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A concurrent object is a data structure shared by concurrent processes. Conventional techniques

for implementing concurrent objects typically rely on crztical sections: ensuring that only one

process at a time can operate on the object. Nevertheless, critical sections are poorly suited for
asynchronous systems: if one process is halted or delayed in a critical section, other, nonfaulty
processes will be unable to progress. By contrast, a concurrent object implementation is lock free

if it always guarantees that some process will complete an operation in a finite number of steps,

and it is wait free if it guarantees that each process will complete an operation in a finite
number of steps. This paper proposes a new methodology for constructing lock-free and wait-free

implementations of concurrent objects. The object’s representation and operations are written as

stylized sequential programs, with no explicit synchronization. Each sequential operation
is automatically transformed into a lock-free or wait-free operation using novel synchroniza-

tion and memory management algorithms. These algorithms are presented for a multiple
instruction/multiple data (MIMD) architecture in which n processes communicate by applying

atomic read, wrzte, load_linked, and store_conditional operations to a shared memory.
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1. INTRODUCTION

A concurrent object is a data structure shared by concurrent processes.

Conventional techniques for implementing concurrent objects typically rely

on critical sections to ensure that only one process at a time is allowed

to access to the object. Nevertheless, critical sections are poorly suited for

asynchronous systems; if one process is halted or delayed in a critical section,

other, faster processes will be unable to progress. Possible sources of unex-

pected delay include page faults, cache misses, scheduling -preemption, and

perhaps even processor failure.

By contrast, a concurrent object implementation is lock free if some process

must complete an operation after the system as a whole takes a finite number
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746 . Maurice Herlihy

of steps,l and it is wait free if each process must complete an operation after

taking a finite number of steps. The lock-free condition guarantees that some

process will always make progress despite arbitrary halting failures or delays

by other processes, while the wait-free condition guarantees that all non-

halted processes make progress. Either condition rules out the use of critical

sections, since a process that halts in a critical section can force other

processes trying to enter that critical section to run forever without making

progress. The lock-free condition is appropriate for systems where starvation

is unlikely, while the (strictly stronger) wait-free condition may be appropri-

ate when some processes are inherently slower than others, as in certain

heterogeneous architectures.

The theoretical issues surrounding lock-free synchronization protocols have

received a fair amount of attention, but the practical issues have not. In this

paper, we make a first step toward addressing these practical aspects by

proposing a new methodology for constructing lock-free and wait-free imple-

mentations of concurrent objects. Our approach focuses on two distinct issues:

ease of reasoning and performance.

—It is no secret that reasoning about concurrent programs is difficult. A

practical methodology should permit a programmer to design, say, a cor-

rect lock-free priority queue, without ending up with a publishable result.

—The lock-free and wait-free properties, like most kinds of fault-tolerance,

incur a cost, especially in the absence of failures or delays. A methodology

can be considered practical only if (1) we understand the inherent costs of

the resulting programs, (2) this cost can be kept to acceptable levels, and

(3) the programmer has some ability to influence these costs.

We address the reasoning issue by having programmers implement data

objects as stylized sequential programs, with no explicit synchronization.

Each sequential implementation is automatically transformed into a lock-

free or wait-free implementation via a collection of novel synchronization and

memory management techniques introduced in this paper. If the sequential

implementation is a correct sequential program, and if it follows certain

simple conventions described below, then the transformed program will be a

correct concurrent implementation. The advantage of starting with sequen-

tial programs is clear: the formidable problem of reasoning about concurrent

programs and data structures is reduced to the more familiar sequential

domain. (Because programmers are required to follow certain conventions,

this methodology is not intended to parallelize arbitrary sequential programs
after the fact. )

To address the performance issue, we built and tested prototype implemen-

tations of several concurrent objects on a multiprocessor. We show that a

naive implementation of our methodology performs poorly because of exces-

sive memory contention, but simple techniques from the literature (such as

exponential backofll have a dramatic effect on performance. We also compare

1 The lock-free condition is sometimes called non blocking.
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our implementations with more conventional implementations based on spin

locks. Even in the absence of timing anomalies, our example implementations

sometimes outperform conventional spin-lock techniques, and lie within a

factor of two of more sophisticated spin-lock techniques.

We focus on a multiple instruction/multiple data (MIMD) architecture

in which n asynchronous processes communicate by applying atomic read,

write, load–linked, and store_conditional operations to a shared memory.

The load_linked operation copies the value of a shared variable to a local

variable. A subsequent store _conditional to the shared variable will change

its value only if no other process has modified that variable in the interim.

Either way, the store _conditional returns an indication of success or failure.

(Note that a store-conditional is permitted to fail even if the variable has not
changed. We assume that such spurious failures are rare, though possible.)

We chose to focus on the load–linked and store_ conditional synchroniza-

tion primitives for three reasons. First, they can be implemented efficiently

in a cache-coherent architectures [Jensen et al. 1987; Kane 1989; Sites 1992],

since store–conditional need only check whether the cached copy of the

shared variable has been invalidated. Second, many other “classical” synchro-

nization primitives are provably inadequate—we have shown elsewhere

[Herlihy 1991] that it is impossible 2 to construct lock-free or wait-free

implementations of many simple and useful data types using any combina-

tion of read, write, test& set, fetch& add [Gottlieb et al. 1984], and memory-

to-register swap. The load_ linked and store_conditional operations, how-

ever, are universal—at least in principle, they are powerful enough to

transform a sequential implementation of any object into a lock-free or

wait-free implementation. Finally, we have found load _linked and store _con -

ditional easy to use. Elsewhere [Herlihy 1990], we present a collection of

synchronization and memory management algorithms based on compare&

swap [IBM]. Although these algorithms have the same functionality as those

given here, they are less efficient, and conceptually more complex.

