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Trustworthy Systems

A trustworthy system

does what you want
nothing else!
despite human and operator errors
despite environmental disruptions 
despite attacks

Basic PL research
Program correctness
Program verification

User interfaces

Fault tolerance

Security}

}

}

}

The Odd Couple

Fault-tolerance               Security

Integrity

Availability

Integrity

Availability

Confidentiality

A working hypothesis

Model compromised processes as Byzantine
Faulty processes can deviate arbitrarily 
(maliciously) from spec

Faulty processes can collude

Build replicated services that can tolerate            
(a threshold of) Byzantine failures 
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Rethinking State Machine Replication
The principle: separate agreement from execution
The payoffs:

lower replication costs/stronger confidentiality

Solution: replicate server!

The Problem

Clients Server

The Solution
1. Make server deterministic (state machine)

State machine
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The Solution
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same 
sequence of state transitions  

4. Vote on replica outputs for fault-tolerance 

Clients

Voter

State machine



A conundrum

. . .

A: voter 
and client 
share fate!

Replica Coordination

AGREEMENT: Every non-faulty state machine receives 
every request

ORDER: Every non-faulty state machine processes the 
requests it receives in the same relative order

All non-faulty state machines receive 
all requests in the same order

The Part-Time Parliament

Parliament determines 
laws by passing sequence 
of numbered decrees
Legislators can leave and 
enter the chamber at 
arbitrary times
No centralized record of 
approved decrees–instead, 
each legislator carries a 
ledger

Government 101

If a majority of legislators were in the 
Chamber and no one entered or left the 
Chamber for a sufficiently long time, then 

any decree proposed by a legislator would 
eventually be passed

any passed decree would appear on the 
ledger of every legislator 



Supplies
Each legislator receives

                      

ledger

pen with indelible ink

scratch paper

hourglass

lots of 
messengers

Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not 
corrupted

The Game: Consensus

SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been 
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it

The Players

Proposers

Acceptors

Listeners
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1. A single acceptor

2. A majority of acceptors (forces a single value)

When should an acceptor accept?

! Acceptors must accept first received proposal

Acceptors must accept multiple proposals
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" If a proposal with value v is chosen, then every 
higher-numbered proposal accepted by any acceptor 
has value v

!+"=trouble



…a unique value…

" If a proposal with value v is chosen, then every 
higher-numbered proposal that is chosen has value v

" If a proposal with value v is chosen, then every 
higher-numbered proposal accepted by any acceptor 
has value v

" If a proposal with value v is chosen, then every 
higher-numbered proposal issued by any proposer 
has value v

…and only a unique value

" If a proposal with value v is chosen, then every 
higher-numbered proposal issued by any proposer has 
value v

" For any v and n, if a proposal with value v and pid n is 
issued, then there is a majority-set S of acceptors 
such that one of the following holds:
a. no acceptor in S has accepted any proposal numbered less 

than n

b. v is the value of the highest-numbered proposal among all 
proposals numbered less than n accepted by acceptors in S 

Say I do: 
The proposer’s protocol

1. A proposer chooses a new n and sends <prepare,n> to 
each member of some set of acceptors, asking to 
respond with:

a. A promise never again to accept a pid less than n, and
b. The accepted proposal with highest pid less than n if any.

2. If proposer receives a response from a majority of 
acceptors, then it can issue <accept(n,v)> where v is the 
value of the highest pid among the responses, or is 
any value selected by the proposer if responders 
returned no proposals

Say I do: 
The acceptor’s protocol

1. Always respond to prepare messages

2. Respond to <accept(n,v)> iff it has not 
responded to <prepare,n’> with n’ > n             !

3. Write intended response to stable storage 
before sending it

Note that ! ⇒ !



The Learning Channel

i. Each acceptor informs each learner

ii. Acceptors contact a distinguished learner, 
which informs other learners

iii. Acceptors contact a set of learners…

Don’t stop me now

Liveness (surprise!) is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

All proposers are equal, 
but some more so than others

Elect a distinguished proposer

Can’t be done reliably in asynchronous systems, 
so…

real time

randomization

Agreement and
Byzantine Generals

One General G, a set of Lieutenants Li

General can order Attack (A)  or Retreat (R)

General may be a traitor; so may be some of the 
Lieutenants

* * *

I. If G is trustworthy, every trustworthy Li must 

follow G’s orders

II. Every trustworthy Li must follow same battleplan



The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

A lower bound
(LSP82)

There is no algorithm that solves 
Byzantine agreement when n ! 3f

A Byzantine Renaissance
Practical Byzantine Fault-Tolerance (CL99, CL00)

first to be safe in asynchronous systems 

fast! PBFT NSF only 3% slower than standard 
NFS on Andrew benchmark

uses proactive recovery to tolerate more 
failures over system lifetime

BASE (RCL 01)

uses abstraction to reduce correlated faults

Major issue : 
Assumptions

Replication algorithms make assumptions

behavior of faulty process

synchrony

bound of number of faults

Service fails if assumptions are not valid

attacker can make service fail by making 
assumptions invalid

Most earlier algorithms assume too much, and 
are thus vulnerable



Second issue : 
Performance

Replication has performance overhead

Extra communication and computation

Practical algorithms require low overhead

Till now : replication algorithms that do not 
assume too much perform poorly!

