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Secret Sharing Made Short
Hugo Krawczyk 1993

 Motivation: Shamir’s (n, m) threshold
scheme requires that each secret share be
as long as the secret to be shared.

 Therefore, for a secret S of length r, total
length of share is rn.

 We present an optimal scheme that
requires each secret share to be only r/m
+ a constant (independent of r, n) in size.

Perfect Secrecy
 Perfect Secrecy

1) In Shamir’s (n, m) threshold scheme, no
information about the secret is revealed in
the information theoretic sense. If  S0 is the
secret, for every k < m, let S1, …, Sk be any k
shares then

Pr(S0 | S1, …, Sk) = Pr(S0)
   2) No bounds on the computation power of

adversary are assumed.
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Computational Secrecy
 Computational Secrecy:

a) Adversary is resource bounded.
b) No information is revealed using only polynomial
resources.

Polynomial Indistinguishability: Two probability
distributions are polynomial time indistinguishable if
any probabilistic polynomial time algorithm behaves
essentially the same when its input is selected from
either of the two distributions.

Computation Secrecy: Formal
definition

 An (n, m) threshold scheme is
computationally secure if for any two
secrets S’ and S’’, for any k < m, the
distributions on shares D(S’; S’1, …, S’k)
and D(S’’; S’’1, …, S’’k) introduced by
the scheme are polynomially
indistinguishable.

Ingredients of the Scheme

 (n, m) Information Dispersal Scheme (IDS)
introduced by Rabin. A piece of information
(say a file F) is divided into n shares and
transmitted over an unreliable channel. Any
m shares suffice to reconstruct the file F. Size
of each share is |F|/m.

  Secure private key encryption (ENC)
 Perfect (n, m) Secret Sharing Scheme (PSS)

like Shamir’s threshold scheme.

Distribution Scheme

1) Choose a random encryption key K.
Let E=ENCK(S) where S=secret

2) Using IDS partition E into n fragments
E1, E2, …, En.

3) Using PSS generate n shares of the
key K: K1, K2, …, Kn.

4) Send to participant Pi, the share (Ei, Ki)
privately.
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Reconstruction Scheme

1) Collect from any m participants Pj,
1<=j<=m, their shares Sj=(Ej, Kj).

2) Using IDS, reconstruct E from Ejs.
3) Using PSS reconstruct K from Kjs.
4) Decrypt E using K to recover the

secret S.

Analysis

 Length of each share Si=(|S|/m, |K|).
 Correctness (Sketch):
 a) m-1 Ejs reveal no more information

about S than E itself  (by security of
ENC).

 b) m-1 shares reveal absolutely no
information about the encryption key K
(by security of PSS).

Robust Secret Sharing

 How to ensure recovery of secret in
presence of malicious participants?

 Solution: Let the dealer digitally sign all
the shares.

 Now a participant can’t cheat!

Secret Sharing
Homomorphisms: Josh Benaloh 1987

 Motivation:
1) Alice distributes a secret A to n agents

using an (n, m) scheme.
2) Bob distributes secret B to the same n

agents using an (n, m) scheme.
3) How can any m of the n agents

determine A + B while revealing as
little about A and B as possible.
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Homomorphism Property

 Let F: Tm -> S be a (n, m) threshold scheme.
If Di1, Di2, …, Dim be any m shares then the
secret D is

   D=F(Di1, Di2, …, Dim )
 (n, m) is (+, *) homomorphic, if
    D=F(Di1, Di2, …, Dim )
    D’=F(D’i1, D’i2, …, D’im )      then
    D+D’=F(Di1*D’i1, …, Dim * D’im)

(+, *) Composite Scheme
 Is an (n, m) scheme which divides a set of s

secrets d1, …, ds into subshares di,j 1<= i
<= n, 1<= j <= s, such that

1) The super-secret D=d1+d2+…+ds is easily
computable from the super-shares
Di=di,1*…*di,s

2) Pr(dj=xj | D=X) = Pr(dj=xj | D=X, 1<=i<=n,
Di=Xi, for all i’ in I’, 1<=j<=s, di’,j=xi’,j)

        for every I’, |I’| <m  i.e. knowing all super-
shares, super-secret and at most m-1 sub-
shares of each sub-secret reveals no
information about every sub-share

