
On the robustness of Herlihy’s hierarchy

Prasad Jayanti

Department of Computer Science

Cornell University

Ithaca, NY 14853

E–mail: prasad@cs .cornell. edu

Abstract

A wait-free hierarchy maps object types to levels in
{1, 2, 3,...} U {co}, and has the following property: if a
type 2’ is at level N, then, for all types T’, there is a
wait-free implementation of an object of type T’, for N
processes, using only registers and objects of type T. The
infinite hierarchy defined by Herlihy is an example of a
wait -free hierarchy. A wait-free hierarchy is TObust if it has
the following property: if a t ype T is at level N, and S is a
finite set of types belonging to levels N – 1 or lower, then
there is no wait-free implementation of an object of type
T, for N processes, using any number and any combination
of objects belonging to the types in S. Robustness implies
that there are no clever ways of combining weak shared
objects to obtain stronger ones.

Contrary to what many researchers believe, we prove
that Herlihy’s hierarchy is not robust. We then define some
natural variants of Herlihy’s hierarchy, which are also infi-
nite wait-free hierarchies. With the exception of one, which
is still open, these are not robust either. We conclude with
the open question of whether a non-trivial robust wait-free
hierarchies exists.

1 Introduction

A concurrent system consists of processes and shared

objects. Processes are asynchronous: the rate at

which a process makes progress may vary with time

and is independent of the rates at which other pro-

cesses make progress. Processes communicate with

*Research supported by NSF grants CC R-8901780 and CCR-

9102231, DARPA/NASA Ames grant NAG-2-593, grants from

the IBM Endicott Programming Laboratory and Siemens Corp.

Permission to copy without fee all or part of this material IS

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requ!res a fee

and/or specific permission.

12th ACM Symposium on Pnnclples on Distributed Computing,

Ithaca NY
@ 1993 ACM 0-89791 -613 -1/93 /0008 /0145$l .50

each other through shared objects. A process inter-

acts with a shared object by invoking an operation on

the object and receiving a response from the object.

Shared objects are typed. The type of an object speci-

fies the operations that may be invoked on the object,

and, more importantly, specifies the behavior of the

object in the special case when operations are applied

without overlap (Z.e., an operation is invoked on the

object only after a response is returned to the previous

invocation). The latter specification is often referred

to as the sequential specification of the type. For ex-

ample, the type binary register specifies that an

object of this type supports the operations read, write

O, and write 1, and has the following sequential specifi-

cation: a read operation returns the most recent value

written. As a second example, the type consensus

specifies that an object of this type supports the oper-

ations propose O and propose 1, and has the following

sequential specification: every operation returns the

value proposed by the first operation. queue, stack,

test&set, and compare&swap are a few other exam-

ples of object types. (We will use the type-writer font

for object types.)

In a concurrent system, it is possible that opera-

tions applied by different processes on the same object

overlap. As noted above, the type of an object does

not specify the behavior of the object in the presence

of such overlapping operations. Thus, it is necessary

to resort to some additional criterion in order to fully

specify the behavior of an object in the presence of

overlapping operations. A common criterion, and the

one used in this work, is linearizabilitg [HW90]. By

this criterion, each operation, spanning over an inter-

val of time from the invocation of the operation to its

response, must appear to take effect at some instant

in this interval.

145

In most systems, simple shared objects, such as reg-

isters and test&set objects, are supported in hardware,

but more complex objects, such as queues, stacks, and

sets, are not. Thus, complex shared objects must be

implemented in software. Traditionally, in order to en-

sure the linearizability of these software objects, im-

plementations have employed semaphores and critical

sections [CHP71]. However, a shared object imple-

mented using critical-sections is not fault-tolerant: If

any process crashes in a critical-section, the other pro-

cesses are effectively prevented from accessing that ob-

ject. To overcome this problem, Lamport advocated

wait-free implementations [Lam77]. An implementa-

tion is wait-free if every process can complete every

operation on the implemented object in a finite num-

ber of its own steps, regardless of the execution speeds

of the remaining processes. Our focus in this paper

is on wait-free implementations. Hereafter we write

“implement” and “implementation” as shorthands for

“implement in a wait-free manner” and “wait-free im-

plementation”, respectively.

How feasible are wait-free implementations? It is

known that registers are too weak to implement a con-

sensus object for even two processes [LAA87, CIL87].

Test&set objects can implement a consensus object for

two processes, but not for three processes [LAA87]. A

compare&swap object, on the other hand, can imple-

ment a consensus object for any number of processes

[Her91b]. These results indicate that object types dif-

fer in their ability to support wait-free implementa-

tions, and that there may be a way of ordering them

accordingly. This issue was addressed in a seminal

paper by Herlihy [Her91b]. Listed below are an im-

portant result and a definition from [Her91b].

1.

2.

For all object types T, an object of type T can be

implemented for N processes using registers and

consensus objects that can be shared by N pro-

cesses. This is the universality result of Herlihy.

The consensus number of a shared object C) is

the maximum number N such that a consensus

object can be implemented for N processes using

just O and (any number of) registers. If there is

no such maximum, then the consensus number of

0 is co. Define a hierarchy of shared object types

as follows: a type T is at level N if and only if the

consensus number of an object of type T is N. We

will refer to this hierarchy as Herlihy’s hierarchy.

(Notice that the level of a type in Herlihy’s hier-

archy is based on what a single object of this type

can achieve. This will turn out to be important

when we analyze the robustness of this hierarchy.)

