number \(N \geq k \geq 1 \):

- **Fast Termination:** If a process \(p_i \) aborts fastpropose(*, *), then some process has performed a different fastpropose(−, −) invocation; if fastpropose(*, *) commits then no different fastpropose(−, −) can commit.

In fact, the fastpropose() primitive is straightforward to implement since it only invokes the write() primitive with round number between 1 and \(N \) of the fast round-based register.

```
1: procedure consensus(fast)                              \{constructor for each process \( p_i \), modified from Figure 6\}
2: \( v \leftarrow \bot \), reg \leftarrow \text{new register}(), \text{writeRes} \leftarrow \text{no} ; \text{nextFast} \leftarrow \text{false} \ \{initialisation, modified from Figure 6\}
3: procedure propose(k, init_i) \ \{propose\}
4: if \( \text{reg. read}(k) = (\text{yes}, v) \) then
5: \( v \leftarrow \text{init}_i \)
6: (\text{writeRes, nextFast}) \leftarrow \text{reg.write}(k, v)
7: if \text{writeRes} = \text{yes} then return(\text{yes, } v, \text{nextFast}) else return(\text{no, } \text{init}_i, \text{nextFast})
8: return(\text{no, } \text{init}_i, \text{false}) \ \{added from Figure 6\}
9: procedure fastpropose(k, init_i) \ \{added from Figure 6\}
10: (\text{writeRes, nextFast}) \leftarrow \text{reg.write}(k, \text{init}_i)
11: if \text{writeRes} = \text{yes} then return(\text{yes, } \text{init}_i, \text{nextFast}) else return(\text{no, } \text{init}_i, \text{nextFast})
```

Figure 21. Wait-free fast round-based consensus

Proposition 45. Figure 21 implements a wait-free fast round-based consensus in a crash-recovery model.

The proof is based on lemma 46.

Lemma 46. Fast Termination: If a process \(p_i \) aborts fastpropose(*, *), then some process has performed a different fastpropose(−, −) invocation; if fastpropose(*, *) commits then no different fastpropose(−, −) can commit.

Proof. We assume here that processes invoke fastpropose() only with round number \(N \geq k \geq 1 \). There are two cases to consider: (i) two different processes invoke fastpropose() for the same consensus, or (ii) a process invokes fastpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that two different processes \(p_i \) and \(p_j \) invoke fastpropose(). Assume moreover that \(p_i \) returns from fastpropose(), by line 32 of Figure 20, when \(p_j \) tries to invoke fastpropose(), by the algorithm of Figure 20, \(p_j \) cannot succeed since write\(e_i \) is already set to \(N + 1 \): a contradiction. Now consider case (ii). Assume that \(p_i \) invokes fastpropose() twice for the same consensus number, since write\(e_i \) is stored, \(p_i \) cannot commit twice fastpropose(): a contradiction. \(\square \)

Proof of Proposition 45 (sketch). The proof is based on lemma 46 and the fact that the validity and agreement property proofs are similar to the proofs of lemmata 8 and 9. \(\square \)
Fast Paxos. Intuitively, once a process \(p_i \) returns from \(\text{propose()} \) or \(\text{fastpropose()} \) with \(\text{nextFast} \) set to \(\text{true} \) for batch \(K \), it implies that a process has the permission to execute a fast consensus, i.e., invoke \(\text{fastpropose()} \) for batch \(K + 1 \).