Contributions of PBFT

Practical replication algorithm

Weak assumptions

Good performance

Implementation

Replicated library service

Byzantine tolerant NFS implementation

Bad assumption : 
benign faults

Most previous replication techniques assume :

Replicas fail by omitting/ stopping

Invalid with malicious attacks

Compromised replicas may behave 
arbitrarily

Single such fault can compromise service

Lesser resiliency to malicious attacks!

Bad assumption : 
synchrony

Synchrony : assuming known bounds on

Delay between steps

Message delays

Assumption invalid with denial-of-service attacks

bad replies due to increased delays 

system fails
Synchrony is assumed by most Byzantine fault 
tolerant schemes…



Issues with asynchrony

No delay bounds

Problem is : FLP!

Solution in BFT:

i. Provide safety without using synchrony

guarantees no bad replies
ii. Assume eventual time bounds for liveness

System may not reply with active denial-
of-service attack
But will reply when the attack ends

Bad assumption: 
Bound on number of faults

Given enough time, more than f replicas are likely 
to malfunction

Detection of faults is hard and slow

Bad assumption: 
Bound on number of faults

Given enough time, more than f replicas are likely 
to malfunction

Detection of faults is hard and slow

Unavoidable

Bad assumption: 
Bound on number of faults

Given enough time, more than f replicas are likely 
to malfunction

Detection of faults is hard and slow

Unavoidable

Solution in BFT :

i. Proactive recovery - periodic recovery tasks 
scheduled even when no faults are suspected

ii. Frequent recoveries

High availability if at most f failures in a “window”



To summarize: THEM bad…

Strong assumptions

Safety relies on synchrony - easy to break in

Unbounded storage - impractical

Absolute bound on number of faults

Too slow to be used in practice

Extensive use of public key cryptography

High communication overhead 

…BFT gooood!

Supports complex operation requests from clients

Safety

System behaves like a correct centralized 
service

Liveness

Clients eventually receive replies to requests

BFT assumptions

3f+1 replicas to tolerate f Byzantine faults

Strong cryptography

Eventual time bounds - only for liveness

Ordering Requests
Idea : Use quorums (remember Paxos?)

But now need to tolerate Byzantine faults…

Primary-Backup



Ordering Requests
Idea : Use quorums (remember Paxos?)

But now need to tolerate Byzantine faults…

Primary-Backup

Protocol proceeds in Views

Current view designates the Primary

Primary orders the requests by assigning 
sequence numbers

Backups ensure correct behavior of Primary

Certify correct ordering by Primary 
Trigger view change to replace faulty primary

Client-Service 
interactions

<REQUEST,o,t,c>!c

Primary

c

Client-Service 
interactions

<REQUEST,o,t,c>!c

c

state machine
operation

Client-Service 
interactions

<REQUEST,o,t,c>!c

c

timestamp



Client-Service 
interactions

<REQUEST,o,t,c>!c

c

client id

Client-Service 
interactions

<REQUEST,o,t,c>!c

c

 signature

Client-Service 
interactions

<REPLY,v,t,c,i,r>!i

c



Client-Service 
interactions

<REPLY,v,t,c,i,r>!i

c

viev
number

Client-Service 
interactions

<REPLY,v,t,c,i,r>!i

c

timestamp

Client-Service 
interactions

<REPLY,v,t,c,i,r>!i

c

replica
number

i

Client-Service 
interactions

<REPLY,v,t,c,i,r>!i

c

operation
result

i



Client-Service 
interactions

Before accepting r, c waits for f+1 replies 
with same t and r from different replicas

c

i

Troubleshooting

If c times out waiting for reply, it broadcasts 
its request to all replicas

If replica has already computed response, it 
just returns it

Otherwise, replica forward request to primary

If primary does not multicast, it is eventually 
suspected 

Quorums and 
Certificates

Quorums contain at least 2f+1 replicas

Any two quorums intersect in at least one 
correct replica

Always one quorum available with non-faulty 
replicas

Certificate: set of messages from a quorum 
which guarantees or certifies a certain property

