Failure Detector Properties: Completeness

Strong Completeness
Eventually every process that crashes is permanently suspected by *every* correct process.

Weak Completeness
Eventually every process that crashes is permanently suspected by *some* correct process.

Hard to implement?

Failure Detector Properties: Accuracy

Strong Accuracy
No correct process is ever suspected.

Weak Accuracy
Some correct process is never suspected.

Even weak accuracy hard to realize. So:

Eventual Strong Accuracy
There is a time after which no correct processes is ever suspected.

Eventual Weak Accuracy
There is a time after which some correct processes is never suspected.

Failure Detector Classes

<table>
<thead>
<tr>
<th>Completeness</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Perfect P</td>
<td>Strong S</td>
</tr>
<tr>
<td>Quasi Q</td>
<td>Weak W</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Eventual</td>
<td></td>
</tr>
<tr>
<td>Strong P</td>
<td>Strong S</td>
</tr>
<tr>
<td>Weak Q</td>
<td>Weak W</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 8 classes
- Perfect failure detectors:
 - strong completeness
 - strong accuracy

Reducibility

$T_{\odot \mp \Delta}$ transforms failure detector \odot into failure detector \odot'
- uses \odot to keep variable $output_p$ at every process p
- $output_p$ emulates output of \odot'
- If we can transform \odot into \odot' then:
 - $\odot \geq \odot'$
 - \odot is stronger than \odot', \odot' is weaker than \odot, or \odot is reducible to \odot'
- If $\odot \geq \odot'$ and $\odot' \geq \odot$ then we say that \odot and \odot' are equivalent:
 - $\odot \equiv \odot'$
Simplify, Simplify!

- All weakly complete failure detectors are reducible to strongly complete failure detectors
 \[P \geq Q, \quad S \geq W, \quad \diamond P \geq \diamond Q, \quad \diamond S \geq \diamond W \]

- All strongly complete failure detectors are reducible to weakly complete failure detectors (!
 \[Q \geq P, \quad W \geq S, \quad \diamond Q \geq \diamond P, \quad \diamond W \geq \diamond S \]

Weakly and strongly complete failure detectors are equivalent!

From Weak Completeness to Strong Completeness

Every process \(p \) executes the following:

\begin{verbatim}
output_p := 0
cobegin
 || Task 1: repeat forever
 { p queries its local failure detector module \(D_p \) }
 suspects_p := D_p
 send (p, suspects_p) to all
 || Task 2: when receive(q, suspects_q) from some q
 output_p := (output_p : suspects_q) - {q}
\end{verbatim}

The Theorems

Theorem 1. In asynchronous systems in which processes can use \(W \), Consensus can be solved as long as \(f \leq n - 1 \)

Theorem 2. There is no \(f \)-resilient Consensus protocol using \(\diamond P \) for \(f = n/2 \)

Theorem 3. In asynchronous systems in which processes can use \(\diamond W \), Consensus can be solved as long as \(f < n/2 \)

Theorem 4. A failure detector can solve Consensus only if it satisfies **weak completeness** and **eventual weak accuracy**. It follows that \(\diamond W \) is the weakest failure detector that can solve Consensus.

Solving Consensus Using \(S \)

- \(S \): Strong Completeness, Weak Accuracy
 - at least one correct process \(c \) is never suspected
 - Each process \(p \) has its own failure detector \(D_p \)
 - Input values are chosen from the set \(\{0, 1\} \)
Notation

- We introduce the operators \cdot, \ast, \circ
 - They operate element-wise on vectors whose entries have values from the set $\{0, 1, \bot\}$

\[
\begin{align*}
 v \cdot v &= v \\
 v \ast v &= v \\
 v \circ v &= v \\
 v \cdot w &= v \\
 v \ast w &= v \\
 v \circ w &= v \\
 v \cdot w &= v \\
 v \ast w &= v \\
 v \circ w &= v
\end{align*}
\]

- Given two vectors A and B, we write $A \perp B$ if $A[i] \perp B[i] \implies B[i] \perp \bot$

A Useful Lemma

Lemma 1. After Phase 1 is complete, $V_r \preceq V_p$ for all processes p which complete Phase 1.

Proof.

We show that $F(V_r) = v_r \preceq v_p \preceq v_\bot \implies V_p \preceq V_r$.

1. Let v be the first round when v sees v_r
2. If $v = -\bot$, then $v_r \preceq v_\bot$
3. v will send to all v_p in round r
4. By round accuracy, all correct processes will receive v_r in the next round
5. v has been forwarded $n-1$ times every other process has seen v_r

Solving Consensus using any $D \in S$

Step 1. $V_p(\bot, \ldots, \bot, v_p, \ldots, \bot)$ (a vector of the proposed values)

Step 2. $A_p(\bot, \ldots, \bot, v_p, \ldots, \bot)$

Step 3. (phase 1)

4. for $r_p = 1$ to n.
5. send (r_p, A_p) to all
6. wait until V_p received (r_p, A_p) or $q \neq \bot$.
7. $q^* = V_p$
8. $V_p = V_p \circ (D \text{ received } A_p)$
9. $A_p = V_p \ast A_p$

Step 2

10. send (r, V_r, \bot) to all
11. wait until V_p received (r, V_r, \bot) or $q \neq \bot$
12. $V_r = V_r \circ (D \text{ received } V_r)$

Step 3

13. $V_r = V_r \circ (D \text{ received } V_r)$
14. $V_r = V_r \circ (D \text{ received } V_r)$
15. decide on leftmost non-\bot coordinate of V_r

Two Additional Useful Lemmas

Lemma 2. After Phase 2 is complete, $V_r = V_p$ for all processes p that complete Phase 1.

Proof.

- All processes that have completed Phase 2 have received V_r. Since V_r is the smallest vector, it follows that $V_r(p) = \bot \implies V_r[p] = \bot$, $\forall p$.

- By the definition of V_r, $V_r(\bot) = \bot \implies V_r[p] = \bot$, $\forall p$ after Phase 2.

Lemma 3. $V_r(\bot, \ldots, \bot, \bot, \ldots, \bot, 1)$

Proof. V_r contains its initial value.
Solving Consensus

Theorem. The protocol to the left satisfies Validity, Agreement, and Termination

Proof.
Left as an exercise

A Lower Bound - I

Theorem. Consensus with $\frac{f}{n}P$ needs $f < n/2$

Proof.
- Suppose there exist such a protocol, and n is even
- Divide set of processes in two sets P_1 and P_2 of size $n/2$

A Lower Bound - II

Consider three executions:

1. $P_1 \leftarrow 0; P_2 \leftarrow 1$
 - Detectors work perfectly
 - All processes in P_1 are crashed before they can propose
 - P_1 decides 0 after t_1
2. $P_1 \leftarrow 0; P_2 \leftarrow 1$
 - Detectors make errors
 - All processes in P_1 are crashed before they can propose
 - P_1 decides 0 after time t_2
3. $P_1 \leftarrow 0; P_2 \leftarrow 1$
 - Detectors work perfectly
 - All processes in P_1 are crashed before they can propose
 - P_1 decides 0 after t_1