Consensus and Reliable Broadcast

The Reliable Broadcast Problem

- **Validity**: If the sender is correct and broadcasts a message \(m \), then all correct processes eventually deliver \(m \).
- **Agreement**: If a correct process delivers a message \(m \), then all correct processes eventually deliver \(m \).
- **Integrity**: Every correct process delivers at most one message, and if it delivers \(m \), then some process must have broadcast \(m \).

The Terminating Reliable Broadcast Problem

- **Termination**: Every correct process eventually delivers some message.
- **Validity**: If a correct process broadcasts a message \(m \), then all correct processes eventually deliver \(m \).
- **Agreement**: If a correct process delivers a message \(m \), then all correct processes eventually deliver \(m \).
- **Integrity**: Every correct process delivers at most one message, and, if it delivers \(m \) \(\neq \text{SF} \), then some process must have broadcast \(m \).

Broadcast

BC: If a process sends a message \(m \), then every process eventually delivers \(m \).

Can we implement this specification if processes can fail?
The Consensus Problem

- **Termination**: Every correct process eventually decides some value.
- **Validity**: If all processes that propose a value propose \(v \), then all correct processes eventually decide \(v \).
- **Agreement**: If a correct process decides \(v \), then all correct processes eventually decide \(v \).
- **Integrity**: Every correct process decides at most one value, and if it decides \(v \neq \text{NU} \), then some process must have proposed \(v \).

Properties of `send(m)` and `receive(m)`

For benign failures:

- **Validity**: If \(p \) sends \(m \) to \(q \), and both \(p \) and \(q \) and the link between them are correct, then \(q \) eventually receives \(m \).
- **Uniform Integrity**: For any message \(m \), \(q \) receives \(m \) at most once from \(p \), and only if \(p \) sent \(m \) to \(q \).

For arbitrary failures:

- **Integrity**: For any message \(m \), if \(p \) and \(q \) are correct then \(q \) receives \(m \) at most once from \(p \), and only if \(p \) sent \(m \) to \(q \).

Questions, Questions…

- Are these problems solvable at all?
- Can they be solved independent of the failure model?
- Does solvability depend on the ratio between faulty and correct processes?
- Does solvability depend on assumptions about the reliability of the network?
- Are the problems solvable in both synchronous and asynchronous systems?
- If a solution exists, how expensive is it?

Plan

Synchronous Systems

- Consensus for synchronous systems with crash failures
- Lower bound on the number of rounds
- Early stopping protocols for Reliable Broadcast
- Reliable Broadcast for arbitrary failures with message authentication
- Lower bound on the ratio of faulty processes for Consensus with arbitrary failures
- Reliable Broadcast for arbitrary failures

Asynchronous Systems

- Impossibility of Consensus for crash failures
Model

- Synchronous Message Passing
 - Execution is a sequence of rounds
 - In each round every process takes a step
 - sends messages to neighbors
 - receives messages sent in that round
 - changes its state
- Network is fully connected (an n-clique)
- No communication failures

A simple algorithm for Consensus

Code for process p_i:

```
Initially $V = \{v\}$

To execute $\text{propose}(v)$
1: send $(v)$ to all

$\text{decide}(v)$ occurs as follows:
2: for all $j$, $0 \leq j \leq n-1$, $j \neq i$ do
3: receive $S_j$ from $p_j$
4: $V = V \cup S_j$
5: $\text{decide } \min(V)$
```

An execution

- v_1, v_2, v_3, v_4
- Round 1
 - p_1, p_2, p_3, p_4
 - p_1, p_2, p_3, p_4
 - v_1, v_2, v_3, v_4
 - v_1, v_2, v_3, v_4

Can p_1 decide

- $v = v_1 = v_3 = v_4$?

Idea

- A process that receives a proposed message in round 1, relays it to others during the next round
- Suppose p_i hasn’t heard from p_j at the end of round 2. Can it decide?
In general…

- Suppose a correct process \(p^* \) has not received all proposals by the end of round \(i \). Can \(p^* \) decide?
- Another process may have received the missing proposal at the end of round \(i \) and be ready to relay it in round \(i + 1 \).

Dangerous Chains

- How many rounds can a dangerous chain span?
 - \(f \) faulty processes
 - at most \(f + 1 \) nodes in the chain
 - spans at most \(f \) rounds

A dangerous chain: The last node in the chain is correct, all others are faulty

It is safe to decide after round \(f + 1 \)

The Algorithm

Code for process \(p_i \):

Initially \(V = \{v_i\} \)

To execute \(\text{propose}(v) \)

round \(k \), \(1 \leq k \leq f+1 \)

1. send \(\{v \in V : p_i \text{ has not already sent } v\} \) to all
2. for all \(j, 0 \leq j \leq n-1, j \neq i \) do
3. receive \(S_j \) from \(p_j \)
4. \(V := V \cup S_j \)

\(\text{decide}(x) \) occurs as follows:

5. if \(k = f+1 \) then
6. \(\text{decide} \min(V) \)