As an obvious consequence of the universality result,

Herlihy’s hierarchy has the following important prop-

erty: if a type T is at level N, then for all types T’,

an object of type T’ can be implemented for N pro-

cesses using just registers and objects of type T. We

will call any hierarchy wit h this property a wait-$ree

hierarchy. Notice that, by this definition, a type T can

be at level N in a wait-free hierarchy even if registers

and objects of type T suffice to implement objects of

all types for more than N processes. In particular, if h

is a wait-free hierarchy, and h’ is a hierarchy in which

every type is at a lower level or at the same level as in

h, then h’ is also a wait-free hierarchy. Thus, the level

of a type in a wait-free hierarchy does not reflect the

full potential of that type. This observation motivates

us to define a tight wait-free hierarchy: it is a wait-free

hierarchy with the property that if any type is elevated

to a higher level, then the resulting hierarchy is not a

wait-free hierarchy.

What other properties are important in a hierarchy?

We argue below that robustness is one. A hierarchy

is robust if for every type T and every finite set S of

types, the following holds: if T is at level N and each

type in S is at level N – 1 or lower, then it is impossi-

ble to implement an object of type T, for N processes,

using any number and any combination of objects be-

longing to the types in S. Robustness guarantees that

there are no clever ways of putting weak objects to-

gether to implement a strong one. The following ex-

ample illustrates the significance of robustness in ana-

lyzing the power of multi-processor systems. Consider

two systems S1 and Sz. Suppose that S1 supports

registers and test&set objects, and S2 supports regis-

ters with 3-register assignment (a process can write to

any three registers in one atomic operation). Herlihy

showed that arbitrary wait-free synchronization is im-

possible for three or more processes in S1, and for five

or more processes in Sz. What implications do these

results have on a third system S3 which supports both

test&set objects and registers with 3-register assign-

ment? In particular, can we conclude, based on just

the above results, that arbitrary wait-free synchroniza-

tion among five processes is impossible in S3? We can,

provided that Herlihy’s hierarchy is robust. Otherwise

146

we cannot. More generally, if Herlihy’s hierarchy is ro-

bust, the consensus number of a set of objects, belong-

ing (possibly) to different types, is just the maximum

of the consensus numbers of the individual objects in

the set. Thus, if Herlihy’s hierarchy is robust, the dif-

ficult problem of analyzing the combined power of a

set of shared objects reduces to the simpler problem

of analyzing the power of each individual object in the

set.

Is Herlihy’s hierarchy robust? While there is no ev-

idence to believe one way or the other, the following

facts make it plausible that the hierarchy is robust.

● Consider common types such as register,

testkset, fetchkadd, queue, stack, and

comparekswap. The consensus number of any col-

lection of objects of these types is the maximum

of the consensus numbers of the individual objects

in the collection. Thus, commonly encountered

types do not provide any reason to believe in the

non-robustness of Herlihy’s hierarchy.

● Define a k-process consensus object as one which

behaves like a consensus object if no more than

k processes access it and behaves arbitrarily if

more than k processes access it. It is impossi-

ble to implement a (k+ I)-process consensus ob-

ject using any number of registers and any num-

ber of k-process consensus objects [Her91b, JT92].

Thus, achieving consensus among k -t 1 processes

is strictly harder than achieving consensus among

k processes. This fact however does not imply

that objects, each of which is capable of imple-

menting only a k-process consensus object, can-

not be combined to implement a (k + I)-process

consensus object. In particular, it does not imply

that Herlihy’s hierarchy is robust. But it points

to the plausibility of robustness.

In fact, many researchers seem to believe that Her-

lihy’s hierarchy is robust [AGTV92, AR92, Her91a]1.

We prove that it is not. More specifically, we present

1[AGTV92] states “An object has a consensus number k if k

is the maximum number of processes for which the object can be

used to solve the consensus problem. Thus objects with higher

consensus number cannot be deterministically implemented by

employing objects with lower consensus numbers.”
[AR92] .t ates “In fact, IIerlihy [Her88] describes a full hi-

erarchy of atomicity assumptions, and proves that atoms of a

higher class cannot be implemented by those of a lower class, in

a wait-free fashion in the deterministic setting.”
[Her91a] states “Elsewhere [17, 15], we have shown that

any object X can be assigned a consensus number, which is

a type weak-sticky with the property that k objects

of this type, together with registers, can implement

a consensus object for k + 1 processes, but not for

k + 2 processes. In particular, one weak-sticky object,

with registers, can implement a consensus object for

two processes, but not for three processes. Thus, by

definition, a weak-sticky object has a consensus num-

ber of 2, and consequently, the type weak-sticky is

at level 2 in Herlihy’s hierarchy. However, since mul-

tiple weak-sticky objects, with registers, can imple-

ment a consensus object for arbitrarily large number

of processes, it follows from Herlihy’s universality re-

sult that, for all types T and for all N, an object of

type T can be implemented for N processes using just

registers and weak-sticky objects. Together with the

fact that weak-sticky is at level 2, this implies that

Herlihy’s wait-free hierarchy is not robust.

Does there exist a robust wait-free hierarchy? We

do not know the answer yet, However, we define three

natural variants of Herlihy’s hierarchy, which are also

infinite wait-free hierarchies. We prove that two of

these are not robust.2 The third hierarchy, whose ro-

bustness is still open, has the following property: if it is

not robust, then there is no robust wait-free hierarchy.

We believe that resolving the robustness of this hier-

archy is an important open problem in wait-free syn-

chronization. If it is robust, then, as already noted,

the power of a system supporting multiple types of

shared objects can be inferred simply from the power

of each individual type. If, on the other hand, there is

no robust wait-free hierarchy, then it will be possible

to combine weak objects to implement strong ones. In

particular, it opens up the possibility of implementing

universal objects from non-universal objects!

