Global Predicate Detection and Event Ordering

Problem

How to compute predicates over the state of a distributed application

Model

Message passing

Asynchronous System
- No upper bound on message delivery time
- No bound on relative process speeds
- No centralized clock

No failures

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response. The server computes the response (possibly asking other servers) and returns it to the client.
Deadlock

Goal

Design a protocol by which a processor can determine if a set of processors is deadlocked

Real Goal

Design a protocol by which a processor can determine if a given predicate holds in a global state

Any ideas?

Compute Wait-For-Graph!
- Arrow from \(p_i \) to \(p_j \) if \(p_j \) has received a request but has not responded yet

- cycle in WFG
- deadlock
- cycle in WFG

To detect deadlock, use \(p_0 \) to compute WFG of \(p_1, p_2, p_3 \)

The protocol

- \(p_0 \) sends a message to \(p_1, \ldots, p_3 \)
- On receipt of \(p_0 \)'s message, process \(p_i \) replies with state and wait-for info
An execution

Houston, we have a problem...

- Asynchronous system
- How can p_0 synchronize the process of collecting the necessary data?

What do we use time for?

- Synchronize actions
- Order events

Can we order events in a Distributed System?

But first...

Definition: The local history h_p is the sequence of events executed by a processor p.
- h_p^k: prefix that contain the first k events
- h_p^0: initial, empty sequence

Definition: The history H is the set $h_0 \sqcup h_1 \sqcup \ldots \sqcup h_d$.

Definition: e_i^p is the i-th event of processor p. It can be
- a local event
- a send event
- a receive event
Ordering events

- Events in a local history are totally ordered
- For every message \(m \), \(\text{receive}(m) \) is after \(\text{send}(m) \)

Happened before

A binary relation \(\preceq \) defined over events
(Lamport [1978])

1. if \(e_i^k, e_i^l \in h_i \) and \(k < l \), then \(e_i^k \preceq e_i^l \)
2. if \(e_i = \text{send}(m) \) and \(e_j = \text{receive}(m) \), then \(e_i \npreceq e_j \)
3. if \(e_i \npreceq e_j \) and \(e_j \npreceq e_i \) then \(e_i \equiv e_j \)

Space-time diagrams

Given \(H \) and \(\preceq \) we can construct a partially ordered set:
some events cannot be ordered

Runs and consistent runs

Definition: A run is a total ordering of the events in \(H \) that is consistent with the local histories of the processors.

\(h_1, h_2, \ldots, h_n \) is a run

Definition: A run is consistent if the total order imposed in the run is an extension of the partial order induced by \(\preceq \)

Note: A single distributed computation may correspond to several consistent runs
What p_0 sees

A cut C is a subset of the global history H:

$C = h_1^{c_1} \square h_2^{c_2} \square \ldots \square h_n^{c_n}$

There is a 1-1 correspondence between cuts and global states

Consistent Cuts and Consistent Global States

Definition: A cut is consistent if

$\forall e_i, e_j : e_i \in C \iff e_j \in C$

Observation: A consistent cut defines a unique consistent global state

Our task

- Develop a protocol by which a processor can build a consistent cut
- Informally, we want to be able to take a snapshot of the computation
- We will record
 - processor states
 - channel states

Is this cut consistent? NO!
Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions

Snapshot I

Assumptions:
- FIFO channels
- Synchronous system
- Processors timestamp each message with $T(\text{send}(m))$

0: Processor p_0 selects t_{ss}
1: p_0 sends "take a snapshot at t_{ss}" to all processes
2: When clock of p_i reads t_{ss} then p_i
 - Records its local state
 - Starts recording messages received on each incoming channel
 - Stops recording a channel when receives first message with timestamp greater than or equal to t_{ss}
 - Sends an empty message along its outgoing channels

Correctness

Theorem: The protocol produces a consistent cut

Proof: Need to prove $e_j \subseteq C \Rightarrow e_i \subseteq C$

- Property of real time
- Clock condition

Logical Clocks

- A clock that satisfies the Clock Condition is called a logical clock
- Real-time clocks are logical clocks
- Can we implement the Clock Condition in some other way?
Lamport Clocks

- Each process maintains a local variable LC
 $LC(e_i) =$ Value of LC for event e_i

Increment Rules

p
ε_i
ε_i'
$LC(\varepsilon_i') = LC(\varepsilon_i) + 1$

q
ε_j
ε_j'
$LC(\varepsilon_j') = \max(LC(\varepsilon_j), LC(\varepsilon_i)) + 1$

Space-Time Diagrams and Logical Clocks

Houston, we still have a problem…

- How do we choose a “logical” t_{ss} so that the message from p_0 reaches every other process before t_{ss}?

- \textbf{when} $LC = t$ \textbf{do} S
 doesn’t make sense for Lamport clocks
 – they are not dense
No \(t_{ss} \)?

- Send \(\text{take checkpoint at } \) where we assume that \(\) is a value that cannot be reached by applying the update rules of logical clocks

SnapShot II

0: processor \(p_0 \) selects \(\)
1: \(p_0 \) sends "take a snapshot at \(\) to all processes and sets its logical clock to \(\)
2: when clock of \(p \) reads \(\) then \(p \)
 - records its local state \(\)
 - sends an empty message along its outgoing channels
 - starts recording messages received on each incoming channel
 - stops recording a channel when receives first message with timestamp greater than or equal to \(\)

Hallo-ho? Houston?

- Assumption about \(\) requires to bound relative process speed and message delays…

What about asynchrony?

Here Mission Control… we hear you