
1

CS395T: Design/Implementation of Trusted Servers

Byzantine Quorum Systems

by

Anurag Agarwal

CS395T: Design/Implementation of Trusted Servers

Courtesy : From
Byzantine Agreement to
Practical survivability

D. Malkhi

CS395T: Design/Implementation of Trusted Servers

System Model

 Universe U of servers |U| = n
 Quorum system
 Byzantine faulty servers

 Modeled as fail-prone system


 Some contains all the faulty servers

 Initially clients assumed to be correct
 Point to point authenticated and reliable

asynchronous channel

[MR98]

CS395T: Design/Implementation of Trusted Servers

Access Protocol

 Each server stores value v and timestamp T
 Client c chooses timestamps from set Tc

 For clients c and c’, Tc and Tc’ don’t intersect

 Write (v)
 Query servers to get a set A of timestamps for

some quorum Q
 Choose a timestamp t in Tc greater than highest in

A and greater than any of its previous timestamps
 Send update <v,t> to servers until

acknowledgement from some quorum Q’ is
received

2

CS395T: Design/Implementation of Trusted Servers

Access Protocol

 Read()
 Query servers to obtain value/timestamp pairs A

for some quorum Q

 Applies a deterministic function “Result(A)” to
obtain the result of read operation

 “Result” function
 Depends on the type of quorum systems

 Chosen to guarantee safe semantics

CS395T: Design/Implementation of Trusted Servers

Masking Quorum Systems

 A quorum system is a masking quorum system for
a fail prone system if the following properties are
satisfied :
 M-consistency

 M-availability

CS395T: Design/Implementation of Trusted Servers

Masking Quorum Systems

 Read : “Result()” function
 Client receives the responses

 Computes the set

 Chooses the pair in with highest timestamp

CS395T: Design/Implementation of Trusted Servers

f – masking Quorum System



 M-consistency

 M-availability

 Quorum system exists iff

3

CS395T: Design/Implementation of Trusted Servers

Grid Quorum

 ,

 Arrange the universe in a k x k grid

 A masking quorum system (Cj – columns, Ri – rows)

n = 5 x 5, f =1

CS395T: Design/Implementation of Trusted Servers

Dissemination Quorum
Systems

 Quorums for self verifying data
 Only clients can create the data

 Clients can detect attempted changes by a faulty
server

 D-consistency

 D-availability

CS395T: Design/Implementation of Trusted Servers

Dissemination Quorum
Systems

 Read : “Result()” function
 Client receives the responses

 Computes the set of pairs which are verifiable

 Chooses the pair in with highest
timestamp

CS395T: Design/Implementation of Trusted Servers

f – dissemination Quorum
System



 D-consistency

 D-availability

 Quorum system exists iff

4

CS395T: Design/Implementation of Trusted Servers

Grid Quorum

 ,

 Arrange the universe in a k x k grid

 A masking quorum system (Cj – columns, Ri – rows)

n = 5 x 5, f =1

CS395T: Design/Implementation of Trusted Servers

Opaque Masking Quorum
Systems

 Masking quorums require the client to know
the fail prone system

 Problems
 Read protocol becomes complicated

 Revealing possible failure scenarios for which the
system is designed

 Design quorums such that clients don’t need
to know

CS395T: Design/Implementation of Trusted Servers

Opaque Masking Quorum
Systems - Properties

 O-Consistency1:

 O-Consistency2:

 O-availability

CS395T: Design/Implementation of Trusted Servers

Opaque Masking Quorum
Systems

 Read : “Result()” function
 Client receives the responses

 Computes the set of pairs which appear most
often

 Chooses the pair in with highest
timestamp

 f-opaque quorum system
 Exists iff



5

CS395T: Design/Implementation of Trusted Servers

Byzantine Clients

 Problems
 Send different updates to different servers

 Leaves system inconsistent

 May write data that corrupts the state
 Impossible for servers to avoid

 Protocol ensures that clients don’t leave
system in an inconsistent state

 Works for single writer, multiple reader
 Masking Quorum Systems

CS395T: Design/Implementation of Trusted Servers

Client Write protocol

1) Choose a timestamp t in Tc greater than any
value it has chosen before

2) Choose a quorum Q and send an update
message <update,Q,v,t> to each server in Q

3) If it does not receive ack from all the servers
in Q within some time, repeat the steps 2 and 3

CS395T: Design/Implementation of Trusted Servers

Server Write Protocol

 Two sets to remember
 such that



 Protocol
 If a server receives a fresh <update,Q,v,t>, then

send <echo,Q,v,t> to each member of Q

 If a server receives identical echo messages
<echo,Q,v,t> from every server in Q, then it sends
a <ready,Q,v,t> to each member in Q

CS395T: Design/Implementation of Trusted Servers

Server Write Protocol

 If a server receives identical ready messages
<ready,Q,v,t> from a set B+, then it sends a
<ready,Q,v,t> to each member in Q if it has not
done so already.

