The Algorithm

Code for process p_i:

Initially $V=\{v_i\}$
To execute propose(v_i)
round k, $1 \leq k \leq f+1$
1: send $\{v \in V : p_j \text{ has not already sent } v\}$ to all
2: for all j, $0 \leq j \leq n-1$, $j \neq i$ do
3: receive S_j from p_j
4: $V := V \cup S_j$

decide(x) occurs as follows:
5: if $k = f+1$ then
6: decide min(V)

Termination and Integrity

Termination

Every correct process reaches round $f+1$
Decides on min(V) --- which is well defined

Integrity

At most one value:
- one decide, and min(V) is unique

Only if it was proposed:
- To be decided upon, must be in V at round $f+1$
- if value $= x_0$, then it is proposed in round 1
- else, suppose received in round k. By induction:
 - $k = j+1$
 - by Uniform Integrity of underlying send and receive, it must have been sent in round $k!$
 - by the protocol and because only crash failures, it must have been proposed
- Induction Hypothesis: all values received up to round $k = j$ have been proposed
 - $k = j+1$
 - sent in round $j+1$ (Uniform Integrity of send and synchronous model)
 - must have been part of V of sender at end of round j
 - by protocol, must have been received by sender by end of round j
 - by induction hypothesis, must have been proposed

Validity

Initially $V=\{v_i\}$
To execute propose(v_i)
round k, $1 \leq k \leq f+1$
1: send $\{v \in V : p_j \text{ has not already sent } v\}$ to all
2: for all j, $0 \leq j \leq n-1$, $j \neq i$ do
3: receive S_j from p_j
4: $V := V \cup S_j$

decide(x) occurs as follows:
5: if $k = f+1$ then
6: decide min(V)

Validity

Suppose every process proposes v^*
Since only crash model, only v^* can be sent
By Uniform Integrity of send and receive, only v^* can be received
By protocol, $V=\{v^*\}$
min(V) = v^*
decide(v^*)
Lemma 2:
For any r ≥ 1, if a process p receives a value v in round r, then there exists a sequence of processes P₀, P₁, ..., Pᵣ such that P₀ = v's proponent, Pᵣ = p and in each round k, 1 ≤ k ≤ r, Pₖ₋₁ sends v and Pₖ receives it. Furthermore, all processes in the sequence are distinct.

Proof
By induction on the length of the sequence
A Lower Bound

Theorem
There is no algorithm that solves the consensus problem in less than \(f + 1 \) rounds in the presence of \(f \) crash failures, if \(n \geq f + 2 \).

We consider a special case \((f = 1) \) to study proof technique.

Views
Let \(\alpha \) be an execution. The view of process \(p_i \) in \(\alpha \), denoted by \(\alpha|p_i \), is the subsequence of computation and message receive events that occur in \(p_i \) together with the state of \(p_i \) in the initial configuration of \(\alpha \).

Similarity
Definition Let \(\alpha_1 \) and \(\alpha_2 \) be two executions of consensus and let \(p_i \) be a correct process in both \(\alpha_1 \) and \(\alpha_2 \). Execution \(\alpha_1 \) is similar to execution \(\alpha_2 \) with respect to \(p_i \), denoted \(\alpha_1 \sim p_i \alpha_2 \) if \(\alpha_1|p_i = \alpha_2|p_i \).

Note If \(\alpha_1 \sim p_i \alpha_2 \) then \(p_i \) decides the same value in both executions.
Similarity

Definition Let \(\alpha_1 \) and \(\alpha_2 \) be two executions of consensus and let \(p_i \) be a correct process in both \(\alpha_1 \) and \(\alpha_2 \). Execution \(\alpha_1 \) is similar to execution \(\alpha_2 \) with respect to \(p_i \), denoted \(\alpha_1 \sim_{p_i} \alpha_2 \) if \(\alpha_1[p_i] = \alpha_2[p_i] \).

Note If \(\alpha_1 \sim_{p_i} \alpha_2 \) then \(p_i \) decides the same value in both executions.

Lemma If \(\alpha_1 \sim_{p_i} \alpha_2 \) and \(p_i \) is correct, then \(\text{dec}(\alpha_1) = \text{dec}(\alpha_2) \).