In our prototype implementations, we used the C language [Kernighan and

Ritchie 1988] on an Encore Multimax [Encore 1989] with eighteen NS32532

processors. This architecture does not provide load_ linked or store _condi-

tional primitives, so we simulated them using short critical sections. Natu-

rally, our simulation is less efficient than direct hardware support. For

example, a successful store–conditional requires twelve machine instructions

rather than one. Nevertheless, these prototype implementations are instruc-

tive because they allow us to compare the relative efficiency of different

implementations using load_ linked and store _conditional, and because they

still permit an approximate comparison of the relative efficiency of waiting

versus nonwaiting techniques. We assume readers have some knowledge of

the syntax and semantics of C.

In Section 2, we give a brief survey of related work. Section 3 describes our

model. In Section 4, we present protocols for transforming sequential imple-

2Although our impossibility results were presented in terms of wait-free implementations, they
hold for lock-free implementations as well.
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mentations of small objects into lock-free and wait-free implementations,

together with experimental results showing that our techniques can be made

to perform well even when each process has a dedicated processor. In Section

5, we extend this methodology to encompass large objects. Section 6 summa-

rizes our results, and concludes with a discussion.

2. RELATED WORK

Early work on lock-free protocols focused on impossibility results [Chor et al.

1987; Dolev et al. 1987; Dwork et al. 1986; 1988; Fischer et al. 1985; Herlihy

199 1], showing that certain problems cannot be solved in asynchronous

systems using certain primitives. By contrast, a synchronization primitive is

Un iz)ersal if it can be used to transform any sequential object implementation

into a wait-free concurrent implementation. The author [Herlihy 1991] gives

a necessary and sufficient condition for universality: a synchronization primi-

tive is universal in an n-process system if and only if it solves the well-known

consensus problem [Fischer et al. 1985] for n processes. Although this result

established that wait-free (and lock-free) implementations are possible in

principle, the construction given was too inefficient to be practical. Plotkin

[ 1989] gives a detailed universal construction for a sticky-bit primitive. This

construction is also of theoretical rather than practical interest. Elsewhere

[Herlihy 1990], the author gives a simple and relatively efficient technique

for transforming stylized sequential object implementations into lock-free and

wait-free implementations using the compare & swap synchronization primi-

tive. Although the overall approach is similar to the one presented here, the

details are quite different. In particular, the constructions presented in this

paper are simpler and more efficient, for reasons discussed below.

Many researchers have studied the problem of constructing wait-free atomic

registers from simpler primitives [Burns and Peterson 1987; Lamport 1986;

Li et al. 1991; Peterson 1983; Peterson and Burns 1986]. Atomic registers,

however, have few if any interesting applications for concurrent data struc-

tures, since they cannot be combined to construct lock-free or wait-free

implementations of most common data types [Herlihy 1991]. There exists an

extensive literature on concurrent data structures constructed from more

powerful primitives. Gottlieb et al. [ 1983] give a highly concurrent queue

implementation based on the replace-add operation, a variant of fetch & add.

This implementation permits concurrent enqueuing and dequeuing processes,

but it is blocking, since it uses critical sections to synchronize access to
individual queue elements. Lamport [ 1983] gives a wait-fl-ee queue imple-
mentation that permits one enqueuing process to execute concurrently with

one dequeuing process. Herlihy and Wing [1987] give a lock-free queue

implementation, employing fetch & add and swap, that permits an arbitl’ary

number of enqueuing and dequeuing processes. Lanin and Shasha [1988] give

a lock-free set implementation that uses operations similar to compare&

swap. There exists an extensive literature on locking algorithms for concur-

rent B-trees [Bayer and Schkolnick 1977; Lehman and Yao 1981] and for

related search structures [Biswas and Browne 1987; Ellis 1980; Ford and
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Calhoun 1984; Guibas and Sedgewick 1978; Jones 1989]. More recent ap-

proaches to implementing lock-free data structures include Allemany and

Felton’s work on operating system support [Allemany and Felton 1992], and

Herlihy and Moss’s work on hardware support [Herlihy and Moss 1993].

The load–linked and store–conditional synchronization -primitives were

first proposed as part of the S-1 project [Jensen et al. 198’7] at Lawrence

Livermore Laboratories, and they are currently supported in the MIPS-II

architecture [Kane 1989] and Digital’s Alpha [Sites 1992]. They are closely

related to the compare& swap operation first introduced by the IBM 370

architecture [IBM].

Our techniques are distantly related to optimistic concurrency control

methods from the database literature [Kung and Robinson 1981]. In these

schemes, transactions execute without synchronization, but each transaction

must be validated before it is allowed to commit to ensure that synchroniza-

tion conflicts did not occur. Our method also checks after-the-fact whether

synchronization conflicts occurred, but the technical details are entirely

different.

3. OVERVIEW

A concurrent system consists of a collection of n sequential processes that

communicate through shared typed objects. Processes are sequential—each

process applies a sequence of operations to objects, alternately issuing an

invocation and then receiving the associated response. We make no fairness

assumptions about processes. A process can halt, or display arbitrary varia-

tions in speed. In particular, one process cannot tell whether another has

halted or is just running very slowly.

Objects are data structures in memory. Each object has a type, which

defines a set of possible values and a set of primitive operations that provide

the only means to manipulate that object. Each object has a sequential

specification that defines how the object behaves when its operations are

invoked one at a time by a single process. For example, the behavior of a

queue object can be specified by requiring that enqueue insert an item in the

queue, and that dequeue remove the oldest item present in the queue. In a

concurrent system, however, an object’s operations can be invoked by concur-

rent processes, and it is necessary to give a meaning to interleaved operation

executions.

An object is linearizable [Herlihy and Wing 1987] if each operation appears

to take effect instantaneously at some point between the operation’s invoca-

tion and response. Linearizability implies that processes appear to be inter-

leaved at the granularity of complete operations, and that the order of

nonoverlapping operations is preserved. As discussed in more detail else-

where [Herlihy and Wing 1987], the notion of linearizability generalizes and
uni~les a number of ad hoc correctness conditions in the literature, and it is

related to (but not identical with) correctness criteria such as sequential

consistency [Lamport 1979] and strict serializability [Papadimitriou 1979].
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We use Iinearizability as the basic correctness condition for the concurrent

objects constructed in this paper.