This paper is the first to formalize and study robust-

ness. The technical arguments involved in proving the

impossibility result that k weak-sticky objects cannot

implement a consensus object for k -t 2 processes are

the largest number of processes (possibly infinite) that can

achieve consensus asynchronously [13] by applying operations to

a shared X. It is impossible to construct a non-blockkg imple-

mentation of any object with consensus number n from objects

with lower consensus numbers in a system of n or more pro-

cesses, although any object with consensus number n is univer-

sal (it supports a wait-free implementation of any other object)

in a system of n or fewer processes.”

21n proving this, we show the following result which is inter-

esting in its own right. There exist two types such that consen-

sus among even two processes cannot be achieved using objects

of either type, but consensus among any number of processes

can be achieved using the two types of objects together.

147

novel. Traditional bivalency arguments are inadequate

to prove such lower bounds.

(Due to space limitations, most proofs are omitted

or only sketched. They are in [Jay93].)

2 Informal model

A concurrent system consists of asynchronous pro-

cesses and shared objects. Besides a unique name,

every object has two attributes: a type and a positive

integer which denotes the maximum number of pro-

cesses which may apply operations on that object. We

say that O is an N-process object if N is the maximum

number of processes which may apply operations on

0. The type specifies the behavior of the object when

operations are applied sequentially, without overlap.

More precisely, an object type T is a tuple (OP, RES,

G), where OP and RES are sets of operations and re-

sponses respectively, and G is a directed finite or infi-

nite multi-graph in which each edge has a label of the

form (op, res) where op E OP and res E RES. We

refer to G as the sequential specification of T, and the

vertices of G as the states of T. Intuitively, if there

is an edge, labeled (op, res), from state a to state a’,

it means that applying the operation op to an object

in state u may change the state to O’ and return the

response res.

An N-process object O of type T supports the set

of procedures Apply(Pz, op, 0), for all 1 < i < N and

op E OP(T). A process P invokes operation op on

object 0 by calling Apply (P, op, 0), and ezecutes the

operation by executing this procedure. The opera-

tion completes when the procedure terminates. The

response for an operation is the value returned by the

procedure.

The type of an object, by itself, is not sufficient to

characterize the behavior of the object in the pres-

ence of concurrent operations. To characterize such

behavior, we use the concept of linearizabilitg [HW90].

Roughly speaking, linearizability requires every opera-

tion execution to appear to take effect instantaneously

at some point in time between its invocation and re-

sponse.

Let T be an object type and C = (Tl, T2,...) be a

(possibly infinite) list of (not necessarily distinct) ob-

ject types. Let Z = (al, 02,. ..) be a list where ai

is a state of type Ti. An implementation of T, ini-

tialized to state u, from (C, 2) for N processes is a

function X(O1, 02,...) such that if 01,02,... are N-

process objects of type T1, T2,. . . . initialized to states

01, C2,.... respectively, then O = 1(01, 02, . . .) is

an N-process object of type T, initialized to u. In-

tuitively, Z(O1, Oz, . . .) returns a set of procedures

Apply(P~, op, 0), for 1 < i < N and op c OP(T).

Apply(P,, op, 0) specifies how process Pi should “sim-

ulate” the operation op on O in terms of operations on

01,02,. ... We say 0 is a derived object of the imple-

mentation T, and 01, 02, ..., On are the base objects

of 0.

We say that 1 is an implementation of T, initial-

ized to state U, from a set S of types for N processes

if there is a list L = (Tl, T2, . . .) of types and a list

X = (al, a2, . . .) of states such that Ti c S, ai is a

state of Ti, and Z is an implementation of T, initial-

ized to a, from (L, Z) for N processes. We say that

a type T has an implementation from a set S of types

for N processes if, for all states a of T, there is an

implementation of T, initialized to a, from S for N

processes.

An implementation is wait-free if every process com-

pletes every operation on a derived object in a finite

number of operations on the base objects, regardless

of the execution speeds of the remaining processes in

the system. Hereafter we write “implementation” as a

shorthand for “wait-free implementation”.

3 Hierarchy Preliminaries

A hierarchy of shared types is a function that maps

object types to levels in {1, 2,3,. ..} U {co}. An object

type T is at level 1 in hierarchy h if h(T) = /. A

hierarchy is non-trivial if it has at least two non-empty

levels. An object type T is universal for N processes

if for every type T’, there is an implementation of T’

from {T, register} for N processes. T is universaz if,

for all N, T is universal for N processes. A hierarchy h,

is a wait-free hierarch~ if, for all T, h(T) = N implies

that T is universal for N processes. The following

proposition is immediate from the definition.

Proposition 3.1 If h is a wait-free hierarchy, and h’

is a hierarchy such that VT : h’(T) < h(T), then h’ is

a wait-free hierarchy.

Proposition 3.2 If h is a wait-free hierarchy, then

h(register) = 1. Thus, level 1 of any wait-free hier-

archy is non-empty.

148

From Proposition 3.1, it is clear that there can be

“slack” in a wait-free hierarchy: a type T can be at

some level N although T is universal for &l > N

processes. This motivates us to define tightness. A

wait-free hierarchy h is tight if, for all wait-free hi-

erarchies h’ and for all types T, h(T) z h’(T). A

wait-free hierarchy h is !ully-?’efined if, for all levels

k E {1,2, 3,...} U {co}, there is some type at level k

of the hierarchy h. A wait-free hierarchy h is robust if,

for all types T and all finite sets S of types, the fol-

lowing holds: if h(T) = IV and VT’ G S : h(T’) < N,

then there is no implementation of T from S for IV

processes. The reader should note the difference be-

tween tightness and robustness. The trivial wait-free

hierarchy which maps every object type to level 1 is

obviously robust, but not tight. The wait-free hierar-

chy h; (to be defined soon) is tight, but it is not known

whether it is robust.