Similarity

Definition Let \(\alpha_1 \) and \(\alpha_2 \) be two executions of consensus and let \(p_i \) be a correct process in both \(\alpha_1 \) and \(\alpha_2 \). Execution \(\alpha_1 \) is similar to execution \(\alpha_2 \) with respect to \(p_i \), denoted \(\alpha_1 \sim_{p_i} \alpha_2 \) if \(\alpha_1[p_i] = \alpha_2[p_i] \).

Note If \(\alpha_1 \sim_{p_i} \alpha_2 \) then \(p_i \) decides the same value in both executions.

Lemma If \(\alpha_1 \sim_{p_i} \alpha_2 \) and \(p_i \) is correct, then \(\text{dec}(\alpha_1) = \text{dec}(\alpha_2) \).

Single-Failure Case

There is no algorithm that solves the consensus problem in less than two rounds in the presence of one crash failure, if \(n \geq 3 \).
The Idea

By contradiction

Consider a one-round execution in which each process proposes 0. What is the decision value?
Consider another one-round execution in which each process proposes 1. What is the decision value?
Show that there is a chain of similar executions that relate the two executions.

So what?

Adjacent α^is are similar!

Starting from α^i, we build a set of executions α^i_j where $0 \leq j \leq n-1$ as follows:

α^i_j is obtained from α^i after removing the messages that p_i sends to the j-th highest numbered processors (excluding itself)

The executions
Indistinguishability

p_0 1
p_{i-1} 1
p_i 0
p_{i+1} 0
p_{n-1} 0

α^2
α_0

Indistinguishability

p_0 1
p_{i-1} 1
p_i 0
p_{i+1} 0
p_{n-1} 0

α^i
α_0

Indistinguishability

p_0 1
p_{i-1} 1
p_i 0
p_{i+1} 0
p_{n-1} 0

α^2
α_0

Indistinguishability

p_0 1
p_{i-1} 1
p_i 0
p_{i+1} 0
p_{n-1} 0

α^i
α_0

Indistinguishability

p_0 1
p_{i-1} 1
p_i 0
p_{i+1} 0
p_{n-1} 0

α^n
α_{n-1}
Indistinguishability

\begin{align*}
\beta_0 \\ \beta_{n-2} \\ \beta_{n-3}
\end{align*}
Indistinguishability

Terminating Reliable Broadcast

Termination
Every correct process eventually delivers some message

Validity
If the sender is correct and broadcasts a message \(m \), then all correct processes eventually deliver \(m \)

Agreement
If a correct process delivers a message \(m \), then all correct processes eventually deliver \(m \)

Integrity
Every correct process delivers at most one message, and if it delivers \(m \neq SF \), then some process must have broadcast \(m \)

TRB for benign failures

Terminates in \(f + 1 \) rounds

How can we do better?

- Find a protocol whose round complexity is proportional to \(f \) — the number of failures that actually occurred rather than to \(f \) — the max number of failures that may occur.
Early stopping: the idea

Suppose processes can detect the set of processes that have failed by the end of round i.

Call that set $\text{faulty}(p, i)$.

If $|\text{faulty}(p, i)| < i$ there can be no active dangerous chains, and p can safely deliver SF.

Termination

Let $|\text{faulty}(p, k)|$ be the set of processes that have failed to send a message to p in any round $1 \ldots k$.

1. If p is sender then value := m else value := null.

Process p in round $k, 1 \leq k \leq f+1$.

2. Send value to all.
3. If value $\neq ?$ then halt.
4. Receive round k values from all.
5. $|\text{faulty}(p, k)| := |\text{faulty}(p, k - 1)| \cup \{q | p \text{ received no value from } q \text{ in round } k\}$.
6. If received value $v \neq ?$ then
7. value := v.
8. deliver(value).
9. else if $k = f+1$ or $|\text{faulty}(p, k)| < k$ then
10. value := SF.
11. deliver(value).
12. if $k = f+1$ then halt.

Early Stopping: The Protocol

Let $|\text{faulty}(p, k)|$ be the set of processes that have failed to send a message to p in any round $1 \ldots k$.

