Global Predicate Detection and Event Ordering

Our Problem
To compute predicates over the state of a distributed application

Model
- Message passing
- No failures
- Two possible timing assumptions:
 1. Synchronous System
 2. Asynchronous System
 - No upper bound on message delivery time
 - No bound on relative process speeds
 - No centralized clock

Clock Synchronization
External Clock Synchronization:
keep processor clock within some maximum deviation from an external time source.
- can exchange of info about timing events of different systems
- can take actions at real-time deadlines
- synchronization within 0.1 ms

Internal Clock Synchronization:
keep processor clocks within some maximum deviation from each other.
- can measure duration of distributed activities that start on one process and terminate on another
- can totally order events that occur on a distributed system
Synchronizion clocks: Take 1

- Assume an upper bound max and a lower bound min on message delivery time
- Guarantee that processes stay synchronized within max - min

Synchronizion clocks: Take 2

- No upper bound on message delivery time...
- ...but lower bound min on message delivery time
- Use timeout maxp to detect process failures
- Slaves send messages to master
- Master averages slaves value; computes fault-tolerant average

 Precision: 4 maxp - min

Clock Synchronization: Take 2

- No upper bound on message delivery time...
- ...but lower bound min on message delivery time
- Use timeout maxp to detect process failures
- Slaves send messages to master
- Master averages slaves value; computes fault-tolerant average

Probabilistic Clock Synchronization (Cristian)

- Master-Slave architecture
- Master is connected to external time source
- Slaves read master’s clock and adjust their own

How accurately can a slave read the master’s clock?
The Idea

- Clock accuracy depends on message roundtrip time
- If roundtrip is small, master and slave cannot have drifted by much!
- Since no upper bound on message delivery, no certainty of accurate enough reading...
- ... but very accurate reading can be achieved by repeated attempts

Asynchronous systems

- Weakest possible assumptions
- Cfr. "finite progress axiom"
- Weak assumptions ⇒ less vulnerabilities
- Asynchronous ≠ slow
- “Interesting” model wrt failures (ah ah ah!)

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response

The server computes the response (possibly asking other servers) and returns it to the client
Deadlock!

Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds

Wait-For Graphs

- Draw arrow from p_i to p_j if p_j has received a request but has not responded yet

Wait-For Graphs

- Draw arrow from p_i to p_j if p_j has received a request but has not responded yet

- Cycle in WFG \Rightarrow deadlock

- Deadlock \Rightarrow cycle in WFG
The protocol

- p_0 sends a message to $p_1 \ldots p_3$
- On receipt of p_0’s message, p_i replies with its state and wait-for info

An execution

An execution

An execution

An execution

Ghost Deadlock!
Houston, we have a problem...
- Asynchronous system
 - no centralized clock, etc. etc.
- Synchrony useful to
 - coordinate actions
 - order events
- Mmmmmhh...

Observation 1:
- Events in a local history are totally ordered

Observation 2:
- For every message m, $\text{send}(m)$ precedes $\text{receive}(m)$

Events and Histories
- Processes execute sequences of events
- Events can be of 3 types: local, send, and receive
- e^i_p is the i-th event of process p
- The local history h_p of process p is the sequence of events executed by process p
 - h^k_p: prefix that contains first k events
 - h^0_p: initial, empty sequence
- The history H is the set $h_{p_0} \cup h_{p_1} \cup \ldots \cup h_{p_{n-1}}$

 NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

Ordering events
- Observation 1:
 - Events in a local history are totally ordered

- Observation 2:
 - For every message m, $\text{send}(m)$ precedes $\text{receive}(m)$

Happened-before (Lamport[1978])
- A binary relation \rightarrow defined over events
 1. if $e^k_i, e^l_i \in h_i$ and $k < l$, then $e^k_i \rightarrow e^l_i$
 2. if $e_i = \text{send}(m)$ and $e_j = \text{receive}(m)$
 then $e_i \rightarrow e_j$
 3. if $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$
Space-Time diagrams

A graphic representation of a distributed execution
Space-Time diagrams

A graphic representation of a distributed execution

H and \(\rightarrow\) impose a partial order
Runs and Consistent Runs

- A run is a total ordering of the events in H that is consistent with the local histories of the processors.
- Ex: \(h_1, h_2, \ldots, h_n \) is a run.
- A run is consistent if the total order imposed in the run is an extension of the partial order induced by \(\rightarrow \).
- A single distributed computation may correspond to several consistent runs!