In the remainder of this section, we define some nat-

ural wait-free hierarchies, and highlight some simple

properties of these hierarchies. In the following defi-

nitions, the subscript indicates whether the definition

allows just 1 or many objects of the argument type.

The superscript r indicates that the definition allows

the

1.

2.

3.

4.

use of registers.

hl (T) = maximum number of processes for which

a consensus object can be implemented using just

a single object of type T. If there is no such max-

imum, then hl (2’) = m.

h~(T) –– maximum number of processes for which

a consensus object can be implemented using just

a single object of type T and any number of

registers. If there is no such maximum, then

h;(T) = cm.

Notice that this is Herlihy’s hierarchy [Her91b].

hm(T) = maximum number of processes for which

a consensus object can be implemented using any

number of objects of type T. If there is no such

maximum, then hm(T) = m.

h:(T) –— maximum number of processes for which

a consensus object can be implemented using any

number of objects of type T and any number

of registers. If there is no such maximum, then

h~(T) = co.

Proposition 3.3 Each of hi, hi, hm, 1$ is a fuliy-

refined wait-free hierarchy.

Proposition 3.4 h~(T) = N < co if and only if T is

universal for N processes, but not for N + 1 processes.

h~(T) = w if and only if T is universal.

Proposition 3.5 If h is a tight wait-free hierarchy,

then h = h;. In other words, hi is the unique wait-

free hierarchy which is tight.

The hierarchy h; is uniquely important in the study

of robust wait-free hierarchies. To formally state this,

we need a definition. Let a = (J1, ZZ,.. .) be a fi-

nite/infinite sequence such that 1 = 11 < 12 < 13. . .

and li c {1,2,3,. . .} U {co}. We say that a hierarchy g

is a coarsening of hierarchy h with respect to u if, for

all object types T, we have:

1. If Ji s h(T) < li+l, then g(T) = li.

2. If /i < h(T) and 1, is the last element of a, then

g(T) = la.

3. If h(T) = co and o is infinite, then g(T) = 00.

Intuitively, levels 1, . . . (Zi+l - 1) in h are lumped

into level li Of g, causing levels (li + 1) . . . (Zi+l -- 1)

to be empty in g. We say that a hierarchy g is a

coarsening of hierarchy h if there is a a of the form

l=ll<lz <13... such that g is a coarsening of h

with respect to o. It is obvious that if h is a wait-free

hierarchy, so is every coarsening of h.

Theorem 3.1 If h is a robust wait-free hierarchy,

then h is a coarsening of h;.

Proof Assume that h is a robust wait-free hierarchy,

and is not a coarsening of hi. Let a = (11, 12, . . .),

where 1=11<12 <13... are all the non-empty levels

of h. Define g to be the coarsening of hfi with respect

to a. From our assumption that h is not a coarsening

of h~, it follows that h # g. Thus, there is a type T

such that h(T) # g(T). Let m = h(T) and n = g(T).

By definition of g, a level k of g is non-empty if and

only if level k of h is non-empty. Together with m # n,

this implies that there exist types T’ and T“, each

different from T, such that g(T’) = m and h(T”) = n.

Since m # n, we are left with two cases to consider.

l.rn <n.

Since g is a coarsening of h; and g(T) = n, it

follows that h~(T) ~ n. Thus, by Proposition 3.4,

T is universal for n processes. In particular, there

is an implementation of T“ from {T, register}

149

2.

for n processes. Since h(’Z’) = m < n = h(T”), h

is not robust. This is a contradiction.

m>n.

From the above, g(T’) = m. Thus, level m of g

is not empty. This, together with m > n, implies

that n s h~(l’) < m. This implies, by Proposi-

tion 3.4, that 2’ is not universal for m processes.

Since h(T) = m, it follows that his not a wait-free

hierarchy. This is a contradiction. •1

What can we say about the robustness of hi, h;, and

hm? This question is addressed by the following propo-

sition, which follows from Theorem 3.1 and Proposi-

tions 3.5 and 3.3.

Proposition 3.6 Let h E {hi, h;, hm}- If ~ # hi,

then h is neither tight nor robust.

Does one of hi, h:, and hm define the same hierarchy

as hi? The answer is not easy. For instance, hi differs

from hi if and only if there is a type such that multiple

objects of this type (together with registers) can solve

consensus among a larger number of processes than a

single object (together with registers) can. Does such

a type exist? No common object type exhibits such a

property and, hence, it is a non-trivial question. Sim-

ilarly, hm differs from hfi if and only if there is a type

such that the use of registers increases the number of

processes for which consensus can be solved using ob-

jects of this type. Again, common object types do

not exhibit this property, making it difficult to answer

whether such types exist.

In the rest of the paper, we prove that each of hi, hi,

and hm differs from hi. Thus, none of hi, h~, and hm

is robust. In particular, h;, which is the same as Her-

lihy’s wait-free hierarchy, is not robust. Unfortunately,

we do not yet know whether h; or some coarsening of

it is robust. This is an important open question. We

hope that the ideas employed in this paper would pro-

vide useful insights.

4 On the robustness of Her-

lihy’s hierarchy (h:)

The main result of this section is that hi is not ro-

bust. We prove this result by presenting an object type

weak-sticky with the following property: n weak-

sticky objects, together with registers, can implement

a consensus object for n -I- 1 processes, but not for

n + 2 processes. This implies hi (weak-st icky) = 2

and h~(weak-sticky) = m. Thus, hi # hi and, by

Proposition 3.6, hi is not robust.