We slightly modify the Paxos algorithm by adding an array \(\text{fast[]} \) that is set to \(\text{false} \) initially. When a process \(p_i \) decides for batch \(K \) (in the regular mode), \(p_i \) sends the decision to every process and sets the variable \(\text{fast}[K+1] \) to \(\text{true} \) if \(\text{fastpropose()} \) or \(\text{propose()} \) returns with \(\text{nextFast} \) set to \(\text{true} \) (changes from a regular to a fast mode for the next consensus). The next time \(p_i \) invokes a new consensus (\(\text{fast}[L] \) is \(\text{true} \)), (i) \(p_i \) piggy-backs the last decision (if there is any) to the new instantiation of consensus, and (ii) \(p_i \) invokes \(\text{fastpropose()} \) and also piggy-backs the decision onto the invocation of \(\text{fastpropose()} \). This invocation has a different impact on the round-based register as explained earlier. If \(p_i \) commits \(\text{fastpropose()} \), (a) \(p_i \) does not need to send the decision to every process since the decision is piggy-backed onto the next consensus invocation, and (b) \(p_i \) sets \(\text{fast} \) of the next consensus to \(\text{true} \) so that \(p_i \) can perform again a fast Paxos. If \(p_i \) aborts \(\text{fastpropose()} \), \(p_i \) sets \(\text{fast} \) back to \(\text{false} \) since \(p_i \) cannot force the decision for the next consensus, i.e., the communication pattern becomes regular again. Note that it is necessary in the fast model that the last decision (if there is any) to be piggy-backed onto the invocation of the constructor. Otherwise, the process that creates the round-based register will not be able to TO-Deliver the last decision. Since there can be concurrent executions of consensus, when a process commits a regular consensus for batch \(K \), the next fast consensus will not always be batch \(K + 1 \). Consider the following example, if a process \(p_i \) starts three consensus for batch number \(K = 1, 2, \) and \(3 \); when \(p_i \) commits batch number \(K = 1 \), \(p_i \) sets \(\text{fast} \) to \(\text{true} \) for batch number \(2 \) and not \(4 \) (only the subsequent batch number of \(L \) is set to \(\text{true} \) and not the last started batch number). Note also that the last decision is \(\text{TO_delivery}[L-1] \) but it can be empty. In this case, the last decision piggy-backed is the latest decision that \(p_i \) has, e.g., \(\text{WaitingToBeDelivered}[\text{lastestDecisionReceived}] \) or \(\text{TO_delivered}[\text{lastestTODelivered}] \). Note that we assume here that lines 24 and 25 are executed atomically.

Proposition 47. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of Figure 22 ensures the termination, agreement, validity and total order properties in a crash-recovery model.

Lemma 48. **Termination:** If a process \(p_i \) TO-Broadcasts a message \(m \) and then \(p_i \) does not crash, then \(p_i \) eventually TO-Delivers \(m \).

Lemma 49. **Agreement:** If a process TO-Delivers a message \(m \), then every correct process eventually TO-Delivers \(m \).

Lemma 50. **Validity:** For any message \(m \), (i) every process \(p_i \) that TO-Delivers \(m \), TO-Delivers \(m \) only if \(m \) was previously TO-Broadcast by some process, and (ii) every process \(p_i \) TO-Delivers \(m \) at most once.

Lemma 51. **Total order:** Let \(p_i \) and \(p_j \) be any two processes that TO-Deliver some message \(m \). If \(p_i \) TO-Delivers some message \(m' \) before \(m \), then \(p_j \) also TO-Delivers \(m' \) before \(m \).

Lemma 52. There can be only one invocation of \(\text{fastpropose()} \) per consensus.