The Algorithm

<table>
<thead>
<tr>
<th>Code for process (p_i):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially (V = {v_i})</td>
</tr>
<tr>
<td>To execute (\text{propose}(v))</td>
</tr>
<tr>
<td>round (k), (1 \leq k \leq f+1)</td>
</tr>
<tr>
<td>1. send ({v \in V : p_i \text{ has not already sent } v}) to all</td>
</tr>
<tr>
<td>2. for all (j, 0 \leq j \leq n-1, j \neq i) do</td>
</tr>
<tr>
<td>3. receive (S_j) from (p_j)</td>
</tr>
<tr>
<td>4. (V := V \cup S_j)</td>
</tr>
<tr>
<td>(\text{decide}(x)) occurs as follows:</td>
</tr>
<tr>
<td>5. if (k = f+1) then</td>
</tr>
<tr>
<td>6. (\text{decide} \min(V))</td>
</tr>
</tbody>
</table>

Termination and Integrity

- **Integrity**
 - **Termination**
 - Every correct process reaches round \(f + 1 \)
 - \(\text{decides} \min(V) \), which is well defined
Validity

- Suppose every process proposes v^*
- Since only crash model, only v^* can be sent
- By Uniform Integrity of send and receive, only v^* can be received
- By protocol, $v = v^*$
- $\min(v) = v^*$
- $\text{decide}(v^*)$

A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in less than $f + 1$ rounds in the presence of f crash failures, if $n \geq f + 2$

- Prove special case $f = 1$ to study proof technique

Agreement

Lemma 1:

For any $r = 1, \ldots, f$, if a process p receives a value v in round r, then there exists a sequence of processes $p_{r_1}, p_{r_2}, \ldots, p_{r_{\ell}}$ such that $p_{r_{\ell}} \neq p$ (protocol p^* is used) and in each round i, $\exists i \geq i \geq 1; p_{r_{i}}$, sends v and $p_{r_{i}}$ receives it. Furthermore, all processes in the sequence are distinct.

Proof:

- Suppose a correct process c in its view V determines a value v^*
- $\text{decide}(v^*)$
- $\forall p \in V$, $\exists v^* \text{ s.t. } \text{decide}(v^*)$

Definition Let \mathcal{E} be an execution and let p_i be a process. The view of p_i in \mathcal{E}, denoted by \mathcal{V}_{p_i}, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of \mathcal{E}. Views
Similarity

Definition Let \(A \) and \(B \) be two executions of consensus and let \(p \) be a correct process in \(A \) and \(B \). Execution \(A \) is similar to execution \(B \) with respect to \(p \), denoted \(A \sim_p B \), if \(A(p) = B(p) \).

Note If \(A \sim_p B \), then \(p \) decides the same value in both executions.

Lemma If \(A \sim_p B \) and \(p \) is correct, then \(\text{dec}(A) = \text{dec}(B) \).

Single-Failure Case

Theorem
There is no algorithm that solves the consensus problem in less than 2 rounds in the presence of 1 crash failure, if \(n \geq 3 \).

The Idea

- Proceed by contradiction:
 - Consider an execution in which each process proposes 0. What is the decision value?
 - Consider another execution in which each process proposes 1. What is the decision value?
 - Show that there is a chain of similar executions that relate the two executions.
 - So what?

The Proof

Definition \(J \) is the admissible execution of the algorithm in which
- no failures occur
- processes \(p_0, \ldots, p_2 \) propose 1.
The Proof - 2

- We want to show that $\mathcal{G}': 0 \rightarrow p \rightarrow \mathcal{G}''$
- Starting from \mathcal{G}, we build a set of executions \mathcal{G}', where $0 \rightarrow p \rightarrow n - 1$, as follows:

\mathcal{G}' is obtained from \mathcal{G} after removing the messages that p_i sends to the j highest numbered processors (excluding itself).

The executions

The Proof - 3: Indistinguishibility

The Terminating Reliable Broadcast Problem

- **Termination**: Every correct process eventually delivers some message
- **Validity**: If a correct process broadcasts a message m, then all correct processes eventually deliver m
- **Agreement**: If a correct process delivers a message m, then all correct processes eventually deliver m
- **Integrity**: Every correct process delivers at most one message, and, if it delivers $m \neq SF$, then some process must have broadcast m
Reliable Broadcast for Benign Failures

Terminates in $f + 1$ rounds
• even if there are no failures!

Can we do better?
• find a protocol whose time complexity is proportional to t—the number of failures that actually occurred—rather than to f—the max number of failures that may occur

What is the danger?

Valid Messages

A message is *valid* if it has the following form:
- in round 1:
 \[< m, \text{sig}(s) > \text{ where } s \text{ is the sender} \]
- in round $r > 1$, if received by p from q:
 \[< \ldots (m, \text{sig}(p)), \text{sig}(p_1), \ldots, \text{sig}(p_r)) > \text{ where} \]
 - $p_1 = \text{sender}$, $p_r = q$
 - $p_1 \ldots p_r$ are distinct from each other and from p
 - message has not been tampered with

\[< \ldots (m, \text{sig}(p_1)), \text{sig}(p_2), \ldots, \text{sig}(p_r)) > : \]
- in round r, p_r said that in round $r - 1$, p_{r-1} said that...
- ... in round 1, p_1 said m

AFMA: The Idea

• A correct process p discard all non-valid messages it receives
• If a message is valid,
 - it “extracts” the value from the message
 - it relays the message, with its own signature appended
• At round $f + 1$:
 - if p extracted exactly one message, delivers it
 - otherwise, delivers SF
AFMA: The Protocol

Termination
- In round \(f + 1 \), every correct process delivers either \(m \) or SF and then halts.

