Today’s Feature Presentation

- simple, not practical algorithm
- exponential number of operations per process
- BUT more practical protocols exist
 - down to $O(n \log^2 n)$ expected operations/ process
 - n-1 resilient

The idea

- Infinite repetition of asynchronous rounds
 - endless broadcast of a-values and b-values
 - two phases per round
 - no termination, but eventual decision
 - during round r, process only handles messages timestamped with round r

Ben Or’s Algorithm

```
1: $a_r$ := input bit; $r \rightarrow 1$
2: repeat forever
3: (phase 1)
4: send $(a_r, r)$ to all
5: Let $A$ be the multiset of the first $n$ $a'$s with timestamp $r$ received
6: if $(3r \in \{0,1\})$ : $\forall a : \exists a'$ $a = a'$ then $b_r = v$
7: else $b_r = \bot$
8: (phase 2)
9: send $(b_r, r)$ to all
10: Let $B$ be the multiset of the first $n$ $b'$s with timestamp $r$ received
11: if $(3r \in \{0,1\})$ : $\forall b : \exists b'$ $b = b'$ then decide$(v)$: $a_r = v$
12: else if $(3r \in \{0,1\})$ : $a_r = b$
13: else $a_r$ := $\$ (is chosen uniformly at random to be 0 or 1)
14: $r := r + 1$
```

Validity

- All identical inputs (i)
- Each process set a-value := i and broadcasts it to all
- Since at most f faulty, every correct process receives at least $n - f$ identical a-values in round 1
- Every correct process sets b-value := i and broadcasts it to all
- Again, every correct process receives at least $n - f$ identical b-values in round 1 and decides i
A Useful Observation

Lemma. For all r, either $b_r \in \{1,4\}$ for all p or $b_r \in \{0,1\}$ for all p.

Proof. By contradiction.
- Suppose p and q reach round r such that $b_p = 0$ and $b_q = 1$.
- From line 8, p receives $n - f$ distinct 0s, q received $n - f$ distinct 1s.
- Then, $2n - 2f$.
- But this implies $n/2$!

 Contradiction

Corollary. It is impossible that two processes p and q decide at round r on different values.

Agreement

- Let r be the first round in which a decision is made.
- Let p be a process that decides in r.
- By the Corollary, no other process can decide on a different value in r.
- To decide, p must have received $n - f$ from distinct processes.
- Every other correct process has received $n/2$ from at least $n - 2f + 1$.
- By lines 11 and 12, every correct process sets its new a-value to for round $r + 1$.
- By the same argument used to prove Validity, every correct process that has not decided \uparrow in round r will do so by the end of round $r + 1$.

Termination I

- Remember that by Validity, if all (correct) processes propose the same value \uparrow in phase 1 of round r, then every correct process decides \uparrow in round r.
- The probability of all processes proposing the same input value (landslide) in round 1 is

$$\Pr[\text{landslide in round 1}] = 1/2^n$$

- What can we say about the following rounds?

Termination II

- In round $r > 1$, the a-values are not necessarily chosen at random!
- By line 12, some process may set its a-value to a non-random value v.
- By the Lemma, however, all non-random values are identical!
- Therefore, in every r there is a positive probability at least $1/2^n$ for a landslide.
- Hence, for any round r:

$$\Pr[\text{landslide at round } r] \geq 1/2^n$$

- Since coin flips are independent:

$$\Pr[\text{no landslide at first } k \text{ rounds}] = (1 - 1/2^n)^k$$

- When $k \rightarrow \infty$, this value is about 0; then, if $k = 2^n$:

$$\Pr[\text{landslide within } k \text{ rounds}] = 1 - (1 - 1/2^n)^{2^n}$$

which converges quickly to 0 as c grows.
Unreliable Failure Detectors for Reliable Distributed Systems

A different approach

- Augment the asynchronous model with an unreliable failure detector for crash failures
- Define failure detectors in terms of abstract properties, not specific implementations
- Identify classes of failure detectors that allow to solve Consensus

The Model

General
- asynchronous system
- processes fail by crashing
- a failed process does not recover

Failure Detectors
- outputs set of processes that it currently suspects to have crashed
- the set may be different for different processes