Proof. By the algorithm of Figure 22, processes invoke \(\text{fastpropose()} \) only with round number \(N \geq k \geq 1 \). There are two cases to consider: (i) two different processes invoke \(\text{fastpropose()} \) for the same consensus, or (ii) a process invokes \(\text{fastpropose()} \) twice for the same consensus. Consider case (i), let us assume by contradiction that two different processes \(p_i \) and \(p_j \) invoke \(\text{fastpropose()} \) for consensus number \(L+1 \). For both processes, to invoke \(\text{fastpropose()} \) for consensus \(L+1 \), \(\text{fast}[L+1] \) must be set to \(\text{true} \), which requires a process to perform a successful
1: For each process p_j:
2: procedure initialise:
3: Received[] ← ∅; TO_delivered[] ← ∅; fast[] ← {false...}
4: TO_undelivered[] ← ∅; AwaitingToBeDelivered[] ← ∅; K ← 1; nextBatch ← 1; start task [launch]
5: procedure TO_Broadcast(m)
6: Received ← Received ∪ m
7: procedure deliver(msgSet)
8: TO_delivered[\text{nextBatch}] ← msgSet \text{- TO_delivered}.
9: atomically deliver all messages in TO_delivered[\text{nextBatch}] in some deterministic order
10: store \[TO_delivered, nextBatch\]
11: nextBatch ← nextBatch + 1
12: while AwaitingToBeDelivered[\text{nextBatch}] ≠ ∅ do
13: TO_delivered[\text{nextBatch}] ← AwaitingToBeDelivered[\text{nextBatch}]
14: store \[TO_delivered, nextBatch\]
15: nextBatch ← nextBatch + 1
16: task launch
17: while Received - TO_delivered ≠ ∅ or leader has changed do
18: while AwaitingToDelivered[\text{K+1}] ≠ ∅ or TO_delivered[\text{K+1}] ≠ ∅ do
19: K ← K + 1
20: if K = \text{nextBatch and AwaitingToBeDelivered[\text{K}]} ≠ ∅ and \text{TO_delivered[\text{K}]} = ∅ then
21: deliver(AwaitingToBeDelivered[\text{K}])
22: TO_delivered ← Received - TO_delivered
23: if leader(\text{p}) then
24: while \text{proposals} K is active do
25: K ← K + 1
26: start task proposeK(\text{K}, p_i, \text{TO_undelivered}; K ← K + 1)
27: else
28: s-send(\text{TO_undelivered}) to leader()
29: task propose(L, msgSet) {modified from Figure 13}
30: committed ← false
31: if fast(L) then {added from Figure 13}
32: piggy-back \text{TO_delivered[\text{L-1}]} (if not empty) otherwise latest decision onto next instantiation and invocation of consensus
33: if consensusL ← new consensus(true)
34: if consensusL, fast_propose(), msgSet = (\text{yes, returned MsgSet, fastFast}) then
35: if L = \text{nextFast then deliver returned MsgSet; committed} ← true
36: fast(L) ← false; fast(L + 1) ← nextFast
37: if consensusL = \text{yes consensus(false)}
38: while not committed do
39: I ← I + N
40: if leader(\text{p}) then
41: if consensusL, msgSet = (\text{yes, returned MsgSet, nextFastFast}) then
42: committed ← true; s-send(\text{DECISION, L, returned MsgSet}) to all processes; fast(L + 1) ← nextFast
43: else
44: fast(L + 1) ← false
45: upon s-receive \text{m from p_j} do
46: if \text{m} = (\text{DECISION, nextFast, msgSet} or \text{m} = (\text{UPDATE, K}_{p_j}, \text{TO_delivered[K}_{p_j}]) then
47: task proposeK_{p_j} is active then stop task proposeK_{p_j}
48: if K_{p_j} ≠ nextBatch then \{p_j is ahead or behind\}
49: if K_{p_j} < \text{nextBatch then} \{p_j is behind\}
50: for all L such that K_{p_j} < L < \text{nextBatch: s-send UPDATE, L, TO_deliver[L]} to p_j
51: else
52: AwaitingToBeDelivered[\text{K}_{p_j}] ← msgSet \text{K}_{p_j}; s-send(\text{UPDATE, nextFast+1, TO_deliver[nextFast+1]}) to p_j
53: else
54: deliver(msgSet \text{K}_{p_j})
55: else
56: Received ← Received ∪ m \{Consensus messages are treated in the consensus box\}
57: upon recovery do
58: initialise
59: retrieve [TO_delivered, nextBatch]; K ← nextBatch; nextBatch ← nextBatch + 1; Received ← TO_delivered

Figure 22. Fast Paxos in the crash-recovery model
propose() (or fastpropose()) which returns nextFast as true for consensus L. Assume that p_i returns from propose() (or fastpropose()) with nextFast to true: a majority of processes have returned with permission set to true (hence $v_L \neq \bot$ at a majority of processes) and no process has returned with permission set to false. When p_j invokes propose() or fastpropose(), by the algorithm of Figure 20, p_j has to return with nextFast to false since two majorities will always intersect: a contradiction. Now consider case (ii). Assume that p_i invokes fastpropose() twice for the same consensus number $L + 1$, by the algorithm of Figure 22, p_i must have crashed and recovered between the two invocations of fastpropose(). When p_i recovers, fast($L + 1$) is reset to false (initialisation). To invoke fastpropose() after having recovered, p_i has to perform a successful propose() (or fastpropose()) with nextFast set to true for consensus L. This is impossible because a majority of processes have already their $v_L \neq \bot$: a contradiction. □

By lemma 52, the proofs for lemmata 48 through 51 are identical to those of lemmata 25 through 28 since (a) the properties of the fastpropose() primitive are more restrictive than the propose() primitive; and (b) the properties of the regular propose() remain the same.

7 Concluding Remarks

We discuss here some Paxos related approaches and compare them with our modular approach. In [14, 19], Paxos was described using a consensus abstraction that factors out the agreement part of the protocol. The aim was to better explain the protocol and prove it correct, rather than come out with a practical modularisation that is faithful (performance wise) to the original one.\(^\text{17}\) In [17], the authors suggested a way to factor out the part of a consensus protocol that is used to “store and lock” a value, within some notion of quorum. The specification of our round-based register precisely factors out the quorum notion of [17] (the very same notion appears in [21]). We go a step further by also abstracting out the sub-protocol used to elect the eventual leader that decides on a value. This relies on the assumption of a “majority-stability” as introduced in [4].