 If a server receives identical ready messages
<ready,Q,v,t> from a set Q- of servers, then

(i) if t is greater than its current timestamp,
update v and t

 (ii) send an ack to c even if the value was not
 updated

At this point the server is said to have delivered <v,t>

6

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

 Duration of write operation
 Starts when first correct server receives update

message
 Ends when all correct servers in a quorum have

delivered the update

 Need to show
 Safe semantics

 Also prove
 Liveness
 Completeness

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 1 : A correct server delivers <v,t> only if some correct
server previously received <update,Q,v,t>

Proof :
(1) To deliver <v,t>, a correct server must have received ready message from a

correct server

(2) First ready message from a correct server when it has received echo from all
the servers in Q

(3) Correct member sends <echo,Q,v,t> only if it receives <update,Q,v,t>

Lemma 2 (Agreement): If a correct server deilvers <v,t> and a
correct server delivers <v’,t>, then v = v’

Proof : (1) One quorum Q1 must have sent <echo,Q1,v,t>

 (2) Another quorum Q2 must have sent <echo,Q2,v’,t>

 (3) Q1 and Q2 have at least one correct server in common, so v must be
identical to v’

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 3(Safe Semantics) : A correct process’s read operation
that is concurrent with no write operations returns the value
written by the last preceding write in some serialization of all
preceding write operations.
Proof : Let W be the set of write operations preceding read.
 By Lemma 2, any value/timestamp pair is well defined
 By definition, every write in W was delivered to a full quorum
 By Lemma 1, no correct server has delivered any write outside W
So the read operation will return the value written by the write
operation in W with the highest timestamp.
 No write operation in W follows the write operation with highest
timestamp because there is a single writer and servers echo request
only if its timestamp is higher than the one they have in store

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 4 :

Proof : Assume that there is a and such that

 . By M-Availability, . Then,

 , violating M-consistency.

Lemma 5 (Propagation) : If a correct server delivers <v,t>, then
eventually there exists a quorum Q such that every server in Q
delivers <v,t>

Proof: The correct server that delivered <v,t> received a message
<ready,Q,v,t> from each server in . Since for some ,

all the members in are correct, every correct member of Q
receives <ready,Q,v,t> from each of the members . The
messages from cause each correct member of Q to send a ready
message. Hence, <v,t> would be delivered by all correct servers in Q

7

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 6(Validity) : If a correct client c sends <update,Q,v,t> to
every server in Q and all servers in Q are correct, then
eventually a correct server delivers <v,t>

Proof : Follows from algorithm

CS395T: Design/Implementation of Trusted Servers

Minimal Quorum Systems

 Reducing quorum size
[MAD02-1]

3f + 1 4f + 1Generic

2f + 13f + 1Self-verifying

Non-confirmableConfirmableBest known n

CS395T: Design/Implementation of Trusted Servers

Minimal Quorum Systems

 Reducing quorum size

 Lower bounds independent of self-verifying or
generic data !

 Guarantees atomic semantics !!

[MAD02-1]

2f + 13f + 1Self-verifying
and generic

Non-confirmableConfirmableBest known n

CS395T: Design/Implementation of Trusted Servers

Semantics

 Consistency semantics defined in terms of
conditions when read and write complete
 But when do we say that a write has completed ?

 Confirmable
 Write completes at the instant when the writer

completes its protocol

 Non-confirmable
 Write completion cannot be determined locally by

the writer, but writes are still guaranteed to
complete

8

CS395T: Design/Implementation of Trusted Servers

Key Ideas

 Use different quorum sizes for read and write
[MAD02-2]

 AM-Consistency :

 AM-Availability :

 f-threshold case :

 Non-confirmable write : Doesn’t wait for acks from
servers when writing

CS395T: Design/Implementation of Trusted Servers

Key Ideas

 Use replication in time instead of replication
in space

 Previously, 4f +1 needed as some correct
servers may not be updated.

 Solution : Wait for those servers to be
updated !!