Our methodology is the following:

(1) The programmer provides a sequential implementation of the object,

choosing a representation and implementing the operations. This

program is written in a conventional sequential language, subject to

certain restrictions given below. This implementation performs no explicit

synchronization.

(2) Using the synchronization and memory management algorithms described
in this paper, this sequential implementation is transformed into a

lock-free (or wait-free) concurrent implementation. Although we do not

address the issue here, this transformation is simple enough to be per-

formed by a compiler or preprocessor.

We refer to data structures and operations implemented by the program-

mer as sequential objects and sequential operations, and we refer to trans-

formed data structures and operations as concurrent objects and concurrent

operations. By convention, names of sequential data types and operations are

in lowercase, while names of concurrent types and operations are capitalized.

(Compile-time constants typically appear in uppercase.)

4. SMALL OBJECTS

A small object is one that is small enough to be copied efficiently. In this

section we discuss how to construct lock-free and wait-free implementations

of small objects. In a later section, we present a slightly different methodol-

ogy for large ob]”ects, which are too big to be copied all at once.

A sequential object is a data structure that occupies a fixed-size contiguous

region of memory called a block. Each sequential operation is a stylized

sequential program subject to the following simple constraints.

—A sequential operation may not have any side-effects other than modifying

the block occupied by the object.

—A sequential operation must be total, meaning that it is well-defined for

every legal state of the object. (For example, the dequeue operation may

return an error code or signal an exception when applied to an empty

queue, but it may not provoke a core dump.)

The motivation for these restrictions wi~l become clear when we discuss how

sequential operations are transformed into concurrent operations.
Throughout this paper, we use the following extended example. A priority

queue (pqueue_type) is a set of items taken from a totally-ordered domain

(our examples use integers). It provides two operations: enqz~eue (pqueue-enq)
inserts an item into the queue, and dequezle (pqueue–deq) removes and

returns the least item in the queue. A well-known technique for implement-

ing a priority queue is to use a heap, a binary tree in which each node has a
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#clef he PARENT(i) ((i - 1) >> 1)

#define LEFT(i) ((i << 1) + 1)

#define RIGHT(i. ) ((i+ 1) << 1)

void pqueue.heapify(pqueue.type *p, int i){

int 1, r, best, swap;

1 = LEFT(i);

r = RIGHT(i);

best = (1 <= p->size && p->elements[l] > p->elements[i]) ? 1 : i;

best = (r <= p->size && p->elements[r] > p->elements [best]) ? r : best;

if (best != 1) {

swap = p–>elements[i];

p->elements[i] = p->elements [best];

p->elements[best] = swap;

pqueue_heapify(p, best);

1

3

int pqueue_enq(pqueue_type *p, int x){

int i;

if (p–>size == PQUEUE_SIZE) return PQUEUE_FULL;

i = p->size++;

while (i > 0 && p->elements[PARENT(i)] < x) {

p->elements[i] = p->elements[PARENT(i.)];

i = PARENT(1);}

p->elements[i] = x;

return PQUEUE_OK;

1

int pqueue_deq(pqueue_type *p){

int best;

if (!p–>size) return PQUEUE_EMPTY;

best = p->elements[O];

p->elements[O] = p->elements [--p->size];

pqueue_heapify(p, O);

return best;

Fig. 1. Asequential priority queue implementation

higher priority thanits children. Figure lshows a sequential implementation

ofa priority queue that satisfies our conditions.3

4.1 The Lock-Free Transformation

We first discuss how to transform asequentialobj ectintoa lock-free concur-

rent object. We start with a protocol that guarantees correctness, and later

we extend it to enhance performance. For now, we assume that processes

share only one object, arestriction we will relax later.

Omitting certain important details, the basic technique is the following.

The objects share a variable that holds a pointer to the object’s current

3Thiscod=~ adapted from Cormenet al. [1990]

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 5, November 1993.



752 . Maurice Herlihy

version. Each process (1) reads the pointer using load–linked, (2) copies the

indicated version into another block, (3) applies the sequential operation to

the copy, and (4) calls store_conditional to swing the pointer from the old

version to the new. If the last step fails, the process restarts at Step 1. Each

execution of these four steps is called an attempt. Linearizability is straight-

forward, since the order in which operations appear to happen is the order

of their final calls to store_ conditional. Barring spurious failures of the

store–conditional primitive, this protocol is lock-free because at least one out

of every n attempts must succeed.

Memory management for small objects is almost trivial. Each process owns

a single block of unused memory. In Step 2, the process copies the object’s

current version into its own block. When it succeeds in swinging the poin-

ter from the old version to the new, it gives up ownership of the new ver-

sion’s block, and acquires ownership of the old version’s block. Since the

process that replaces a particular version is uniquely determined, each block

has a unique and well-defined owner at all times.

A slow process may observe the object in an inconsistent state. For exam-

ple, processes P and Q may read a pointer to a block b, Q may swing the

pointer to block b‘ and then start a new operation. If P copies b while Q

is copying b‘ back to b, then P’s copy may not be a valid state of the sequen-

tial object. This race condition raises an important software engineering

issue. Although P’s subsequent store_ conditional is certain to fail, it may be

difficult to ensure that the sequential operation does not store into an

out-of-range location, divide by zero, or perform some other illegal action. It

would be imprudent to require programmers to write sequential operations

that avoid such actions when presented with arbitrary bit strings. Instead,

we insert a consistency check after copying the old version, but before

applying the sequential operation. Consistency can be checked either by

hardware or by software. A simple hardware solution is to include a validate

instruction that checks whether a variable read by a load–linked instruction

has been modified. Implementing such a primitive in an architecture that

already supports store–conditional should be straightforward, since they

have similar functionalities. In our examples, however, we use a software

solution. Each version has two associated counters, check [0] and check [1].
If the counters are equal, the version is consistent. To modify a version, a

process increments check [0], makes the modifications, and then increments

check [1]. When copying, a process reads check [1], copies the version, and

then reads check [0]. Incrementing the counters in one order and reading

them in the other ensures that if the counters match, then the copy is

consistent.&

We are now ready to review the protocol in more detail (Figure 2). A

concurrent object is a shared variable that holds a pointer to a structure with

two fields. (1) version is a sequential object, and (2) check is a two-element

i Counters are bounded, so there is a remote chance that a consistency check w1ll succeed
incorrectly If a counter cycles all the way around during a single attempt, As a practical matter,
this problem is avoided simply by using a large enough (e.g., 32-bit) counter.
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typedef struct {

pqueue.type version;

unsigned check [2] ;