Algorithm steps are justified by certificates 

Algorithm Components

Normal case operation

Garbage collection 

View changes

Recovery 



Normal case operation

3 phase algorithm :

i. Pre-prepare phase picks order of requests

ii. Prepare phase ensure ordering of requests 
within views

iii. Commit phase ensures order across views

Replicas remember messages on stable log

Messages are authenticated

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE,v,n,d>!p ,m>

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE,v,n,d>!p ,m>

sequence number

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE,v,n,d>!p ,m>

client request



Pre-prepare

PRE-PREPARE is well formed
i is in view v
i has not accepted another PRE-PREPARE 
for v,n with a different d
n is between two water-marks

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE,v,n,d>!p ,m>

digest of m

Backup i accepts 
PRE-PREPARE if:

Prepare

Backup 1

Backup 2

Backup 3

Primary

Backup i multicasts <PREPARE,v,n,d,i>!i 

Pre-prepare phase

Prepare Certificate
P-certificates ensure total order within views 

Prepare Certificate
P-certificates ensure total order within views 

Replica produces P-certificate(m,v,n) iff its log holds: 

The request m

A pre-prepare for m in view v with sequence 
number n

2f prepares from different backups that match 
the pre-prepare



Prepare Certificate
P-certificates ensure total order within views 

Replica produces P-certificate(m,v,n) iff its log holds: 

The request m

A pre-prepare for m in view v with sequence 
number n

2f prepares from different backups that match 
the pre-prepare

A P-certificate(m,v,n) means that a quorum agrees 
with assigning sequence number n to m in view v

NO two non-faulty replicas with                  
P-certificate(m1,v,n) and P-certificate(m2,v,n)

Commit

Backup 1

Backup 2

Backup 3

Primary

After receiving a P-certificate, 
replica i multicasts <COMMITv,n,d,i>!i 

Prepare phasePre-prepare phase Commit phase

Commit Certificate

A replica has a C-certificate(m,v,n) if:

It had a P-certificate(m,v,n) 

Log contains 2f+1 matching commits 
from different replicas

Replica executes a request after it gets 
C-certificate for it, and has cleared all 
previous requests

Some replica has C-certificate(m,v,n) ≡             
f +1 correct replicas have a P-certificate

It ensures the following properties:

i. Non-faulty replicas agree on sequence 
number of requests that commit locally 
even across view changes

ii. If non-faulty replica builds C-certificate, 
eventually f +1 non-faulty replicas do so

A useful invariant



Reply

Backup 1

Backup 2

Backup 3

Primary

After executing 
request, replica replies

Prepare phasePre-prepare phase Commit phase Reply phase

Garbage Collection
Truncate Log with Certificate

Each replica periodically checkpoints state and 
builds certificate to prove state is correct

Multicasts <CHECKPOINT,n,d,i>
!i 
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Garbage Collection
Truncate Log with Certificate

Each replica periodically checkpoints state and 
builds certificate to prove state is correct

Multicasts <CHECKPOINT,n,d,i>
!i state digest



Garbage Collection
Truncate Log with Certificate

Each replica periodically checkpoints state and 
builds certificate to prove state is correct

Multicasts <CHECKPOINT,n,d,i>
!i 

CK-Certificate ≡ 2f+1 checkpoint messages for 
same n,d from different i’s

CK-certificate used in view changes

CK-certificate advances low, high watermarks 

View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i 

View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i last proved ckpt

View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i {P-certificates held by i 

for requests with sn > n}



View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i 

When primary j for v+1 receives 2f VIEW-CHANGE:
multicasts <NEW-VIEW,v+1,V,O>

!j 

View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i 

When primary j for v+1 receives 2f VIEW-CHANGE:
multicasts <NEW-VIEW,v+1,V,O>

!j 
{2f+1 VIEW-CHANGE messages}

View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i 

When primary j for v+1 receives 2f VIEW-CHANGE:
multicasts <NEW-VIEW,v+1,V,O>

!j 
set of PRE-PREPARE messages

View changes

If primary in view v times out, replica i :
stops accepting messages (except CHEKPOINT,VIEW-
CHANGE,NEW-VIEW)

multicasts <VIEW-CHANGE,v+1,n,CK-cert,P,i>
!i 

When primary j for v+1 receives 2f VIEW-CHANGE:
multicasts <NEW-VIEW,v+1,V,O>

!j 

appends messages in O to its log
enters view v+1



O’s

A set of <PRE-PREPARE,v+1,n,d>
!j 

, 

for all n:  min-s < n ! max-s, where

min-s = sn of latest proved checkpoint in V
max-s = sn of latest P-certificate in V

        

O’s

A set of <PRE-PREPARE,v+1,n,d>
!j 

, 

for all n:  min-s < n ! max-s, where

min-s = sn of latest proved checkpoint in V
max-s = sn of latest P-certificate in V

d =

        

{digest of m with P-certificate<m,v,n> (if any)

dnull

Safety

Within a view, replicas agree on sn of requests for 
which a C-certificate can be built
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Safety

Within a view, replicas agree on sn of requests for 
which a C-certificate can be built

Across views?