1. If p is sender then value := m else value := null.

Process p in round $k, 1 \leq k \leq f+1$.

2. Send value to all.
3. If value $\neq ?$ then halt.
4. Receive round k values from all.
5. $|\text{faulty}(p, k)| := |\text{faulty}(p, k - 1)| \cup \{q | p \text{ received no value from } q \text{ in round } k\}$.
6. If received value $v \neq ?$ then
7. value := v.
8. deliver(value).
9. else if $k = f+1$ or $|\text{faulty}(p, k)| < k$ then
10. value := SF.
11. deliver(value).
12. if $k = f+1$ then halt.

Termination

Let $|\text{faulty}(p, k)|$ be the set of processes that have failed to send a message to p in any round $1 \ldots k$.

1. If in any round a process receives a value, then it delivers the value in that round.
2. If a process has received only "$?" for $f+1$ rounds, then it delivers SF in round $f+1$.

If in any round a process receives a value, then it delivers the value in that round.

If a process has received only "$?" for $f+1$ rounds, then it delivers SF in round $f+1$.

Termination
Validity

Let \(\text{faulty}(p,k) \) be the set of processes that have failed to send a message to \(p \) in any round \(1 \ldots k \).

1. If \(p = \text{sender} \) then value := \(m \), else value := ?

Process \(p \) in round \(k, 1 \leq k < f+1 \)
2. Send value to all
3. If value \(= ? \) then halt
4. Receive round \(k \) values from all
5. \(\text{faulty}(p,k) = \text{faulty}(p,k-1) \cup \{ q | p \text{ received no value from } q \text{ in round } k \} \)
6. If received value \(v \neq ? \) then
7. \(\text{value} := v \)
8. Deliver(value)
9. Else if \(k = f+1 \) or \(|\text{faulty}(p,k)| < k \) then
10. \(\text{value} := \text{SF} \)
11. Deliver(value)
12. If \(k = f+1 \) then halt

Validity

If the sender is correct then it sends \(m \) to all in round 1.

By Validity of the underlying send and receive, every correct process will receive \(m \) by the end of round 1.

Agreement - 1

Lemma 1
For any \(r \geq 1 \), if a process \(p \) delivers \(m = \text{SF} \) in round \(r \), then there exists a sequence of processes \(P_0, P_1, \ldots, P_r \) such that \(P_0 = \text{sender} \), \(P_r = p \), and in each round \(k, 1 \leq k < r \), \(P_k \) sent \(m \) and \(P_{k+1} \) received it. Furthermore, all processes in the sequence are distinct, unless \(r = 1 \) and \(P_0 = P_1 = \text{sender} \).

Process \(p \) in round \(k, 1 \leq k < f+1 \)
2. Send value to all
3. If value \(= ? \) then halt
4. Receive round \(k \) values from all
5. \(\text{faulty}(p,k) = \text{faulty}(p,k-1) \cup \{ q | p \text{ received no value from } q \text{ in round } k \} \)
6. If received value \(v \neq ? \) then
7. \(\text{value} := v \)
8. Deliver(value)
9. Else if \(k = f+1 \) or \(|\text{faulty}(p,k)| < k \) then
10. \(\text{value} := \text{SF} \)
11. Deliver(value)
12. If \(k = f+1 \) then halt

Agreement - 2

Lemma 2
For any \(r \geq 1 \), if a process \(p \) sets value to \(\text{SF} \) in round \(r \), then there exist some \(j \leq r \) and a sequence of distinct processes \(q_j, q_{j+1}, \ldots, q_r = p \) such that \(q_j \) only receives \(? \) in rounds \(1 \) to \(j \), \(|\text{faulty}(q_j,j)| < j \), and in each round \(k, 1 \leq k < r \), \(q_k \) sends \(\text{SF} \) to \(q_j \) and \(q_j \) receives \(\text{SF} \).