} Pqueue.type;

static Pqueue_type *new_pqueue;

int Pqueue_deq(Pqueue_type **Q){

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Pqueue_type *old_pqueue; /* concurrent object *I
pqueue_type *old_version, *new_version; /* seq object */

int result;

unsigned first, last;

while (TRUE)

old_pqueue = (Pqueue_type*) load_linked(Q);

old_version = &old.pqueue->version;

new_version = &new_pqueue-Nersion;

/+ Hark inconsistent. */

new_pqueue–>check[O] = new_pqueue–>check[lI +l;

first = old_pqueue->check[l];

memcpy(new_version, old_version, sizeof(pqueue_type) );

last = old_pqueue->check[O];

/* Was COpy consistent? */

if (first == last) {

result = pqueue_deq(new_version);

old_pqueue->check [11++; /* mark consistent */

if (store_conditional(q, new_version)) {

new_pqueue = old_pqueue;

return result;

} /+ if */

3 /* if */

1 /* while +/

3 /+ Pqueue_deq*/

Fig.2. Simple lock-free protocol.

arrayofunsigned (large)integers. Eachprocesskeeps apointer (new–pqueue)

that points to the block itowns. The process enters aloop (Line 1). Itreads

the pointer using load_Zinked (Line 2), and marks the new version as

inconsistent by setting check [0] to check [1] + 1 (Line 5). It then reads

the old version’s check [11 field (Line 6), copies the version field (Line 7),

and thenreads the check [01 field (Line 8). Ifthetwo counters match(Line 9),

then the copy inconsistent, and the process applies the sequential operation

to the version field (Line 10), and then increments check [11 (Line 11),
indicating that the version is consistent. It then attemptsto reset the pointer

using store_conditional (Line 12). Ifit succeeds, then it sets new_pqueue to
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point to the old version (Line 13) and returns (Line 14). Otherwise, it resumes

the loop,

4.2 Remarks

In architectures such as Digital’s Alpha [Sites 1992], load_ linked is imple-

mented by loading a location into a processor’s cache, and store_ conditional

simply checks whether that cache line has been invalidated. If not, the

store_ conditional succeeds, otherwise it fails. A problem here is that a cache

line can be invalidated for a number of reasons, including timer interrupts,

page faults, and cache overflow. The longer the “window” between a load_ [in-

ked and the corresponding store-conditional, the greater the likelihood of

spurious failure. This window can be narrowed significantly by the following

simple change. After a process has finished updating the new version, it

rereads the pointer (using load_ linked ) and check [o] (Line 16 of Figure 7). If

either has changed, it abandons the operation, but otherwise it applies the

store_ conditional as before. This refinement narrows the “window of vulnera-

bility” during which an interrupt or cache collision will cause the operation to

fail. Notice that only the very last pointer read requires a load_linked.

The protocol does not work if a single block can hold objects of different

type.5 Consider the following execution: P and Q each reads a pointer to a

block b holding an object of type T, Q completes its operation, replacing b

and acquiring ownership. Q then reinitializes b to hold an object of type S.

Now P reads check [11, copies the version, and reads check [01. Because the

counters match, P (correctly) decides that the version is consistent, but

(incorrectly) applies an operation of type T to an object of type S. This
problem can be fixed by having the process reread the pointer after copying

the block, but before reading check [0] (Line 11 in Figure 7). If the pointer

has changed, the process abandons the operation.

This protocol also does not work if compare& swap replaces store_

conditional. Consider the following execution: P and Q each reads a pointer

to a block b, Q completes its operation, replacing b with b‘ and acquiring

ownership of b. Q then completes a second operation, replacing b‘ with b. If

P now does a compare& swap, then it will erroneously install an out-of-

sequence version. Elsewhere [Herlihy 1990], we describe a more complex

protocol in which P “freezes” a block before reading it, ensuring that the

block will not be recycled while the attempt is in progress. As mentioned

above, the resulting protocols are more complex and less efficient than the

ones described here for store_ conditional.
Several additional optimizations are possible. If the hardware provides

a validate operation, then read-only operations can complete with a success-

ful validate instead of a store_conditional. An object may be significantly

smaller than a full block. If programmers follow a convention where

the object’s true size is kept in a fixed location within the block, then the

5 I am grateful to Abdelsalam Heddaya and Himanshu Sinha for this observation
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#define million 1024 * 1024

shared Pqueue_type *object;

int H; /* number of processes */

processo{

int uork = million / N;

int i;

for (i = O; i < work; i++)

{

Pqueue_enq(object, rsndomo);
Pqueue_deq(obj ect);

3
}

Fig.3. Concurrent heap benchmark.

concurrent operation can avoid unnecessary copying. (Our prototypes make

use ofthis optimization.)

4.3 Experimental Results

The lock-free property is best thought of as a kind of fault-tolerance. In

return for extra work (updating a copy instead of updating in place), the

program acquires the abilityto withstand certain failures (unexpected pro-

cess failure or delay). In this section, we present experimental results that

provide a rough measure ofthis additional overhead, and that allow us to

identify and evaluate certain additional techniques that substantially enhance

performance. We will show that a naive implementation of the lock-free

transformation performs poorly, even allowing for the cost of simulated

load-linked and store_conditional, but that adding a simple exponential

backoff dramatically increases throughput.