CS395T: Design/Implementation of Trusted Servers

SBQ-L Protocol

 f-threshold

 Confirmable

 Authenticated, reliable, asynchronous, point-
to-point channels

 Clients correct



CS395T: Design/Implementation of Trusted Servers

Algorithm (Client)

Write(v)
 Ask all servers for

their current
timestamp t

 Wait for answer from
 |Qw | different servers
 Set tsc > max({t} U any

previous tsc)
 Send STORE(v,tsc) to

all servers
 Wait for acks from |Qw|

different servers

Read()
 send READ to Qr servers
 loop

 receive (ANSWER,v,ts) from
s in Qr

 set answer[s,ts]:= (v,ts)
 until some (v,ts) in answer[][

] is vouched for by |Qw|
servers

 send READ_COMPLETE to
Qr

 return (v,ts)

9

CS395T: Design/Implementation of Trusted Servers

Modification

 Bound the size of answer[][] array
 Upon receiving first msg from server s, update

 T = { f+1 largest timestamps sent by servers}

 On receiving a (v,ts) from a server s, store if
 ts is in T

 ts is the latest timestamp from server s

CS395T: Design/Implementation of Trusted Servers

Proof : Atomicity

Lemma 1: If the protocol is live, it is atomic

a) After write of ts1, no read
returns earlier ts
• Suppose write for ts1 has
completed

• servers acked the write

• At least are correct

• Remaining servers <

b) After c reads ts1, no later read
returns earlier ts
• c reads ts1
 servers say ts1

• At least are correct

• Remaining servers <

• Any read that starts after ts1 returns
 ts ts1

CS395T: Design/Implementation of Trusted Servers

Proof : Liveness

Lemma 2: Every operation eventually terminates

Write: Trivial, because only waits for

Read:
• Consider T after c gets first message from last server.

• Let tmax be the largest timestamp from a correct server in T.

• A client never removes tmax from its answers[s][], for a correct s

• Eventually, all correct servers see a write with ts = tmax and echo client

• Since and the read terminates

CS395T: Design/Implementation of Trusted Servers

Bounds

Theorem : In the authenticated asynchronous model with
byzantine failures and reliable channels, no live
confirmable protocol can satisfy the safe semantics for
distributed shared memory using 3f servers

Proof (Sketch) : Such a protocol must violate safety or
liveness.

 There must exist an execution in which is an operation
influenced by a subset of 2f or fewer servers.

10

CS395T: Design/Implementation of Trusted Servers

Safety Violation

read

a1

a2

a3

State A

(e)

read

b1

b2

a3

(e)

State B

n=3,f = 1

a1

a2

a3

State A

a1

a2

a3

State A

b1

b2

a3

write

State B

CS395T: Design/Implementation of Trusted Servers

Safety Violation

a1

a2

a3

a1

a2

a3

b1

b2

a3

write
read

a1

a2

a3

State A

(e)

b1

a3

read

(e)

State BState A State B State A

n=3,f = 1

CS395T: Design/Implementation of Trusted Servers

Safety Violation

a1

a2

a3

a1

a2

a3

b1

b2

a3

write
read

a1

a2

a3

State A

(e)

b1

a3

read

(e)

State B

a2

States indistinguishable for e !!

n=3,f = 1

State A State B State A

CS395T: Design/Implementation of Trusted Servers

Dynamic Byzantine Quorums

 Designing quorums requires estimating number of
faulty servers present at a time
 Optimistic : Can violate safety

 Pessimistic : Wastes resources

 Solution
 Monitor environment to estimate f

 Adjust resilience threshold dynamically

 Advantages
 Efficient for small number of failures

 Read/Write does not block on changing f

[AMP00]

11

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1

Write

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1 f = 2

Reconfiguration ….

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1 f = 2

Read

12

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1 f = 2

Read

No majority or even a wrong answer!!!

CS395T: Design/Implementation of Trusted Servers

Approach

 Every server stores a threshold variable T
giving the present value of f

 Assumption
 For any operation o, number of failures never

exceeds the minimum of :
 The value written in last write to T

 Values written to T in writes concurrent with o

 f lies between fmin and fmax

CS395T: Design/Implementation of Trusted Servers

New Problem

 What value of threshold to use to read T ?

 Define “announce set”
 A set of servers whose intersection with all

possible quorums is large enough to allow
unambiguous determination of T

 Intersection > 2fmax ensures this

 Taking announce set to be n-fmax leads to :

n ≥ 6fmax – 2fmin + 1

CS395T: Design/Implementation of Trusted Servers

Operations on T

Write(d)

 Ask all servers for their
current timestamp t

 Wait for answer from an
announce set

 Set tsc > max({t} U any
previous tsc)

 Send (d,tsc) to all servers

 Wait for acks from an
announce set

Read()

 Ask all servers for latest
value/timestamp pair

 Wait for answer from |Qmin|
different servers

 Select most recent (v,ts) for
which at least fmax + 1
answers agree (if any)

Client c with current threshold = f

13

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

Initially T = 1

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

Threshold Write : T = 2

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

While a client performing threshold write to set T = 3 …..