Homomorphism and
Compositeness
 Theorem: If |S|=|T| are finite then every
   (+, *) homomorphic threshold scheme is a
   (+, *) composite threshold scheme.
 Proof (sketch): Assume s=2 I.e. there are

only two sub secrets A and B. Let S=A+B.
Further let k=m-1 conspire together so that
a1,…, ak and b1,…, bk are known. Therefore
s1,…, sk (where si=ai+bi) are also known. As
S is known, and since |S|=|T| (and finite),
therefore Fm-1:T->S is 1-1 and hence sk+1, …,
sn can be computed.  Thus knowing them
beforehand gives no additional information.

Examples

 Shamir’s scheme is (+, +) homomorphic but
not (x, x) or (x, +).

 A variation of Shamir scheme is (x, +)
homomorphic (secret=ga, a is divided into n
subshares using the Shamir scheme).

 By above theorem they are also composite
schemes. Hence composition of sub-secrets
can be obtained without revealing the sub-
secrets.
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Applications

 Verifiable Secret Sharing
 Will use (+,x) homomorphism property of

an encryption scheme and (+,+)
composite scheme.

 Secret Ballot Election
 Will use a (+,+) composite scheme.

Encryption Scheme
 Verifiable secret sharing scheme will use the

following encryption scheme:
 Let r > |S| be prime, p and q also prime s.t. r

divides p-1 but not q-1. N=pq. Let y be such
that gcd(N, y) =1 and y is NOT the rth residue
mod N (I.e. y ≠ ar mod N, for any a). (N, y)
are made public. To encrypt a secret s,
choose a random x (relatively prime to N)
and let E(s,x,y,N)=ysxr mod N.

 Knowing p and q, s can be easily determined.
 E is (+, x) homomorphic.

Verifiable Secret Sharing
 Objective: Dealer should be able to prove the

participants that he made a consistent deal
I.e. from every k sub-shares we get the same
secret s, without revealing the secret s.

 This is useful in voting schemes where a
voter needs to prove that he cast a valid
vote.

 We assume Shamir’s scheme as the secret
sharing scheme (and hence a (+,+)
composite scheme).

Solution: Interactive Proof

  Interactive Proof (Probabilistic)
 Dealer will convince the participants

that he made a consistent deal with
high probability.

  For Shamir’s scheme, this boils down
for dealer to convince the participants
that he used at most d=m-1 degree
polynomial P.



6

Algorithm
1. Encryptions of the values of the points that

describe P are released by dealer.
2. Similar encryptions of 100 more random

polynomials of degree at most d are released to the
verifiers.

3. A random subset of the random polynomials is
selected by the verifiers.

4. The chosen subset of polynomials are decrypted by
the prover and shown to verifiers. All these
polynomials be of at most degree d.

5. Each remaining  polynomial is added to P. Each of
these sum polynomials is decrypted by prover.
They all must be of degree at most d.

Proof of Correctness
 Fact: If sum of two polynomials is of degree at most

d, then either both polynomials are of degree at most
d or both are of degree greater than d.

 Revealing a random subset of the set of random
polynomials gives the confidence that the remaining
polynomials are each of degree at most d.

 Since sum of each of the remaining polynomials with
the polynomial P is of degree at most d, therefore P
itself is of degree at most d.

 The homomorphism of E and Shamir’s scheme helps
in guaranteeing that sum of secrets can be revealed
without revealing the constituent secret polynomial.

Secret-Ballot Voting

 Each voter votes 0 or 1 (yes or no).
 N independent organizations hold the election.

Assumption: at most m-1 of them collude.
 Voter uses an (+,+)-composite (n, m)

threshold scheme and sends the shares to
the organizations.

 After election, each organization sums up the
shares that it received from different voters.

 Any m organization can get the vote count
without compromising secrecy of each voter’s
vote.