Consider the object type sticky in Figure 1. It sup-

ports two operations, L-op and R-op, and responds

with either L-first or R-first. If L-op is applied on

a sticky object 0, initialized to state S~, O changes

state to SL and returns L-first as the response. Fur-

thermore, O returns L-first to all subsequent opera-

tions, reflecting the fact that L-op was the first op-

eration applied on 0. The behavior is symmetric if,

instead of L-op, R-op was the first operation applied

on 0. In essence, the first operation “sticks” to O

and determines the response for all operations. Notice

that sticky is similar to the consensus [Her91b] and

sticky-bit [P1089] object types.

Now consider the type weak-sticky, a variant of

sticky, shown in Figure 2. weak-sticky lacks the

symmetry of sticky: If R-op is applied to a weak-

sticky object 0, initialized to SL, R-op sticks to O as

before. However, as soon as R-op is applied for the

second time, it “unsticks” and O starts behaving as

though it had been stuck with L-op all along.

Let Zj denote the implementation of consensus

from {weak-sticky, register} for processes PI,P2,

Pj. The implementation is recursive. The base. . . .

case is to derive Z1, implementation of consensus for

the single process P1, and is trivial: if 01 is a derived

object of ZI, Apply(Pl, propose VI, Cl) simply returns

VI. The recursive step of deriving In from Zm_l is pre-

sented in Figure 3.

Lemma 4.1 The implementation Zn in Figure

3 is a correct implementation of consensus from

{weak-sticky, register} for processes PI, P2,. . . . Pn.

Zn requires (n – 1) weak-stick~ objects and 2(n - 1) reg-

isters.

Corollary 4.1 h~(weak-st icky) = co.

Next we prove a lower bound: any solution to n-

process wait-free consensus using weak-sticky objects

and registers requires at least n– 1 weak-sticky objects,

regardless of how many registers are available. We

prove this result by reducing the problem of “achiev-

ing consensus among n processes (not necessarily in a

wait-free manner) when processes may communicate

only via registers and at most one of the processes

1 Cn
lJU

(L-op, L-jimt)

Lo

s
(L-q), L-.fird) (R-q, R-first)

s

~1

(L-op, R-fird)

(R-q, L-fi&) L R (R-op, R-first)

Figure 1: Object type sticky

(L-op, L-first)

Dp

s
(L-op, L-first) (ILop, It-first)

$!

s. (L-op,R-first)

(R-op, L-first) ~

(R-op, L-jint)

Figure 2: Object type weak-sticky

O~_l: consensus object for P1,Pz,... , P~-1, derived from ~~-]

oWs: weak-sticky object, initialized to S1

L, R: binary registers

Apply(Pi, propose vi, On) (for lsi<n–1) ApplY(pn> propose Vn> O.)

1. L := Apply(Pi, propose w, on-l) R := Vn
2. if Apply(Pi, L-op, 0~,) = L-first if Apply(pn, R-oP, Ow.) = L-first
3. return(L) return(L)

4. else return(R) else return(R)

Figure 3: Implementing consensus from {weak-sticky, register}

151

may crash” to the problem of “achieving wait-free con-

sensus among n processes communicating via registers

and (n – 2) weak-sticky objects”. The former problem

is impossible to solve [LAA87, DDS87]. Hence the im-

possibility of the latter. The reduction is based on the

novel concept of k-trap implementations.

An implementation for processes PI, P2,..., Pn is

a k-trap implementation if every derived object O of

the implementation has the following property: in any

execution of (PI, Pz, . . . , P~; 0), regardless of the rel-

ative execution speeds of processes, all but up to k

correct processes will be able to eventually complete

their operations on 0. In other words, at most k cor-

rect processes get blocked while accessing 0. Notice

that a O-trap implementation is the same as a wait-

free implementation. The following lemma establishes

the utility of k-trap implementations in proving lower-

bounds.

Lemma 4.2 Let T be any object tgpe such that for

every state u of T, there is a l-trap implementa-

tion Zm of T, initialized to u, from register for

n processes. Then, ang wait-free implementation of

consensus from {T, register} for n processes re-

quires at least n – 1 objects of type T (regardless of

how many registers it uses).

Proof Suppose that the lemma is false, and there

is a wait-free implementation ~ of consensus from

{T, register} for n processes such that f requires

only n. – 2 objects of type T, initialized to some states

UI, U2, ...7 a~_z of T, and m registers (for some m z O).

Consider the protocol P in Figure 4. Clearly, pro-

cesses communicate exclusively via registers in proto-

col P. We argue below that P solves the consensus

problem for processes PI, P2,. . . , Pn even if at most

one of the processes may crash. By the impossibility

result in [LAA87, DDS87], such a protocol does not

exist. Hence the lemma.

We claim that at most (n – 2) processes block on 0.

This follows from the following facts:

1. n– 2 base objects of O are l-trap. So at most one

process blocks on each of these.

2. No process blocks on the remaining base objects

of 0, the registers Rl, R2, Rm.

3. 0 is derived from a wait-free implementation.

1. For 1 s i s n – 2, use Z., to implement an object

Oi of type T initialized to state CTi.

2. Use f to implement a consensus object 0 from

01,02,... ,0n_2 and registers RI, R2,... , Rm.

3. Let D be a 3-valued register initialized to J_.

4. For 1 s i s n, let vi be the binary value that pro-

cess Pi wishes to propose for consensus. Process

Pi executes the procedure Apply(Pi, propose vi,

0) and writes the return value in register D. As

Pi executes this procedure, after each step of the

procedure, Pi reads the value in D and if it is not

1, decides this value and terminates.