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

another client tries to read T ….

14

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

another client tries to read T ….

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

The read would return T=1 which is incorrect !!

CS395T: Design/Implementation of Trusted Servers

Solution

 Note that there are
still fmax+ 1 servers
which have a later
timestamp

 (v,ts) is
countermanded if at
least fmax+1 servers
return a timestamp
greater than ts

Read()

 Ask all servers for latest
value/timestamp pair

 Wait for answer from |Qmin|
different servers

 Select most recent (v,ts) for
which at least fmax + 1
answers agree (if any), if it is
not countermanded

CS395T: Design/Implementation of Trusted Servers

New Framework for Dynamic
Byzantine Storage

 Can adapt to both failure threshold and
server count

 Provides confirmable wait-free atomic
semantics

 No bounds on number of failures that can be
tolerated

 Optimal and fast

[MA04]

15

CS395T: Design/Implementation of Trusted Servers

The Methodology

 Existing protocols based on Q-RPC primitive

 For dynamic quorums, simply replace Q-RPC
calls by DQ-RPC

 Proving correctness requires defining new
properties independent of the quorum
intersection

 Focus on properties of the data that is
retrieved by quorum operations

CS395T: Design/Implementation of Trusted Servers

Transquorum properties

 Timeliness : Any read value must be as
recent as the last written value

 Soundness : Any read value must have been
written before

 Three sets of Q-RPC-like quorum operations
 The set of write operations

 The set of timely operations

 The set of timely and sound operations

CS395T: Design/Implementation of Trusted Servers

U-Dissemination Protocol

READ

1. Q := Q-RPC(“READ”)
//Q is a set of
<ts,writer,data>writer

2. reply r := phi(Q)
// returns the largest valid
value

3. Q:= Q-RPC(“WRITE”,r)

4. return r.data

WRITE

1. Q := Q-RPC(“GET_TS”)

2. ts := max{Q.ts} + 1

3. m := <ts,writer_id,D>writer

4. Q := Q-RPC(“WRITE”,m)

CS395T: Design/Implementation of Trusted Servers

New U-Dissemination Protocol

READ

1. Q := TRANS-Q (“READ”)
//Q is a set of
<ts,writer,data>writer

2. reply r := phi(Q)
// returns the largest valid
value

3. Q:= TRANS-Q (“WRITE”,r)

4. return r.data

WRITE

1. Q := TRANS-Q (“GET_TS”)

2. ts := max{Q.ts} + 1

3. m := <ts,writer_id,D>writer

4. Q := TRANS-Q (“WRITE”,m)

16

CS395T: Design/Implementation of Trusted Servers

Byzantine Tolerant Erasure-
coded Storage

 If a group of servers coming together to get
an answer, then can store parts of
information at servers

 Use m-of-n erasure codes

 Requires less bandwidth and storage space
than full replication

[WGG04]

CS395T: Design/Implementation of Trusted Servers

References
[LAM77] L. Lamport. On Interprocess Communication--Part I: Basic Formalism, Part II:
Algorithms Distributed Computing 1, 2 (1986), 77-101.
[MR98] D. Malkhi, M. Reiter. Byzantine quorum systems, Distributed Computing 11 (4) (1998) 203-
213

[MAD02-1] J-P. Martin, L. Alvisi, M. Dahlin. Minimal Byzantine Storage Proceedings of the 16th
International Symposium on Distributed Computing (DISC 2002). Toulouse, France.

[MAD02-2] J.-P. Martin, L. Alvisi, M. Dahlin. Small Byzantine Quorum Systems. Proceedings of
the 2002 International Conference on Dependable Systems & Networks (DSN 2002)

[AMP00] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, R. Wright. Dynamic Byzantine Quorum
Systems Proceedings of the 2000 International Conference on Dependable Systems and Networks
(IEEE Computer Society)
[MA04] J.P. Martin and L. Alvisi. Dynamic Byzantine Storage. Proceedings of the 2004
International Conference on Dependable Systems & Networks (DSN 2004)

[WGG04] J.J.Wylie, G.R. Goodson, G.R. Ganger, M. Reiter. Efficient Byzantine-tolerant erasure-
coded storage. Under Review