Generalized Secret Sharing and
Monotone Functions:
Josh Benaloh and Jerry Leicheter 1990

 Motivation: Let a secret S be shared among P,
a set of trustees, such that any qualified
subset of trustees is able to recover the
secret and no unqualified subset of trustees is
able to get any information about the secret.

 Example: Let access structure be
Q={{a},{b,c},{d,e,f,g}3 } I.e. either a can
recover secret, or b and c together or any 3
of {d,e,f,g} together can recover secret.
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Monotonic Access Structures
 The access structure must be

monotonic.
 Monotonic Access Structure: Let ∏ be

any family of set of subsets of P. ∏ is
said to be monotonic if for all non-
threshold sets A:

€ 

A ∈ Π,A ⊆ A'⇒ A'∈ Π

Facts
 Every monotone access structure can be

represented by a boolean formula (containing
only “and” and “or” and threshold gates)
where each variable vi in formula corresponds
to a participant Pi.

 Therefore, it suffices to show how the secret
should be shared across “and”, “or” and
threshold gates.

 Example: The access structure Q given earlier
can be written as:

€ 

Q = a∨ (b∧c)∨Thres3(d,e, f ,g)

Impossibility Result
 Theorem: There exists monotone structures for

which no (n, m) threshold scheme exists.
 Similar to Quorum Systems vs Voting assignments
 Proof: Consider the access structure ∏ defined by

€ 

((A∧B)∨ (C∧D))
   Let a, b, c  and d denote the weights of each
participant and the threshold scheme be (n, t) where
n=a+b+c+d. Then a+b>=t, c+d>=t. WLOG, let
a>=b and c>=d. Then a>=t/2, c>=t/2, therefore
a+c>=t. Hence A and C together can determine secret

S. Not allowed! Hence no such (n, t) threshold scheme
exists.

Generalized Secret Sharing

 Definition: Given a set P and a monotone
access structure ∏, a generalized secret
sharing scheme divides a secret s into
shares si,j such that :

1. When A is in ∏, s can be reconstructed from
the shares si,j in A.

2. For A not in ∏, shares si,j in A give no
information about secret s.

 Notation: Let Tm(s;p1,..,pn) denote a (n, m)
threshold scheme.
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Intuition

 Suppose a secret s, 0 <= s < r, needs to be
shared between P1 and P2 s.t.:

a) Either of them should be able to determine
the secret. Scheme: give s to both of them

b) Only both of them together should be able
to determine s: choose s1 and s2 randomly
s.t. s= s1+s2 mod r. Give s1 to P1 and s2 to
P2.

Scheme

 Let T(s,F) be our generalized secret scheme.
We define it recursively:

1. T(s,vp)=assign share s to p.
2. T(s, Or(F1,…,Fn))=T(s, F1),…,T(s, Fn) I.e

divide s as s to all formula Fi

3. T(s, And(F1,…,Fn))=T(si, Fi) 1<=i<=n
where s=∑1<=i<=n si , si being random

4. T(s,THRESm(F1,…,Fn))= T(si, Fi) 1<=i<=n
where s=Tm(s;f1,..,fn)=[si]1<=i<=n

Proof of Correctness
 We use structural induction on the length of access

structure formula.
 Base case is trivial.
 Let the monotone formula f be of form  Or(F1,…,Fn).

Since s is divided over each Fi independently (by
using T(s, Fi)) therefore for any A not in ∏, no joint
information is conveyed by shares that belong to
different T(s, Fi).

 F=And(F1,…,Fn). If A not in ∏ then there is an i s.t.
shares of T(si, Fi) in A give no information about si.
Since all sj were chosen randomly s.t. s=∑sj therefore
if si is not known then no information about s is
revealed.

 Similar argument applies for the threshold operator.

Homomorphism

 Theorem: If the Tm(s;p1,..,pn) is (+,+)
homorphic then the generalized secret
sharing scheme is also (+,+)
homomorphic.
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Limitations

 Theorem: There exists monotone access
structures for which the scheme is not
efficient (formula size and hence number of
shares is not polynomial in n)

 Proof (Sketch): Combinatorial Argument:
There are doubly exponential monotonic
access structures whereas there are only
exponentially many polynomial sized access
structures corresponding to polynomial sized
formulae.