Independently of Paxos, [18] presented a replication protocol that does also ensure fast progress in stable periods of the system: our Fast Paxos variant can be viewed as a modular version of that protocol. In [15], a new failure detector, $\diamond C,$ is introduced. This failure detector, which is shown to be equivalent to Ω, adds to the failure detection capability of $\diamond S$ [3] an eventual leader election flavour. Informally, this flavour allows every correct process to eventually choose the same correct process as leader and eventually ensure fast progress. We have shown that Ω can be directly used for that purpose, and we have done so in a more general crash-recovery model.

In [6], a variant of Paxos, called Disk Paxos, decouples processes and stable storage. A crash-recovery model is assumed and progress requires only one process to be up and a majority of functioning disks. Thanks again to our modular approach, we implement Disk Paxos by only modifying the implementation of our round-based register. The algorithm of Section 6.3 is faithful to Disk Paxos in that both have the same number of forced logs, messages and communication steps.\(^\text{18}\) Note that our leader election implementation that copes with unstable processes can be used

\(^\text{17}\)In [14], the author presents two protocols: the first one is modular but not efficient, and the second one is efficient and better expresses the Paxos flavour but it is not modular. In fact, the proposed optimisation entails merging the total order protocol with the underlying consensus protocol, and means giving up modularity. In [19], the leader election notion is specified, but it is solely used within consensus: one of the characteristics of Paxos is precisely that this election notion is extracted from consensus and used at the total order protocol level.

\(^\text{18}\)Variables bal, mbal and mp in [6] correspond to write\(_j\), read\(_j\) and \(v_j\) in our case, while a ballot number in [6] corresponds to a round number
with Disk Paxos to improve its resilience.

One might observe many similarities between Paxos and the consensus-based total order protocol of Chandra and Toueg [3] (together with its adaptation to the crash recovery model [1 + 20]). Our modularisation helps compare the two approaches. Roughly speaking, within a given system model, the protocols have the same resilience. In other words, given a system model (e.g., crash-stop or crash-recovery), the assumptions on (1) the number of correct processes, (2) the reliability of the communication channels, and (3) the underlying failure detectors, are equivalent.\footnote{In fact, [1 + 20] deals with unstable processes and is in this sense more resilient than the original Paxos protocol, but we have shown how to augment the resilience of Paxos to circumvent this issue in Section 6.}

Consider now performance in stable periods. In terms of communication steps, the protocols have the same performance. Indeed, one can actually see that the optimisation underlying Fast Paxos can be applied to the Chandra-Toueg’s approach as well. In terms of messages however, Paxos outperforms Chandra-Toueg’s approach for the following intuitive reason. By considering leader election as a first class citizen (in the total order broadcast protocol), Paxos allows the broadcaster to directly send its message to the current leader, and the latter can then impose its consensus decision.\footnote{The broadcaster obviously has to send the message to the new leader if a new leader is elected.} In Chandra-Toueg’s scheme, the leader election protocol is inherently encapsulated within consensus (rotating-coordinator paradigm), and the broadcaster has no other choice than sending its message to all (in traditional consensus, all processes need to propose). This difference also impacts the number of forced logs needed (for the crash-recovery model) in favour of Paxos. In Chandra-Toueg’s approach, by using consensus as a black-box, all processes need to propose an initial value which, in a crash-recovery model, means that they all need a specific forced log for that (this issue was also pointed out in [20]).

\section*{Acknowledgements} We are very grateful to Marcos Aguilera and Sam Toueg for their helpful comments on the specification of our register and consensus abstractions.

\section*{References}

in our case. As described in [6], Disk Paxos has two phases: (i) choose a value v, and (ii) try to commit v. In fact, phase 1 corresponds to the $\texttt{read()}$ operation of our round-based register, while phase 2 corresponds to its $\texttt{write()}$ operation. In both phases, processes perform one forced log (\texttt{write}_d and \texttt{read}_d all blocks. Our $\texttt{read()}$ and $\texttt{write()}$ operations also perform the same steps (\texttt{write}_d and \texttt{read}_d all disks).
A Optional Appendix. Performance measurements

We have implemented our abstractions on a network of Java machines as a library of distributed shared objects. We give here some performance measurements of our modular Paxos implementation in different configurations. These measurements were made on a LAN interconnected by Fast Ethernet (100Mb/s) on a normal working day. The LAN consisted of 60 UltraSUN 10 (256Mb RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.7, and our implementation was running on Solaris Java HotSpot(TM) Client VM (build 1.3.0_01, mixed mode). The effective message size was of 1Kb and the performance tests consider only cases where as many broadcasts as possible are executed. In all tests, we considered stable periods where process p_0 was the leader and one process was running per machine.