As described above, we constructed a prototype implementation of a small

priority queue on an Encore Multimax, in C, using simulated load_Zinked

and store–conditional primitives. As a benchmark, we measure the elapsed

time needed for n processes to enqueue and then dequeue 2 ‘o/n items from a

shared 16-element priority queue (Figure 3), where n ranges from 1 to 16. As

a control, we also ran the same benchmark using the same heap implementa-

tion of the priority queue, except that updates were done in place, using an

in-line compiled test-and-test-and-set 6 spin lock to achieve mutual exclusion.

The test-and-test-and-set spin lock is a built-in feature of Encore’s C compiler,

and it represents how most current systems synchronize access to shared

data structures.

When evaluating the performance of these benchmarks, it is important to

understand that they were run under circumstances where timing anomalies

6 A test-and-test-and-set [Rudolph and Segall 1983] loop repeatedly reads the lock until it

observes the lock is free, and then tries the test& set operation.
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Fig. 4. Simple lock-free versus spin-lock

and delays almost never occur. Each process ran on its own dedicated

processor, and the machine was otherwise idIe, ensuring that processes were

likely to run uninterruptedly. The processes repeatedly accessed a small

region of memory, making page faults unlikely. Under these circumstan-

ces, the costs of avoiding waiting are visible, although the benefits are not.

Nevertheless, we chose these circumstances because they best highlight the

inherent costs of our proposal.

In Figare 4, the horizontal axis represents the number of concurrent

processes executing the benchmark, and the vertical axis represents the time

taken (in seconds). The top curve is the time taken using the lock-free
protocol, and the lower curve is the time taken by the spin lock. When

reading this graph, it is important to bear in mind that each point represents

approximately the same amount of work—enqueuing and dequeuing 220

(about a million) randomly-generated numbers. In the absence of memory

contention, both curves would be nearly flat.7

7Concurrent executions are slightly less efficient because the heap’s maximum possible size is a
function of the level of concurrency.
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2 4 6 8 io 12 14 16

Dequeue Average 1.04 2.15 2.86 3.29 3.70 4.01 4.44 !5.23

Enq Average 2.89 4.75 4.79 4.84 5.00 5.19 5.50 5.93

Deq Maximum 5 124 73 83 83 150 98 73

Enq Maximum 2046 3090 1596 2789 5207 4881 2592 178

Fig. 5. Simple lock-free protocol: Number of attempts.

2 4 6 8 10 12 14 16

Dequeue Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Enq Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Deq Maximum 1 30 60 80 60 27 48 58

Enq Maximum 1 122 138 159 216 244 254 282

Fig. 6. Lock-free with backoffi Number of attempts.

The simple lock-free protocol performs much worse than the spin-lock

protocol, even allowing for the inherent inefficiency of the simulated

load-linked and store-conditional primitives. The poor performance of the

lock-free protocol is primarily a result of memory contention. In each protocol,

only one of the n processes is making progress at any given time. In

the spin-lock protocol, it is the process in the critical section, while in the

lock-free protocol, it is the process whose store-conditional will eventually

succeed. In the spin-lock protocol, however, the process outside the critical

section are spinning on cached copies of the lock, and are therefore not

generating any bus traffic. In the lock-free protocol, by contrast, all processes

are generating bus traffic, so only a fraction of the bus bandwidth is dedicated

to useful work.

The simple lock-free protocol has a second weakness: starvation. The

enqueue operation is about 10% slower than the dequeue operation. If

we look at the average number of attempts associated with each process

(Figure 5), we can see that enqueues make slightly more unsuccessful
attempts than dequeues, but that each makes an average of fewer than

six attempts. If we look at the maximum number of attempts (Figure 6),

however, a dramatically different story emerges. The maximum number of

unsuccessful dequeue attempts is in the high thousands, while the maximum

number of enqueue hovers around one hundred. This table shows that star-

vation is indeed a problem, since a longer operation may have difficulty

completing if it competes with shorter operations.

These performance problems have a simple solution. We introduce an

exponential backoff [Anderson 1990; Mellor-Crummey and Scott 1990;

Metcalf and Boggs 1976] between successive attempts (Figure 7). Each

process keeps a dynamically-adjusted maximum delay. When an operation
starts, it halves its current maximum delay (Line 1). Each time an attempt

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 5, November 1993.



758 . Maurice Herlihy

static int max-delay;

int Pqueue_deq(Pqueue_type **Q){

1

2

3

4

5

6

7

8

Pqueue_type *old_pqueue; /* concurrent object */

pqueue_type *old_version, *new_version; /+ seq object */

int i, delay, result;

unsigned first, last;

if (max.delay > 1) max_delay = max_delay / 2;

while (TRTJE) {

9

10
11
12

13

14

15

16

17

18

19

20
21
22

old_pqueue = *Q;

old.version = kold.pqueue–>version;

new_version = &new_pqueue–>version;

first = old_pqueue->check[l];

/* Mark inconsistent,. */

new_pqueue–>check[O] = new_pqueue–>check[l] +1;

memcpy(new_version, old_version, slzeof(pqueue_type) );

/* Make sure version is correctly typed. +/

if (old_pqueue ‘= *Q) {

last = old_pqueue->check[O];
/* Was copy consistent? */

if (first == last) {

result = pqueue_deq(new_version) ;

new_pqueue–>check[l] ++; /* mark consistent */

/+ Narrow window of vulnerability. */

if ((old_pqueue == (Pqueue_type*) load_lmked(Q))

&& (first == old_pqueue->check[O]))

If (store_conditional(Q, new_pqueue)) {

new_pqueue = old_pqueue;

return result;