C-certificate(m,v,n) ⇒ 2f+1 P-certificate(m,v,n)

<NEW-VIEW,v+1,V,O>
!j  

accepted ⇒ 2f+1 VIEW-CHANGE

At least 1 correct replica in v+1 has P-certificate(m,v,n) !

Liveness

Install new views conservatively :

Try maximizing period T where 2f+1 correct 
replicas are in the same view

Increase T exponentially until some request 
executes

Communication 
Optimizations

i. One replica sends response, other send digests

ii. Replicas may optimistically execute requests for 
which hold a P-certificate 

return tentative response

client needs 2f+1 tentative responses to accept

iii. Read Only requests

replicas execute in current state 
client accepts if it receives 2f+1 responses 

otherwise, send regular R/W request

Fast Authentication

Use MACs instead of digital signatures

MAC is 1000x faster than PK signatures

Public key cryptography used to setup MAC 
keys, VIEW-CHANGE and NEW-VIEW messages

Non-trivial
MAC less powerful than signatures
Receiver cannot prove authenticity to others...



Back to the Dark Ages

Too many replicas 

     Who cares? Machines are cheap...

But achieving independent failures is expensive

Independently failing hardware

Independently failing software!

Back to the Dark Ages

No confidentiality 

V

Back to the Dark Ages

No confidentiality 

V

(
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Not          Agreement + Order
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Rethinking
State Machine Replication

Not          Agreement + Order

but rather  Agreement on Order + Execution

Benefits

3f+1 state machine replicas

Replication hurts confidentiality

2f+1

help
s

Separation reduces 
replication costs

Not all nodes are created equal!

Nodes in E: expensive 
(different across applications and within same application)

Nodes in A: cheap 
(simple and reusable across applications)

A E

V Execution 
ClusterAgreement 

Cluster 2f+1
3g+1

The implementation...

1. A assigns unique sequence number to request

2. ‹request, rsn›A: request is certified unique

3. E executes in rsn order

4. <reply, rsn>E: reply is certified unique

A E
1 2

34
V



...is simple

Separating agreement and execution is easy
No need to change agreement protocol

Just forward request instead of executing

Just a couple of subtle points
To handle message loss, implement retransmission in E

Retransmission occurs only if a message is really lost

A E
1 2

34
V

Separation 
enables confidentiality

V

(

Separation 
enables confidentiality

Agreement nodes can filter incorrect replies

V

(

The Privacy Firewall

Three design principles:

1. Use redundant filters for 
fault tolerance

2. Restrict communication

3. Eliminate nondeterminism

E

A
h+1

PF h+1



Inside the PF
(h+1)2-filter grid tolerates h 
Byzantine failures
A filter only communicates with 
filters immediately above or below
Each filter checks both reply and 
request certificates
Safe
h+1 rows " one is correct

Live
h+1 columns " one is correct

Restricts nondeterminism
threshold cryptography for replies 
cluster A locks rsn
controlled message retransmission 
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Inside the PF
(h+1)2-filter grid tolerates h 
Byzantine failures
A filter only communicates with 
filters immediately above or below
Each filter checks both reply and 
request certificates
Safe
h+1 rows " one is correct

Live
h+1 columns " one is correct

Restricts nondeterminism
threshold cryptography for replies 
cluster A locks rsn
controlled message retransmission 

h+1

h+1

PF

V

E

A

Privacy Firewall guarantees
A EPF

=
V

Correct 
node

  Output-set confidentiality
Output sequence through of correct cut is a legal 
sequence of outputs produced by a correct node 
accessed through an asynchronous, unreliable link

correct cut

asynchronous 
and unreliable

Timing Attacks

Faulty node in E can influence response latency

fast node slow node



Timing Attacks

Faulty node in E can influence response latency

Information theoretic confidentiality appears 
impossible without synchrony

fast node slow node

Prototype

Built on top of BASE (RCL ’01)

Implements BFT-confidential NFS

10 machines: 1 client, 4 in A and PF, 2 in A, 3 in E

128 MB RAM, 100 Mbps switch

Tolerates one fault in each of E, A, and PF

Limitations

No uninterruptible power supply

The nodes in E are identical

Communication not physically restricted

Micro-Benchmark
(req/resp: 40B/4KB)

No optimizations

BASE Separate   Confidential
0

5

10

15

20

25
Latency (ms)

Modified Andrew 
Benchmark (MAB 500)

Confidentiality adds an extra 16%

NFS BASE Separate
0

0.5

1.0

1.5

2.0

2.5

3.0

Run time (Hours)
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Conclusions
Trustworthy distributed systems through BFT

A new architecture for state machine replication
separates agreement from execution
reduces the number of expensive replicas
improves confidentiality
may lead to more efficient algorithms

Quorum Systems
single replica may not know entire state...
but a quorum of replicas will
very active research area 

Are these the Emperor’s new clothes?