Agreement
- From Agreement and the observation that the sender, if correct, delivers its own message.

Validity
- From Agreement and the observation that the sender, if correct, delivers its own message.

Proof
Let \(r \) be the earliest round in which some correct process extracts \(m \). Let that process be \(p \).
- If \(p \) is the sender, then in round \(r \) sender sends a valid message to all. All correct processes extract message in round 1.
- Otherwise, \(p \) has received a valid message to round \(r \).

Validity
- From Agreement and the observation that the sender, if correct, delivers its own message.

Termination
- In round \(f + 1 \), every correct process delivers either \(m \) or SF and then halts.

Observation
- The sender, if correct, delivers its own message.

Lemma
If a correct process extracts \(m \), then every correct process eventually extracts \(m \).
TRB for Arbitrary Failures

AF: The Idea

- Identify the essential properties of message authentication that made AFMA work
- Implement these properties without using message authentication

TRB for Arbitrary Failures

AF: The Idea

• Introduce two primitives
 - \texttt{broadcast}(p,m,i) (executed by \(p \) in round \(i \))
 - \texttt{accept}(p,m,i) (executed by \(q \) in round \(j \geq i \))
• Give axiomatic definitions of broadcast and accept
• Derive an algorithm that solves TRB for AF using these primitives
• Show an implementation of these primitives that does not use message authentication

Properties of \texttt{broadcast} and \texttt{accept}

• **Correctness** If a correct process \(p \) executes \texttt{broadcast}(p,m,i) in round \(i \), then all correct processes will execute \texttt{accept}(p,m,i) in round \(i \)
• **Unforgeability** If a correct process \(q \) executes \texttt{accept}(p,m,i) in round \(j \geq i \), and \(p \) is correct, then \(p \) did in fact execute \texttt{broadcast}(p,m,i) in round \(i \)
• **Relay** If a correct process \(q \) executes \texttt{accept}(p,m,i) in round \(j \geq i \), then all correct processes will execute \texttt{accept}(p,m,i) by round \(j + 1 \)
AF: The Protocol - 1

Termination

- In round $f+1$, every correct process delivers either m or SF and then halts

Agreement -1

Proof

Let r be the earliest round in which some correct process extracts m. Let that process be p. Then p is executed in round r.

Claim 1: p has accepted m.

Suppose p has not accepted m. Then p has not previously extracted m. Hence m is not delivered by any process in round r. By the claim, m is not delivered in round r.

Claim 2: p has not previously extracted m.

Suppose p has previously extracted m. Then m is delivered by some process q in round r. But q has not previously extracted m. Hence m is not delivered by any process in round r.

Claim 3: p has not previously extracted m.

Suppose p has previously extracted m. Then m is delivered by some process q in round r. But q has not previously extracted m. Hence m is not delivered by any process in round r.

Claim 4: p has not previously extracted m.

Suppose p has previously extracted m. Then m is delivered by some process q in round r. But q has not previously extracted m. Hence m is not delivered by any process in round r.

Claim 5: p has not previously extracted m.

Suppose p has previously extracted m. Then m is delivered by some process q in round r. But q has not previously extracted m. Hence m is not delivered by any process in round r.

Lemma

If a correct process extracts m, then every correct process eventually extracts m.

Agreement -2
Validity

- If the sender is correct, it executes broadcast(s,m,1) in round 1
- By CORRECTNESS, all correct processes execute accept(s,m,1) in round 1 and extract m
- In order to extract a different message m', a process must execute accept(s,m',i) in some round i\(\leq f+1\)
- By UNFORGEABILITY, and because s is correct, no correct process can extract m'
- All correct processes will deliver m

Implementing broadcast and accept

- A process that wants to broadcast m, does so through a series of witnesses
 - Sends m to all
 - Each correct process becomes a witness by relaying m to all
- If a process receives enough witness confirmations, it accepts m

Can we rely on witnesses?

- Only if not too many faulty processes!
- Otherwise, a set of faulty processes could fool a correct process by acting as witnesses of a message that was never broadcast
- How large can be f with respect to n?

Byzantine Generals

- One General, a set of Lieutenants
- General can order Attack or Retreat
- The General may be a traitor
- So may be some of the Lieutenants
- Devise a protocol by which:
 - If G is not a traitor, then all trustworthy L follow G’s battle plan
 - All trustworthy L agree on the battle plan
When can we solve it?

Suppose $n = 3$, and one traitor

A Lower Bound

Theorem
There is no algorithm that solves the terminating reliable broadcast problem for Byzantine failures if $n \leq 3$.

(Lamport, Shostak, and Pease. The Byzantine Generals Problem. ACM TOPLAS, 4 (3), 382-401, 1982)