} /* if */

} /. j.f +/

} /. if ./

/* backoff */

if (max_delay < DELAY_LIMIT) max_delay = 2 * max_delay;

delay = randomo % max_delay;

for (i = O; i < delay; 1++);

/* while +/

/* Pqueue_deq */

Fig.7. Lock-free protocol with backoffand optimizations.

fails, the process doubles the maximum delay, upto afixed limit(Line 20),

and waits for a random duration Iessthan the maximum delay (Lines21 and

22)}

Exponential backoff has a striking effect on performance. As illustrated

in Figure 8, the throughput of the lock-free protocol soon overtakes that of

‘For speed, each process in our prototype uses a precomputed table of random numbers, and
certain arithmetic operations are performed by equivalent bit-wise logical operations
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Fig. 8. The effect of exponential backoff.

the standard spin lock implementation. Moreover, starvation is no longer a

threat. In the typical execution shown in Figure 6, the average number of

attempts is 1.00 (out of 220 operations), and the maximum for enqueues is

reduced by an order of magnitude.

It is well known that spin-locks also benefit from exponential backoff

[Anderson 1990; Mellor-Crummey and Scott 1990]. We replaced the in-line

compiled test-and-test-and-set spin lock with a hand-coded spin lock that

itself employs exponential backoff. Not surprisingly, this protocol has the best

throughput of all when run with dedicated processors, almost twice that of

the lock-free protocol.

In summary, using exponential backoff, the lock-free protocol significantly

outperforms a straightforward spin-lock protocol (the default provided by the

Encore C compiler), and lies within a factor of two of a sophisticated spin-lock

implementation.

4.4 A Wait-Free Protocol

This protocol can be made wait-free by a technique we call operation combin-

ing. When a process starts an operation, it records the call in an invocation

structure (inv–type) whose fields include the operation name (op–name),
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void apply (inv.type aunounce [HAX_PROCS], Pqueue.type *object){

int i;

for (i = 0; i < MAX_PROCS; i.++) {

if (announce [il.toggle != object–>res-types[i] .t.oggle) {

switch (announce[i] .op_name) {

case EI?~_CODE:

object->res-types [i] value =

pqueue_enq(&object->version, announce[i].arg);

break;

case DEQ.CODE:

object->res_types [i] value = pqueue_deq(&object->version) ;

break;

default:

fprintf(stderr, “Unknown operation code\n”);

exit(l);

3; I* switch *I

object–>res.types [i] toggle = announce [i].toggle;

} /* if */

} /* for i */

}

Fig.9. The apply operations.

argument value (arg),g and a toggle bit (toggle) used to distinguish old and

new invocations. When it completes an operation, it records the result in a

response (res–type) structure, whose fields include the result (value) and

toggle bit. Each concurrent object has an additional field: responses is an
n-element array of responses, whose pth element is the result of P’s last

completed operation. The processes share an n-element array announce of

invocations. When P starts an operation, it records the operation name and

argument in announce [P]. Each time a process records a new invocation, it

complements the invocation’s toggle bit.

Await-free dequeue operation appears in Figure 10. (For brevity, we have

omitted the optimizations discussed in Section 4.2.) After performing

the consistency check (Line 12), the apply procedure (Figure 9) scans the

responses and announce arrays, comparing the toggle fields ofcorresponding

invocations and responses. If the bits disagree, then it applies that invoca-

tionto the new version, records the result in the matching position in the
responses array, and complements the refiponse’a toggle bit. After calling

the apply procedure to apply the pending operations to the newversion, the

process calls store_conditional to replace the old version, just as before. To

determine when its own operation incomplete, P compares the toggle bitsof

its invocation with the object’s matching response. It performs this compari-

son twice, rereading the pointer between the first and second comparison. If

9 The argument value could be a pointer to a vector of arguments.
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static Pqueue_type *new_pqueue;

static int max.delay;

static invocation ennounce[MAX_PROCS];

static int P; /* current process id */

int Pqueue_deq(Pqueue_type **Q){

1

2

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

Pqueue_type *old_pqueue;
pqueue_type *old_version, *new_version;

int i., delay, result, new_toggle;
unsigned first, last;

announce[P] .op.name = DEQ_CODE;
new.toggle = announce CP1.toggle = !announce[P1 .toggle;
if (max.delay > 1) max_delay = max_delay >> 1;
while ((*Q)–>responses [P].toggle != new_toggle

II (*Q)->responsesCPl .toggle != new-toggle) {
old_pqueue = load_linked(Q);
old_version = &old_pqueue->version;
new_version = &new_pqueue->version;
first = old_pqueue->check[l];
/* Mark inconsistent. */

new_pqueue->check[O] = new.pqueue->check[l] +l;

memcpy(new_version, old_version, sizeof(pqueue_type) );

last = old_pqueue->check[O];

/* Was copy consistent? */

if (first == last) {

apply(announce, new_pqueue);

new_pqueue->check [11++; /* mark consistent */

if (store_conditional(Q, new_pqueue)) {

new_pqueue = old.pqueue;

return result;

1-
3

1’
1 /* if */

/* backoff */

if (max_delay < DELAY_LIMIT) max_delay = max.delay << 1;

delay = randomo % max_delay;

for (i = O; i < delay; 1++);

/+ while */

Fig. 10. Await-free dequeue operation.

either comparison fails, the operation is still incomplete. This comparison

must be done twice to avoid the following race condition: (1) P reads a

pointer to version v.(2) Qreplaces u with u’. (3) Q starts another operation,

scans announce, applies P’s operation to the new value of U, and stores the
tentative result in u’s response array. (4) P observes that the toggle bits
match and returns. (5) Q fails to install u as the next version, ensuring that

P has returned the wrong result.
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This protocol guarantees that as long as store_ conditional has no spurious

failures, each operation will complete after at most two loop iterations. 10 If

P’s first or second store–conditional succeeds, the operation is complete.