![Figure 23](image.png)

(a) Fast Paxos vs Regular Paxos

(b) Varying the number of broadcasters (Fast Paxos)

Figure 23. Broadcast performance

Figure 23(a) depicts the throughput difference between Regular Paxos and Fast Paxos. Not surprisingly, Fast Paxos has a higher throughput. The overall performance of both algorithms decreases since the leader has to send and receive messages from an increasing number of processes.

Figure 23(b) depicts the performance of Fast Paxos when the number of broadcasting processes increases. We considered four cases, (i) only the leader broadcasts, (ii) one process other than the leader broadcasts, (iii) all processes except the leader broadcast, and (iv) all processes broadcast. Distributing the load of the broadcasting processes to a larger number of processes improves the average throughput. As expected, the throughput is lower when the leader is the unique broadcasting process, since it is the most overloaded. Case (iii) has a better throughput than case (iv) after 12 processes since the leader does not broadcast and can allow more processing power than case (iv). This shows that broadcasting messages slows down a process, and this is also verified by the increased throughput when another process than the leader (case ii) is broadcasting.\footnote{When increasing the number of processes, the performances come close to each other because the capacity of Paxos is reached.}

Figure 24 compares Fast Paxos in two different modes: (i) concurrent consensus instances are started, and (ii) only consecutive consensus instances are launched. Not to overwhelm the process with context switching, Paxos is implemented using a thread pool that is limited to ten, i.e., at most ten concurrent consensus run at each process. The
Figure 24. Concurrent vs consecutive (Fast Paxos)
throughput in both modes decreases as the number of protocol instances increases. At first, the concurrent version
gives better performance, but this diminishes as the number of broadcast increases. In fact, the increasing computation
needed (in the task launch) impedes the performance of the concurrent version, i.e., performance degrades. The results
show that the more process a system has, the less difference there is in throughput between consecutive and concurrent
executions, i.e., when there are more processes in the system, there are less consensus instances that are launched.

Figure 25 depicts the broadcast rate at which the best throughput can be achieved from 4 to 10 processes. For all cases, the throughput increases (approximately) linearly until a certain point, e.g., up to 10 broadcast/sec/process for a six processes system and then the throughput falls suddenly linearly. Above the breakpoint, the leader again becomes the bottleneck, its task receive is overwhelmed by the number of broadcasts it has to handle, thus delaying new protocol instances.

![Figure 25. Best throughput (Fast Paxos)](image)

Figure 26(a) depicts the impact of forced logs for the Fast Paxos algorithm. When forced logs are removed, the
increased performance is minimal since the algorithm is fine-tuned and waits for a certain number of broadcast mes-
sages before launching a consensus. The TO-Delivery rate is by far better when a consensus is launched for a certain

39
number of messages rather than starting a consensus for each single broadcast message. The number of consensus becomes too big and slows down the algorithm. Due to this optimisation, there are few instances of consensus per second and hence few stable storage access per second. Therefore, upon removal of stable storage, the performance improvement is not drastic as one might think. This result shows that the winter season protocol is not really useful for a practical system. However, Figure 26(b) shows that forced logs have an impact on performance. If Fast Paxos launches a large number of consensus per second, i.e., a consensus is started consecutively for each single broadcast message. (There are no other consensus instance running in parallel, but there can be many consensus instances per second.) In this case, the impact of forced logs is quite significant, as shown in Figure 26(b).

![Comparison between forced logs and no stable storage (Fast Paxos)](image)

Figure 26. Comparison between forced logs and no stable storage (Fast Paxos)

Finally, Figure 27 gives the recovery time required by a process depending on the number of messages retrieved from the stable storage. The number of retrieved messages is proportional to the number of reads from the disk, thus increasing the recovery time.