Cuts

A cut \(C \) is a subset of the global history of \(H \)
\[
C = h_1^{c_1} \cup h_2^{c_2} \cup \ldots h_n^{c_n}
\]

The frontier of \(C \) is the set of events
\[
e_1^{c_1}, e_2^{c_2}, \ldots e_n^{c_n}
\]

Global states and cuts

- The global state of a distributed computation is an n-tuple of local states
 \[
 \Sigma = (\sigma_1, \ldots \sigma_n)
 \]
- To each cut \((c_1 \ldots c_n)\) corresponds a global state \((\sigma_1^{c_1}, \ldots \sigma_n^{c_n})\)
Consistent cuts and consistent global states

A cut is consistent if
\[\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C \]

A **consistent global state** is one corresponding to a consistent cut

What \(p_0 \) sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by \(p_3 \) but not the corresponding send event

Our task

- Develop a protocol by which a processor can build a consistent global state.
- Informally, we want to be able to take a snapshot of the computation.
- Not obvious in an asynchronous system...
Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each message timestamped with $T(send(m))$

Snapshot I

1. p_0 selects t_{ss}
2. p_0 sends "take a snapshot at t_{ss}" to all processes
3. when clock of p_i reads t_{ss} then p_i
 a. records its local state σ_i
 b. starts recording messages received on each of incoming channels
 c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Theorem

Snapshot I produces a consistent cut

Proof

Need to prove $e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

- $e_j \in C \land T(e_j) < t_{ss}$
- $T(e_i) < t_{ss}$
- $e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$
- $T(e_i) < T(e_j)$

- $e_i \in C$
Clock Condition

< Property of real time>
4. \(e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)\)

Can the Clock Condition be implemented some other way?

Lamport Clocks

Each process maintains a local variable \(LC\):

\[LC(e) \equiv \text{value of } LC \text{ for event } e \]

Increment Rules

\[LC(e_{p+1}) = LC(e_p) + 1 \]

\[LC(e_q) = \max(LC(e_q^{i-1}), LC(e_p)) + 1 \]

Timestamp \(m\) with \(TS(m) = LC(send(m))\)
A subtle problem

when $LC = t$ do S doesn’t make sense for Lamport clocks!

- there is no guarantee that LC will ever be t
- S is anyway executed after $LC = t$

Fixes:

- if e is internal/send and $LC = t - 2$
 - execute e and then S
- if $e = \text{receive}(m) \land (TS(m) \geq t) \land (LC \leq t - 1)$
 - put message back in channel
 - re-enable e; set $LC = t - 1$; execute S

An obvious problem

- No t_{ss}!
- Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmmhhhh...

An obvious problem

- No t_{ss}!
- Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmmhhhh...

Doing so assumes

- upper bound on message delivery time
- upper bound relative process speeds

We better relax it...
Snapshot II

- Processor \(p_0 \) selects \(\Omega \).
- \(p_0 \) sends "take a snapshot at \(\Omega \)" to all processes and sets its logical clock to \(\Omega \).
- When clock of \(p_i \) reads \(\Omega \) then \(p_i \):
 - Records its local state \(\sigma_i \).
 - Sends an empty message along its outgoing channels.
 - Starts recording messages received on each incoming channel.
 - Stops recording a channel when receives first message with timestamp greater than or equal to \(\Omega \).

Snapshot III

- Processor \(p_0 \) sends itself "take a snapshot" when receives "take a snapshot" for the first time from \(p_i \):
 - Records its local state \(\sigma_i \).
 - Sends "take a snapshot" along its outgoing channels.
 - Sets channel from \(p_i \) to empty.
 - Starts recording messages received over each of its other incoming channels.
- When \(p_i \) receives "take a snapshot" beyond the first time from \(p_k \):
 - Stops recording channel from \(p_k \).
- When \(p_i \) has received "take a snapshot" on all channels, it sends collected state to \(p_0 \) and stops.

Relaxing synchrony

- Use empty message to announce snapshot!

Snapshots: a perspective

- The global state \(\Sigma^* \) saved by the snapshot protocol is a consistent global state.
Snapshots: a perspective

- The global state \(\Sigma^* \) saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
 - a distributed computation provides only a partial order of events
 - many total orders (runs) are compatible with that partial order
 - all we know is that \(\Sigma^* \) could have occurred

An Execution and its Lattice
An Execution and its Lattice
An Execution and its Lattice

$p_1 \quad e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5 \quad e_6$

$p_2 \quad e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5 \quad e_6$

An Execution and its Lattice

Recognize the graphical representation of an execution and its lattice, with arrows indicating the progression and dependencies between elements.
Reachability

Σ^k_l is reachable from Σ^{i_j} if there is a path from Σ^k_l to Σ^{i_j} in the lattice.

Σ^{i_j} is reachable from Σ^k_l if there is a path from Σ^k_l to Σ^{i_j} in the lattice.
So, why do we care about Σ^S again?

- Deadlock is a **stable property**
 - Deadlock $\Rightarrow \square$ Deadlock
- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \leadsto_R \Sigma^f$
- Deadlock in Σ^s implies deadlock in Σ^f
- No deadlock in Σ^s implies no deadlock in Σ^i