Suppose the first store-conditional fails because process Q executed an

earlier store–conditional, and the second store_ conditional fails because

process Q‘ executed an earlier store–conditional. Q‘ must have scanned the

announce array after Q performed its store_ conditional, but Q performed its

store–conditional after P updated its invocation structure, and therefore Q‘

must have carried out P’s operation and set the toggle bits to agree. The

process applies the termination test repeatedly during any backoff.

We are now ready to explain why sequential operations must be total.

Notice that in the benchmark program (Figure 3), each process enqueues an

item before dequeuing. One might assume, therefore, that no dequeue opera-

tion will ever observe an empty queue. This assumption is wrong. Each

process reads the object version and the announce array as two distinct steps,

and the two data structures may be mutually inconsistent. A slow process

executing a dequeue might observe an empty queue, and then observe an

announce array in which dequeue operations outnumber enqueue operations.

This process’s subsequent store-conditional will fail, but not until the

sequential dequeue operation has been applied to an empty queue. This issue

does not arise in the lock-free protocol.

Figure 11 shows the time needed to complete the benchmark program for

the wait-free protocol. The throughput increases along with concurrency

because the amount of copying per operation is reduced. Nevertheless, there

is a substantial overhead imposed by scanning the announce array, and,

more importantly, copying the version’s responses array with each operation.

As a practical matter, the probabilistic guarantee against starvation provided

by exponential backoff appears preferable to the deterministic guarantee

provided by operation combining.

5. LARGE OBJECTS

In this section, we show how to extend the previous section’s protocols to

objects that are too large to be copied all at once. For large objects, copying

is likely to be the major performance bottleneck. Our basic premise is

that copying should therefore be under the explicit control of the program-

mer, since the programmer is in a position to exploit the semantics of the

application.

A large object is represented by a set of blocks linked by pointers. Sequen-

tial operations of large objects are written in a functional style: an operation

that changes the object’s state does not modify the object in place. Instead,

it constructs and returns a logically distinct version of the object. By logi-

cally distinct, we mean that the old and new versions may in fact share

a substantial amount of memory. It is the programmer’s responsibility

1(’Because spurious fadures are possible, this loop requires an explicit termination test; it cannot
simply count to two.
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Fig, 11. Lock-free versus wait-free.

to choose a sequential implementation that performs as little copying as

possible.

The basic technique is the following. Each process (1) reads the pointer

using load _linked, (2) applies the sequential operation, which returns a

pointer to a new version, and (3) calls store–conditional to swing the pointer

from the old version to the new.

Memory management is slightly more complex. Since an operation may

require allocating multiple blocks of memory, each process owns its own pool

of blocks. When a process creates a new version of the object, it explicitly

allocates new blocks by calling allot, and it explicitly frees old blocks by

calling free. The copy primitive copies the contents of one block to another. If

the attempt succeeds, the process acquires ownership of the blocks it freed

and relinquishes ownership of the blocks it allocated.

A process keeps track of its blocks with a data structure called a recover--

able set (set_ type). The abstract state of a recoverable set is given by three

sets of blocks: committed, allocated, and freed. The set_free operation inserts

a block in freed, and set_alloc moves a block from committed to allocated
and returns its address. As shown in Figure 12, allot calls set_alloc and
marks the resulting block as inconsistent, while free simply calls set–free.
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typeaef struct

{

int free_ptr, alloc_ptr; /* next full & empty slots */
int free_count, alloc_count; /* number of allots & frees */
int size; /* number of committed entries */
int old_free_ptr, old_alloc_ptr; /* reset on abort */
Skew_type *blocks [SET_SIZE]; /* pointers to blocks */

3 set_type;

Object.type *set_alloc(set_type *q){
Object_type *x;
if (q->alloc_count == q->size) {

fprintf(stderr, “allot: wraparound!\n”);
exit(l);

3
x . q->blocks [q–>alloc_ptr] ;

q-~alloc_ptr = (q->alloc_ptr + 1) % SET_SIZE;
q->alloc_count++;
return x;

}

void set_commit(set_type *q){

q->old_alloc.ptr = q->alloc_ptr;

q->old_free_ptr = q->free_ptr;

q->size = q–>size + q–>free_count – q->alloc_count;

q->free_count = q->alloc_count = O;

3

void set_prepare(set_type *q){
int i;
for (i = O; i < q->alloc_count; i++)

q->blocks [q->old_alloc_ptr + i]->check[l]++;

>

Object_type *alloco{

Object_type *s;

s = set_alloc(pool);

s->check[O] = s–>check[l] + 1;

return s;

1

Fig. 12. Part ofarecoverable setimplementatlon.

The recoverable set type provides three additional operations, not explicitly

called by the programmer. Before executing the store_conditional, the pro-

cess calls set–prepare to mark the blocks in allocated as consistent. If the

store_conditional succeeds, it calls set–committo set committed to the union

of freed and committed, and ifitfails, it calls set_abort to set both freed and

allocated tothe empty set.
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It might also be necessary for processes to share a pool of blocks. If a

process exhausts its local pool, it can allocate multiple blocks from the shared

pool, and if it acquires too many blocks, it can return the surplus to the

shared pool. The shared pool should be accessed as infrequently as possible,

since otherwise it risks becoming a contention “hot spot.” Some techniques for

implementing shared pools appear elsewhere [Herlihy 1990]; we did not use a

shared pool in the prototypes shown here.

As in the small object protocol, a process checks for consistency whenever it

copies a block. If the copy is inconsistent, the process transfers control back to

the main loop (e.g., using the Unix Iongjmp).

5,1 Experimental Results

For the examples presented in this section, it is convenient to follow some

syntactic conventions. Because C procedures can return only one result value,

we follow the convention that all sequential operations return a pointer to a

result_type structure containing a value field (e.g., the result of a dequeue)

and a version field (the new state of the object). Instead of treating the

sequential and concurrent objects as distinct data structures, it is convenient

to treat the check array as an additional field of the sequential object, one

that is invisible to the sequential operation.