Process \(p \) in round \(k, 1 \leq k < f+1 \)
2. Send value to all
3. If value \(= ? \) then halt
4. Receive round \(k \) values from all
5. \(\text{faulty}(p,k) = \text{faulty}(p,k-1) \cup \{ q | p \text{ received no value from } q \text{ in round } k \} \)
6. If received value \(v \neq ? \) then
7. \(\text{value} := v \)
8. Deliver(value)
9. Else if \(k = f+1 \) or \(|\text{faulty}(p,k)| < k \) then
10. \(\text{value} := \text{SF} \)
11. Deliver(value)
12. If \(k = f+1 \) then halt

Lemma 3
It is impossible for \(p \) and \(q \), not necessarily correct or distinct, to set value in the same round \(r \) to \(m \) and \(\text{SF} \), respectively.
Let |faulty(p)| be the set of processes that have failed to send a message to p in any round 1 \ldots k.
1. if p = sender then value := m else value := SF

Process p in round k, 1 \leq k \leq f + 1:
2. send value to all
3. if value \neq m then halt
4. receive round k values from all
5. |faulty(p)| := |faulty(p) - \{q\} | p received no value from q in round k
6. if received value v \neq m then halt
7. value := v
8. deliver(value)
9. else if k = f + 1 or |faulty(p)| < k then
10. value := SF
11. deliver(value)
12. if k = f + 1 then halt

Proof

By contradiction
Suppose p and q set value = m and q sets value = SF.
By Lemmas 1 and 2 there exist
\(p_0, \ldots, p_r\)
\(q_j, \ldots, q_r\)
with the appropriate characteristics.
Since \(q_j\) did not receive m from process \(p_{k-1}\), 1 \leq k \leq j in round k,
\(q_j\) must conclude that \(p_0, \ldots, p_{j-1}\)
are all faulty processes.
But then, |faulty(p_j)| \geq j
CONTRADICTION

Lemma 3
It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively.

Let |faulty(p)| be the set of processes that have failed to send a message to p in any round 1 \ldots k.
1. if p = sender then value := m else value := SF

Process p in round k, 1 \leq k \leq f + 1:
2. send value to all
3. if value \neq m then halt
4. receive round k values from all
5. |faulty(p)| := |faulty(p) - \{q\} | p received no value from q in round k
6. if received value v \neq m then halt
7. value := v
8. deliver(value)
9. else if k = f + 1 or |faulty(p)| < k then
10. value := SF
11. deliver(value)
12. if k = f + 1 then halt

Proof

If no correct process ever receives m, then every correct process delivers SF in round f + 1.

Let r be the earliest round in which a correct process delivers value = SF.
1. By Lemma 3, no correct process can set value differently in round r.
2. In round r + 1 \leq f + 1, that correct process sends its value to all.
3. Every correct process receives and delivers the value in round r + 1 = f + 1.
4. By Lemma 1, there exist a sequence \(p_0, \ldots, p_f\).
5. Consider processes \(p_0, \ldots, p_f\) distinct processes
6. Since p_0 \neq p_f,
7. To send v in round r + 1, p_0 must have set its value to v and delivered v in round r < r.

Integrity

Let |faulty(p)| be the set of processes that have failed to send a message to p in any round 1 \ldots k.
1. if p = sender then value := m else value := SF

Process p in round k, 1 \leq k \leq f + 1:
2. send value to all
3. if value \neq m then halt
4. receive round k values from all
5. |faulty(p)| := |faulty(p) - \{q\} | p received no value from q in round k
6. if received value v \neq m then halt
7. value := v
8. deliver(value)
9. else if k = f + 1 or |faulty(p)| < k then
10. value := SF
11. deliver(value)
12. if k = f + 1 then halt
Integrity

Let \(|f_{\text{faulty}}(p,k)| \) be the set of processes that have failed to send a message to \(p \) in any round \(1 \ldots k \):

1. If \(p = \text{sender} \) then value := \(m \) else value := ?

Process \(p \) in round \(k \), \(1 \leq k \leq f+1 \):

2. Send value to all
3. If value = ? then halt
4. Receive round \(k \) values from all
5. If \(k = f+1 \) or \(|f_{\text{faulty}}(p,k)| \leq k \) then halt
6. If received value \(v \) = ? then
7. value := v
8. deliver(value)
9. Else if \(k = f+1 \) or \(|f_{\text{faulty}}(p,k)| < k \) then
10. value := SF
11. deliver(value)
12. If \(k = f+1 \) then halt