Figure 4: l-resilient consensus protocol P for n pro-

cesses

Therefore, if at most one of PI, P2,. . . . Pm crashes,

there is still one process, call it Pk, that neither crashes

nor blocks on O. This process pk eventually writes the

response, call it V, returned by Apply(Pk, propose vk,

0) in register D. Since O is a consensus object, it

follows that V E {vl, V2,. . . . Vn } and no process ever

writes a value different from V in register D. The pro-

tocol in Figure 4 ensures that every non-crashing pro-

cess eventually reads V and decides V. In other words,

P solves the consensus problem for PI, P2,... , Pn even

if at most a single process may crash. ❑

Recall that weak-sticky has three states - SL, SL,

and SR. We now present a l-trap implementation

of weak-sticky initialized to S’l, and O-trap imple-

mentations of weak-sticky initialized to SL or SR.

These implementations use only registers as base ob-

jects. Thus, by Lemma 4.2, we have the desired lower

bound.

Lemma 4.3 Figure 5 presents a l-trap implementa-

tion of weak-st icky, initialized to Sl, from register

for processes P~, Pz,. . . . Pn.

Proof Sketch This implementation is subtle and is

based on the observation that if the first R-op oper-

ation is blocked, then all other (R-op and L-op) op-

erations can legitimately return L-first. An informal

proof of correctness is given below.

Consider 0, a weak-sticky object derived from this

implementation. Let H be a history of Cl, and let

jirst-op denote the first operation to complete in H.

152

R[l... n]: binary (l-writer, n-reader) registers initialized to O

Apply(Pi, L-op, ~) Apply(Pz, R-oP, ~)

return(L-jW) 1. if (Vk : R[k]= O) then

2. R[i] := 1

3. repeat until (dj < i : R[j]= 1)

4. return(L-jlrst)

Figure 5: l-trap implementation of weak-st icky, initialized to S1, from register

There are two cases. Case (1) corresponds to jimt-op

being an L-op operation. Consider the linearization

S which includes only the complete operations in H

and sequences them in the order of their completion

times. Thus, jirst-op, which is an L-op operation, be-

comes the the first operation in S. Furthermore, the

response of every operation in S is L-jirst (this is ob-

vious from the implementation). Prom the sequential

specification of weak-sticky in Figure 2, it is obvi-

ous that S is legal. Now consider Case (2), which

corresponds to first-op being an R-op operation. The

key observation is that if jirst-op, which is an R-op

operation, completed in H, then by our implementa-

tion, there must be another R-op operation, call it

blocked-op, from a different process which is concur-

rent with jirst-op and is blocked. Let us pretend that,

although incomplete, blocked-op has indeed taken ef-

fect in H, and has R-first for its response. Consider the

linearization S which sequences blocked-op first, jirst-

op second, and the remaining complete operations in

H in the order of their completion times. (blocked-op

can be linearized before jirst-op since these two oper-

ations are concurrent.) Thus the first operation in the

linearization S is a R-op operation with R-jirst as the

associated response. The second operation in the lin-

earization is also an R-op operation, and has L-jirst as

the associated response. The remaining operations in

the linearization have L-first as their response. From

the sequential specification of weak-sticky in Figure

2, it is obvious that this linearization S is legal. Hence

the correctness of our implementation. Furthermore,

it is obvious from the implementation that at most

one process gets blocked. Thus, the implementation is

l-trap. Hence the lemma. •1

Lemma 4.4 Figure 6 presents a O-trap (wait-free) im-

plementation of weak-sticky, initialized to SR, from

register for processes PI, P2, Pn.

Lemma 4.5 There is a O-trap (wait-free) implem-

entation of weak-sticky, initialized to SL, from

register for processes PI, P2, . . . , P~. (This imple-

mentation is trivial and is therefore omitted.)

Lemma 4.6 Any wait-free implementation of

consensus from {weals-sticky, register} for n

processes requires at least n – 1 objects of type

weak-sticky.

Proof Follows from Lemmas 4.2, 4.3, 4.4, and 4.5. ❑

Corollary 4.2 h~(weak-sticky) = 2.

Proof Follows from Lemmas 4.1 and 4.6. ❑

Theorem 4.1 h? is neither tight nor robust.

Proof Follows from Proposition 3.6 and Corollaries

4.1 and 4.2. •1

Corollary 4.3 hi is neither tight nor robust.

Proof From the definitions of hi and h;, it is obvious

that, for all types T, hi(T) < hi(T). In particular,

hi (weak-sticky) < h~(weak-sti.cky) = 2. Thus, by

Corollary 4.1, hi # hi. It follows from Proposition

3.6 that hi is neither tight nor robust. ❑

Independently, Kleinberg and Mullainathan provide

a direct proof that hl is not robust [KM].

153

R: binary register, initialized to O

Apply(~~, L-op, ~) Apply (F’~, R-op, ~)

if (R = O) then R:=l

ret urn(lt-fimt) return(L-fimt)

else return (L-first)

Figure 6: O-trap implementation of weak-sticky, initialized to SR, from register

5 On the robustness of hm

The main result of this section is that hm is not robust.

We prove this result by presenting an infinite family of

object types, named DAD(k), k E {2,3,4,... } U {co},

with the following properties:

1.

2.

There is an implementation of consensus from

{DAD(k), register} for k processes, but not for

k + 1 processes.

There is no implementation of consensus from

DAD(/c) for two processes.

Property (1) implies that h~(DAD(k)) = k. Property

(2) implies that hm(DAD(k)) = 1. Thus, hm # h; and,

by Proposition 3.6, hm is not robust.4 This result is

significant in the following sense. Registers by them-

selves are too weak to solve consensus even between

two processes. So are DAD(oo) objects. Using these

two types together, however, lets us solve consensus

among any number of processes!

The object type DAD(k) is specified in Figure 7. In

this specification, choose(S) chooses an element from

set S non-deterministically and returns it. Notice that

upset and ahead[i] are stable: once true, they remain

true. Similarly, once decision ~ {O, 1}, it does not

change.