A skew heap [Sleator and Tarjan 1983] is an approximately-balanced

binary tree in which each node stores an item, and each node’s item is less

than or equal to any item in the subtree rooted at that node. A skew heap

implements a priority queue, and the amortized cost of enqueuing and

dequeuing items in a skew heap is logarithmic in the size of the tree. For our

purposes, the advantage of a skew heap over the conventional heap is that

update operations leave most of the tree nodes untouched.

The skew_meld operation (Figure 13) merges two heaps. It chooses the

heap with the lesser root, swaps its right and left children (for balance), and

then melds the right child with the other heap. To insert item x in h,

skew–enq melds h with the heap containing x alone. To remove an item from

h, skew_deq (Figure 14) removes the item at the root and melds the root’s

left and right subtrees.

We modified the priority queue benchmark of Figure 3 to initialize the

priority queue to hold 512 randomly generated integers.

Figure 15 shows the relative throughput of a lock-free skew heap, a

spin-lock heap with updates in place, and a spin-lock skew heap with updates

in place. The lock-free skew heap and the spin-lock heap are about the same,

and the spin-lock skew heap has almost twice the throughput of the lock-free

skew heap, in agreement with our experimental results for the small object

protocol.

6. CONCLUSIONS

Conventional concurrency control techniques based on mutual exclusion were

originally developed for single-processor machines in which the processor was

multiplexed among a number of processes. To maximize throughput in a
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typedef struct skew. rep {
int value;
int toggle; /* left or right next? */
struct skew. rep *child[2]; /* left ~d right children */

int check[2]; /* insertedby system */

] Skev.type;

/*
Skew.meld assumes its first argument is already copied.

*/

Skew_type *skew_meld(Skew_type *q, *qq){

int toggle;

skew_type *p;

if (!q) return (qq); /* if one is empty, return the other */

if (!qq) return (q);

p = queue_alloc(pool); /* make a copy of q */

Copy(qq, p);

queue_free(pool, qq);

if (q->value > p->value) {

toggle = q->toggle;

q->chlld[togglel = ekew-rneld(p, q->child[togglel);
q->toggle = !toggle;

return q;

} else {

toggle = p->toggle;

p->child[toggle] = skew_meld(q, p->child[toggle]);

p->toggle = !toggle;

return p;

1

3

Fig. 13. Skew heap: The meld operation.

uniprocessor architecture, it suffices to keep the processor busy, In a multi-

processor architecture, however, maximizing throughput is more complex.

Individual processors are often subject to unpredictable delays, and through-

put will sufferif a process capable ofmaking progress is unnecessarily forced

towait for one thatis not.

To address this problem, anumber ofresearchers have investigated wait-

free and lock-free algorithms anddata structures that donotrely on waiting

for synchronization. Much ofthis work has been theoretical. There are two

obstacles to making such an approach practical: conceptual complexity, and

performance. Conceptual complexity refers to the well-known difficulty of

reasoning about the behavior ofconcurrent programs. Any practical method-

ology for constructing highly-concurrent data structures must include some

mechanism for ensuring their correctness. Performance refers totheobserva-

tion that avoiding waiting, like most other kinds of fault-tolerance, incurs a
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result-type *skew-deq(Skew.type *q) {
Skew.type *left, *new-left, *right, buffer;

static result.type r;

r.value = SKEW_EMPTY;

r.version = O;

if (q) {

copy(q, &buffer);

queue_free(pool, q);

r.value = buffer.value;

left = buffer.child[O];

right = buffer.child[l];

if (! left) {

r.version = right;

} else {

new_left = alloc(pool);

copy(left, new_left);

queue_free(pool, left);

r.version = skew_meld(new_left, right);

}

3

return &r;

3

Fig. 14. Skew heap: Thedequeue operation.

cost when it is not needed. For a methodologyto be practical, this overhead

mustbe keptto a minimum.

In the methodology proposed here, we address the issue of conceptual

complexityby proposing that programmers design their data structures in a

stylized sequential manner. Because these programs are sequential, both

formal and informal reasoning are greatly simplified.

We address the issue ofperformance in several ways.

—We observe that the load–linked and store–conditional synchronization

primitives permit significantly simpler and more efficient algorithms than

compare&swap.

—We propose simple and efficient memory management techniques.

—We provide experimental evidence thata naive implementation of alock-

free protocol incurs unacceptable memory contention, but that this con-

tention can be alleviated by applying well-known techniques such as

exponential backoff. Our prototype implementations (using inefficient sim-

ulated synchronization primitives) outperform conventional (“test-and-

test-and-set”) spin-lock implementations, and lie within afactor oftwo or

more sophisticated (exponential backoff) spin-lock implementations.

—For large objects, programmers are free to exercise their ingenuity tokeep
the cost of copying under control. Whenever possible, correctness should

be the responsibility of the system, and performance the responsibility of

the programmer.
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Fig. 15. Large heap throughput,

A promising area for future research concerns how one might exploit

type-specific properties to increase concurrency. Any such approach would

have to sacrifice some of the simplicity of our methodology, since the pro-

grammer would have to reason explicitly about concurrency. Nevertheless,

perhaps one could use our methodology to construct simple concurrent objects

that could be combined to implement more complex concurrent objects, in the

same way that B-link [Lehman and Yao 1981] trees combine a sequence of

low-level atomic operations to implement a single atomic operation at the

abstract level.

As illustrated by Andrews and Schneider’s comprehensive survey [Andrews
and Schneider 1983], most language constructs for shared memory architec-

tures focus on techniques for managing mutual exclusion. Because the trans-

formations described here are simple enough to be performed by a compiler or

preprocessor, it is intriguing to speculate about a programming language

that might support the methodology proposed here. For example, inheritance

might be a convenient way to combine the object fields (e.g., check variables)

used by the run-time system with those introduced by the programmer.

Programming language design raises many complex issues that lie well

beyond the scope of this paper, but the issue merits further attention.
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