Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation.
 (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

Observations: a few observations

- An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

- An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

- An observation puts no constraint on the order in which the monitor receives notifications
Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications.

To obtain a run, messages must be delivered to the monitor in FIFO order.

Causal delivery

FIFO delivery guarantees:

\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:

\[\text{send}_i(m) \rightarrow \text{send}_j(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:
\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:
\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:
\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:
\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal Delivery in Synchronous Systems

We use the upper bound \(\Delta \) on message delivery time.

Causal Delivery in Synchronous Systems

We use the upper bound \(\Delta \) on message delivery time.

Causal Delivery with Lamport Clocks

DR1: At time \(t, p_0 \) delivers all received messages with timestamp up to \(t - \Delta \) in increasing timestamp order.
Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

p_0 \[\overset{1}{\rightarrow} \]

Problem: Lamport Clocks don’t provide gap detection

Given two events e and e' and their clock values $LC(e)$ and $LC(e')$—where $LC(e) < LC(e')$—determine whether some event e'' exists s.t. $LC(e) < LC(e'') < LC(e')$

Causal Delivery with Lamport Clocks

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

p_0 \[\overset{1}{\rightarrow} \overset{4}{\rightarrow} \]

Should p_0 deliver?

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by p is stable at p if p will never receive a future message m' s.t.

$TS(m') < TS(m)$
Implementing Stability

- Real-time clocks
 - wait for Δ time units

- Lamport clocks
 - wait on each channel for m s.t. $TS(m) > LC(e)$

- Design better clocks!

Clocks and STRONG Clocks

- Lamport clocks implement the clock condition:
 $e \rightarrow e' \Rightarrow LC(e) < LC(e')$

- We want new clocks that implement the strong clock condition:
 $e \rightarrow e' \equiv SC(e) < SC(e')$

Causal Histories

- The causal history of an event e in (H, \rightarrow) is the set
 $\theta(e) = \{e' \in H \mid e' \rightarrow e\} \cup \{e\}$
Causal Histories

The causal history of an event e in (H, \rightarrow) is the set
\[\theta(e) = \{ e' \in H \mid e' \rightarrow e \} \cup \{ e \} \]

How to build $\theta(e)$

Each process p_i:

- initializes θ : $\theta := \emptyset$
- if e_i^k is an internal or send event, then
 \[\theta(e) := \{ e_i^k \} \cup \theta(e_i^{k-1}) \]
- if e_i^k is a receive event for message m, then
 \[\theta(e) := \{ e_i^k \} \cup \theta(e_i^{k-1}) \cup \theta(\text{send}(m)) \]

Pruning causal histories

- Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
- Use a more clever way to encode $\theta(e)$
Vector Clocks

- Consider $\theta_1(e)$, the projection of $\theta(e)$ on p_i.
- $\theta_1(e)$ is a prefix of h^i: $\theta_1(e) = h^i_k$ - it can be encoded using k_i.
- $\theta(e) = \theta_1(e) \cup \theta_2(e) \cup \ldots \cup \theta_n(e)$ can be encoded using k_1, k_2, \ldots, k_n.

Represent θ using an n-vector VC such that

$VC(e)[i] = k \iff \theta_1(e) = h^i_k$.

Update rules

- $VC(e_i)[i] := VC[i] + 1$.
- $VC(e_i) := \max(VC, TS(m))$.
- Message m is timestamped with $TS(m) = VC(send(m))$.

Example

Operational interpretation

$$VC(e_i)[i] =$$
$$VC(e_i)[j] =$$
VC properties: event ordering

Given two vectors V and V', less than is defined as:

$V < V' \equiv (V \neq V') \wedge (\forall k: 1 \leq k \leq n : V[k] \leq V'[k])$

- **Strong Clock Condition**: $e \rightarrow e' \equiv VC(e) \leq VC(e')$

- **Simple Strong Clock Condition**: Given e_i of p_i and e_j of p_j, where $i \neq j$

 $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$

- **Concurrency**

 Given e_i of p_i and e_j of p_j, where $i \neq j$

 $e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \wedge (VC(e_i)[j] > VC(e_i)[j])$

VC properties: consistency

- **Pairwise inconsistency**

 Events e_i of p_i and e_j of p_j ($i \neq j$) are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if

 $(VC(e_i)[i] < VC(e_j)[i]) \vee (VC(e_j)[j] < VC(e_i)[j])$

- **Consistent Cut**

 A cut defined by (e_1, \ldots, e_n) is consistent if and only if

 $\forall i, j : 1 \leq i \leq n, 1 \leq j \leq n : (VC(e_i)[i] \geq VC(e_j)[i])$
VC properties: weak gap detection

\(\text{Weak gap detection} \)

Given \(e_i \) of \(p_i \) and \(e_j \) of \(p_j \), if \(VC(e_i)[k] < VC(e_j)[k] \)
for some \(k \neq j \), then there exists \(e_k \) s.t.
\((e_k \rightarrow e_i) \land (e_k \rightarrow e_j) \)

VCs for Causal Delivery

\(\text{Each process increments the local component of its VC only for events that are notified to the monitor} \)

\(\text{Each message notifying event } e \text{ is timestamped with } VC(e) \)

\(\text{The monitor keeps all notification messages in a set } M \)
Stability

Suppose \(p_0 \) has received \(m_j \) from \(p_j \).
When is it safe for \(p_0 \) to deliver \(m_j \)?

- There is no earlier message in \(M \)
 \[\forall m \in M : \neg (m \rightarrow m_j) \]

Checking for \(m''_k \)

- Let \(m'_k \) be the last message \(p_0 \) delivered from \(p_k \)
- By strong gap detection, \(m''_k \) exists only if
 \[TS(m'_k)[k] < TS(m_j)[k] \]
- Hence, deliver \(m_j \) as soon as
 \[\forall k : TS(m'_k)[k] \geq TS(m_j)[k] \]
The protocol

� p_0 maintains an array $D[1, \ldots, n]$ of counters

_stub $D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

DR3: Deliver m from p_j as soon as both of the following conditions are satisfied:

1. $D[j] = TS(m)[j] - 1$
2. $D[k] \geq TS(m)[k], \forall k \neq j$