We first show, for k c {2,3,...} U {oo}, how to

implement a consensus object for k processes using

only DAD(k) objects and registers. Our implementa-

tion is recursive. Let Z: denote the implementation

SDADis S,nabbreviation for disciplined-access denmnding,

the object type specified in Figure 7.

4A single member of the DAD(k) family is sufficient to estab-

lish that h~ is not robust. The existence of an entire family

shows that there is not even a coarsening of h~ which is non-

trivial and robust.

of consensus from {DAD(k), register} for processes

P1, P2,... , Pn. The base case is to derive Zi, imple-

mentation of consensus for an empty set of processes,

and is vacuous. The recursive step of deriving Z: from

T.~_l is presented in Figure 8.

The implementation Z: works as follows. Processes

PI . . . Pn split into two groups, GO and GI. Group

Go has PI . . . Pn_l, and group GI has just Pn. Pro-

cesses PI . . . Pn-l do consensus among themselves (re-

cursively) and announce the outcome in RIO]. Process

Pn announces its proposal in R[l]. The rest of the pro-

tocol resolves which of the two groups is the winner.

If Go wins, every process decides the value in RIO].

Similarly, if G1 wins, every process decides the value

in I?[l]. The object Odad is used to determine the win-

ner of the two groups. Processes PI . . . Pn_l perform

the operation op(0) on Odd. Then they set the reg-

ister R’ [0] to inform process Pn that op(0) has been

executed on Oda& process Pn, on the other hand,

performs op(l) on Odad, and then sets R’[l] to in-

form processes in Go that op(l) has been executed.

Processes then perform the give-decision operation.

The return value determines the winning group. For

this strategy to work correctly, the arguments of the

give-decision operation must be such that the ob-

ject O&d does not get upset. We urge the reader to

understand how the registers R’[0..1] are used to en-

sure that odad does not get upset. Finally, if O&d

returns v, a process assumes that the group GU won

and decides the value in R[v].

Lemma 5.1 For 1 s n ~ k, the implementation I;

in Figure 8 is a correct implementation of consensus

from {DAD(k), register} for processes Pl, P2,... , P~.

154

—

S1. DAD(k) supports operations in {op(i)li = {O, 1}} U {give-decision(i, b)[i G {O, 1}, b c {true, ~alse}}.

S2. The response for op(0) or op(l) is always ack. The response for give-decision(–, –) is either O or 1.

S3. The state of DAD(k) is represented by the variables no, nl, ng~ : integer; decision C {~, 0, 1};

ahead [O..l], upset : boolean. Informally, no, nl, ngd count the number of executions Of OP(0), OP(l),

and give-decision, respectively. The variable ahead[i] is set to true if n~ > 0 and n; = O when

give-decision(i, –) is executed. The variable upset is set to true if one of the following happens: (i) op(l) is

executed more than once (op(0) may be executed any number of times without upsetting a DAD(k) object); (ii)

give-decision is executed more than k times; (iii) give-decision(i, –) is executed with no prior execution of

op(i); (iv) give -decision(i, t?we) is executed with no prior execution of op(;); (v) give -decision(i, ~alse) is

executed and ahead [~ = true. If upset, a DAD(k) object returns O or 1 non-deterministically to an invocation

of give-decision. If not upset, it sets decision irrevocably and non-deterministically (if not already set) to O

or 1 such that ndeca,,om >0, and returns decision. See S5 below for a formal sequential specification of DAD(k).

S4. The state of DAD(k) corresponding to (no = nl = 7Lgd= O; decision = 1; ahead [O..l] = upset = ~aise) is known
as the fresh state. The states of DAD(k) are only those that are reachable from the fresh state by the following

specification.

S5. The sequential specification of DAD(k) is as follows:

Op(i) /* i e {0,1} */

n~ :=n~+l

if nl > 1 then upset := true

return(ack)

give-decision(i, other-is-ahead) /“ i E {O, 1}, other-is-ahead boolean “/

ngd := ngd + 1

if (ni >0 A n; = O) then ahead[i] := true

if (ng~ > k) V (% = O) V (ahead[~ A mother-is-ahead) V (n; = O A other-is-ahead) then

upset := true

if upset then

return(choose({O, l}))

else if decision = 1 then

decision:= choose ({jlnj > O})

return(decision)

Figure 7: Object type DAD(k)

155

base objects of the implementation ~~

On_l: consensus object for Pl, Pz,... ,P1,l, derived from z$–1

Oda& DAD(k) object, initialized tothe fresh state

RIO..1]: binary registers

R’[0..1]: boolean registers, initialized to~alse

local variables of process pi

di,lO’i?Zne~i E{O,l}

other-aheadi: boolean

Apply(Pi, propo$e vi, On) (forl<i<n–1)

1.

2.

3.

4.

5.

6.

7.

—

d~:=Apply(P,,propose vi,On-l)

RIO] :=di

ApplY(Pi, OP(0), Odad)

R’[O] := true

other-ahead~ := R’[l]

winner~ :=

Apply(Pi, give-decision(O, other-aheadi), Oad)

return (R[zoinne~i])

Apply(Pn, propose %, ~~)

d~ := Vn

R[l] := dn

Apply(pn, Op(l), Odad)

R’[l] := true

other-aheadn := R’[O]

winnern :=

Apply(P~, give-decisional, othe~-ahead~), Odad)

return(R[zoinner~])

Figure 8: Implementing consensus from {DAD(k), register}

Our next result is that DAD(k) objects and registers

do not suffice to implement a consensus object fork+

1 processes. This impossibility result follows from a

straight forward bivalency argument.

Lemma 5.2 There is no implementation of

consensus from {DAD(k), register} for k + 1 pTO-

cesses.