![Recovery time](image)

Figure 27. Recovery time

Moreover, Note that for a long-lived application, this model is not really practical, since every process is likely to crash and recover at least once during the life of the application.
B Optional Appendix. Implementation of Ω in a Crash-Recovery Model with partial synchrony

Figure 28 gives the implementation of the failure detector Ω in a crash-recovery model with partial synchrony assumptions. We assume that message communication times are bound by an unknown period but hold after some global stabilisation time. Intuitively, the algorithm works as follows. A process p_i keeps track of the processes that it trusts in a set denoted trustlist. A process p_i keeps on sending 1-AM-ALIVE messages to every process. Periodically, p_i removes of its trustlist the processes from which it did not receive, within a certain threshold, any 1-AM-ALIVE message. When p_i receives an 1-AM-ALIVE message from some process p_j and if p_j was not part of the trustlist, p_i then adds p_j to its trustlist and increments p_j’s threshold. Process p_i also takes the maximum between its epoch number and the one p_i received from p_j. However, an unstable process can be trusted, therefore the algorithm counts the number of times that a process crashes and recovers. This scheme allows a process to detect when a process crashes and recovers, an unstable process has an infinite epoch number, while a correct process has an epoch number that stops increasing. When p_i crashes and recovers, p_i sends a RECOVERED message to every process (line 8). When p_j receives a RECOVERED message from p_i, p_j updates the epoch number of p_i at line 21 and p_j adds p_i to its trustlist. Variable Ω.trustlist contains the process, within the trustlist, that has the lowest epoch number (line 15), and if several of these exist, select the one with the lowest id.

Processes exchange their epoch number and take the maximum of all epoch numbers to prevent the following case. Assume that processes p_2, p_3, p_4 never crash and that process p_1 crashes and recovers. Assume moreover that p_1 recovers, every process except p_1 receives the RECOVERED message. Therefore, p_1 has epoch $p_1 = 0, 0, 0, 0$, while the other processes have epoch $p_{2,3,4} = 1, 0, 0, 0$. Each process has the same trustlist, indeed Ω.trustlist outputs p_1 and Ω.trustlist outputs p_2 which violates the property of Omega, exchanging their epoch number and taking the maximum such case is avoided. Note that the MIN function gives the first index that realises the minimum.

Proposition 62. The algorithm of Figure 28 satisfies the following property in a crash-recovery model with partial synchrony assumptions: There is a time after which exactly one correct process is always trusted by every correct process.

Proof. There is a time after which every correct process stops crashing and remains always-up. Therefore, every correct process keeps on sending 1-AM-ALIVE message to every process. Thanks to the partial synchrony assumptions, we know that after some global stabilisation time, a message does not take longer than a certain period of time to go from one process to another. Eventually, every process guesses this period of time by incrementing Δp_i at line 19. By the fair loss property of the links, every correct process then receives an infinite number of times 1-AM-ALIVE messages. Therefore, every correct process eventually has the same set trustlist and epoch list, indeed they output all the same first element of the set. Eventually, this process is correct since the algorithm chooses the process with the lowest epoch number (remember that an unstable process has a non decreasing epoch number).
for each process p_i:

upon initialisation or recovery do

• trustlist $\leftarrow \Pi$

for all $p_j \in \Pi$ do

$\Delta_{p_i}[p_j] \leftarrow$ default time-out interval

$epoch_{p_i}[p_j] \leftarrow 0$

start task(updateD)

if recovery then send(RECOVERED) to all

task updated

repeat periodically

send (i-AM-ALIVE,epoch$_{p_i}$) to all processes

for all $p_j \in \Pi$ do

if $p_j \in$ trustlist$_{p_i}$ and p_i did not receive i-AM-ALIVE from p_j during the last $\Delta_{p_i}[p_j]$ then

trustlist$_{p_i} \leftarrow$ trustlist$_{p_i} \setminus \{p_j\}$

Ωtrustlist \leftarrow MIN(Ωtrustlist$_{p_i}$, Π = $MIN(epoch_{p_i})$

upon receive m from p_j do

if $m = (i$-AM-ALIVE,epoch$_{p_j}$) then

if $p_j \notin$ trustlist$_{p_i}$ then

trustlist$_{p_i} \leftarrow$ trustlist$_{p_i} \cup \{p_j\}; \Delta_{p_i}[p_j] \leftarrow \Delta_{p_i}[p_j] + 1$

for all $p_k \in \Pi$ do

epoch$_{p_i}[p_k] \leftarrow$ MAX(epoch$_{p_i}[p_k]$, epoch$_{p_i}[p_k]$)

else if $m =$ RECOVERED then

$epoch_{p_i}[p_j] \leftarrow$ epoch$_{p_i}[p_j] + 1$; trustlist$_{p_i} \leftarrow$ trustlist$_{p_i} \cup \{p_j\}$

Figure 28. Implementing Ω in a crash-recovery model with partial synchrony assumptions