Corollary 5.1 h~(DAD(k)) = k.

The next lemma states that it is impossible to imple-

ment a consensus object for two processes using just

DAD(k) objects. Intuitively, DAD(k) objects are so

weak that a process cannot use these objects to leave

its “foot marks” behind. Thus, if a process P. runs

to completion and decides before a second process PI

starts to run, PI cannot know that PO ran before it

started. This can cause P1 to decide a value which

is not consistent with the decision of Po. The proof

formalizes this argument and is omitted. The details

are subtle due to the non-determinism of the DAD(k)

objects.

Lemma 5.3 hm(DAD(k)) = 1.

Theorem 5.1 hm is neither tight nor robust.

Proof Follows from Proposition 3.6, Corollary 5.1,

and Lemma 5.3. •1

6 Conclusion

It is well known that shared objects, depending on

their type, vary widely in their ability to support wait-

free implementations. Recent research focussed on an-

alyzing the power of individual objects. III this paper,

we ask whether, from our understanding of the power

of the individual objects, we can infer the combined

power of a set of objects. For instance, is it impossible

to implement a universal object from some combina-

tion of non-universal objects? The answer is not clear.

It is conceivable that clever protocols for such imple-

mentations exist. Besides being of theoretical interest,

these issues have implications to multi-processor archi-

tectures. To make a systematic study of these issues

possible, we define the property of robustness for wait-

free hierarchies. Contrary to popular belief, we show

that Herlihy’s wait-free hierarchy is not robust. We

also show that some natural variants of Herlihy’s hier-

archy are not robust. This raises the obvious question

of whether there is a non-trivial robust wait-free hier-

archy at all. We do not know the answer. However, we

156

observe that if such a hierarchy exists, it is either h:

or some coarsening of h:. Thus, further research on

the structure of h: is essential to resolving this open

question. As explained in the paper, the answer to

this question, regardless of whether it is affirmative or

negative, has useful implications. We close with the

conjecture that h: is not robust. Our conjecture is

motivated by the results of this paper which show how

certain clever combinations of objects result in an in-

creased ability to do consensus. Furthermore, we see

no fundamental reason for h~ to be robust.

Acknowledgement

I had innumerable discussions with my advisor Sam

Toueg on this subject. They were very helpful in crys-

tallizing my ideas, and in discovering some of these

results. The “swap object” that Jon Kleinberg and

Sendhil Mullainathan showed me helped me discover

the type weak-sticky. I am grateful to Sam, Jon, and

Sendhil for sharing their insights with me. I thank

Tushar Chandra and Cynthia Dwork for reading parts

of this paper and providing helpful comments. Aparna

helped me with typing. Little Sucharita never com-

plained the travel between home and school, no matter

what time of the night and how cold.

References

[AGTV92] Y. Afek, E. Gafni, J. Tromp, and P. Vi-

[AR92]

[CHP71]

[CIL87]

tanyi. Wait-free test&set. In Proceedings

of the 6th Workshop on Distributed Algo-

rithms, Haifa, Israel, November 1992. (Ap-

peared in Lecture Notes in Computer Sci-

ence, Springer-Verlag, No: 647).

Y. Aumann and M.O. Rabin. Clock con-

struction in fully asynchronous parallel

systems and pram simulation. In Pro-

ceedings of the ~.?r’d Annual Symposium on

Foundations of Computer Science, Octo-

ber 1992.

P.J. Courtois, F. Heymans, and D.L. Par-

nas. Concurrent control with readers and

writers. Communications of the A GM,

14(10):667-668, 1971.

B. Chor, A. Israeli, and M. Li. On proces-

sor coordination using asynchronous hard-

[DDS87]

[Her91a]

[Her91b]

[HW90]

[Jay93]

[JT92]

[KM]

[LAA87]

[Lam77]

[P1089]

ware. In Proceedings of the 6th ACM Sym-

posium on Principles of Distributed Com-

puting, pages 86-97, August 1987.

D. Dolev, C. Dwork, and L. Stockmeyer.

On the minimal synchronism needed for

distributed consensus. Journal of the

ACM, 34(1):77-97, January 1987.

M.P. Herlihy. Impossibility results for

asynchronous pram. In i%oceedings of the

3rd ACM Symposium on Parallel Architec-

tures and Algorithms, July 1991.

M.P. Herlihy. Wait-free synchronization.

ACM TOPLAS, 13(1):124-149, 1991.

M.P. Herlihy and J.M. Wing. Linearizabil-

ity: A correctness condition for concurrent

objects. ACM TOPLAS, 12(3):463-492,

1990.

P. Jayanti. On the robustness of her-

lihy’s hierarchy. Technical Report TR 93-

1332, Cornell University, Dept. of Com-

puter Science, Cornell University} Ithaca,

NY 14853, March 1993.

P. Jayanti and S. Toueg. Some results on

the impossibility, universality, and decid-

ability of consensus. In Proceedings of the

6th Workshop on Distributed Algorithms,

Haifa, Israel, November 1992. (To ap-

pear in Lecture Notes in Computer Sci-

ence, Springer-Verlag).

J. Kleinberg and S. Mullainathan. Re-

source bounds and combinations of consen-

sus objects. In this proceedings.

M.C. Loui and Abu-Amara. Memory re-

quirements for agreement among unreli-

able asynchronous processes. Advances in

computing research, 4: 163–183, 1987.

L. Lamport. Concurrent reading and

writing. Communications of the ACM,

20(11):806-811, 1977.

S. Plotkin. Sticky bits and universality of

consensus. In Proceedings of the 8th ACM

Symposium on Principles of Distributed

Computing, pages 159-175, August 1989.

IC7

