Backoff Protocolsfor Distributed Mutual Exclusion and Ordering*

Gregory Chockler, DahliaMalkhi
School of Computer Science and Engineering
The Hebrew University of Jerusalem
Jerusalem, Israel 91904
{grishac,ddia} @cs.huji.ac.il

Abstract

We present a simple and efficient protocol for mutual
exclusion in synchronous, message-passing distributed sys-
tems subject to failures. Our protocol borrows design prin-
ciples from prior work in backoff protocols for multiple
access channels such as Ethernet. Our protocol is adap-
tive in that the expected amortized system response time—
informally, the average time a process waits before enter-
ing the critical section—is a function only of the number
of clients currently contending and is independent of the
maximum number of processes who might contend. In par-
ticular, in the contention-free case, a process can enter the
critical section after only one round-trip message delay. We
use this protocol to derive a protocol for ordering opera-
tions on a replicated object in an asynchronous distributed
system subject to failures. This protocol is always safe, is
probabilistically live during periods of stability, and is suit-
able for deployment in practical systems.

1 Introduction

In this paper we describe a very simple, distributed mu-
tual exclusion protocol by which a process can gain the right
to execute for a fixed time interval A without interference
from other processes. Our protocol is directly inspired by
backoff protocols for multiple access channels; the collision
detection protocol of Ethernet is the most well-known ex-
ample. In Ethernet, a process wishing to send on an (ap-
parently) empty channel simply does so. If it detects that its
send collided with another process’, it “backs off” for a ran-
dom delay and tries again later. Here we use similar princi-
ples to derive a mutual exclusion algorithm for synchronous
message-passing systems that is deterministically safe and
that ensures entry to the “critical section” with probability
one.

*To appear in ICDCS 2001.

Michael K. Reiter
Secure Systems Research Department
Bell Labs, Lucent Technologies

600 Mountain Ave., Murray Hill, NJ 07974 USA

reiter @research.bell-labs.com

The performance of our protocol can generally be char-
acterized in terms of amortized system response time [5].
The amortized system response time is the mean delay that
each of ¢ processes incurs before entering the critical sec-
tion, assuming that all ¢ (and no others) start contending at
the same time. We prove an upper bound on the expected
amortized system response time of O(At), thereby showing
that our protocol is adaptive in that the amortized system
response time is independent of the maximum number of
processes that might contend. In addition, in the case of no
contention, the delay a process incurs before entering the
critical section is merely one round-trip message delay on
the network, and thus is independent of A.

Fault tolerance is a feature of our protocol. We present
our protocol in a system model with distinct clients and
servers, motivated by the system in which we have imple-
mented it, described later. Clients, which contend for mu-
tual exclusion, may crash without affecting the protocol. In
particular, since a client is granted exclusion for a fixed time
period A—and there is no designated “unlock™ operation
that a client must perform—a client’s failure after it suc-
ceeds in gaining exclusion does not preclude other clients
from subsequently gaining exclusion after the A time pe-
riod expires. Moreover, our protocol masks the arbitrary
(Byzantine) failure of a threshold number of servers.

We use this mutual exclusion protocol to develop a pro-
tocol by which operations on a replicated object can be se-
rially ordered. Despite the fact that this ordering protocol
is deterministically safe even in an asynchronous system—
and our mutual exclusion protocol is not—the mutual exclu-
sion protocol is key to ensuring that operations are ordered
and complete (with probability one) once the system sta-
bilizes. Our ordering protocol orders arbitrarily many op-
erations on the object as soon as a single contender gains
access to the critical section.

Aside from always-safe operation ordering, we have
found our mutual exclusion protocol useful for other tasks
within the system that motivated it, called Fleet [16]. Fleet
supports highly available, shared data for clients using an

infrastructure of servers that may suffer arbitrary (Byzan-
tine) failures. In order to detect the presence of faulty
servers, statistical fault detection algorithms mine for evi-
dence of faulty servers in the responses they return [1]. S-
ince detection is most accurate when data is accessed se-
quentially, Fleet attempts to serialize data accesses, and we
employ the mutual exclusion protocol described here for
this purpose. Our mutual exclusion protocol has the use-
ful property that it remains probabilistically live even during
periods of instability (asynchrony) in the system.® So, while
fault detection may suffer during periods of instability, the
nonblocking properties of the Fleet data access protocols
are never compromised.

The rest of this paper is structured as follows. We review
related work in Section 2 and more precisely state our sys-
tem model in Section 3. In Section 4 we describe our mutual
exclusion protocol, and we outline certain optimizations to
it in Section 5. We then develop our ordering protocol based
upon it in Section 6. A proof of correctness for our ordering
protocol can be found in Section 7.

2 Redated work

In Singhal’s taxonomy [21], the mutual exclusion pro-
tocol we present is a “Maekawa-type” protocol, follow-
ing [12]. In this class of protocols, a process p; requests
permission to enter the critical section from a set @; of pro-
cesses, such that @; N Q; # 0 forall 4, j. Each process in a
request set ; grants exclusive access to the critical section
until it is exited, and p; is allowed to enter the critical sec-
tion only if all processes in ; grant p; access. Due to the
intersection property of request sets and exclusive locking
at each process in a request set, only one process can be in
the critical section at any time. Also due to these properties,
however, Maekawa-type algorithms are generally prone to
deadlock and consequently require extra messages to detect
and recover from deadlocks. Deadlock-free Maekawa-type
protocols, such as [10, 20], have been proposed by strength-
ening the constraints on request sets so that for all 4, j, ei-
ther p; € Q; or p; € Q; [21]. However, in our context, this
strengthening is not possible because the clients requesting
mutual exclusion are distinct from the servers that comprise
the request sets. Clients cannot be added to request set-
s because they are transient and because the population of
clients that might contend is not known a priori. The pro-
tocol that we present here works with Maekawa’s original
(weaker) intersection property @Q; N Q; # @ in the fault

1Formally, probabilistic liveness during periods of instability holds on-
ly if the scheduling adversary is nonadaptive. That is, for any execution,
the scheduler chooses the distribution from which message delays will be
drawn before the protocol execution begins; it cannot change this distribu-
tion in response to events in the execution. We omit further discussion of
this issue here, except to note that in practice, this is an assumption we are
willing to adopt for Fleet.

model addressed in [12]. At the same time, our protocol is
not prone to deadlock.

As discussed in Section 1, we evaluate our proto-
col based on the amortized system response time that it
achieves. This measure was introduced in the contex-
t of shared-memory mutual exclusion algorithms [5], where
there are examples boasting amortized system response
times of O(t) or even O(1) (e.g., [3, 5]). An alternative to
using our protocol is to employ one of these algorithms, us-
ing a distributed protocol to emulate each shared variable it
uses (e.g., [15]). While the resulting algorithm would have
superior amortized system response time (asymptotically),
the performance in practice would be far worse than our
protocol in the main case we care about—i.e., contention-
free performance—due to the overheads of the variable em-
ulation protocols. This also holds for backoff-style mutual
exclusion algorithms explored for the shared-memory set-
ting (e.g., [2], which assumes even stronger objects than
shared variables).

The manner in which we build upon our mutual exclu-
sion protocol to order operations on data objects in an asyn-
chronous system is similar to work of Fetzer and Cristian
on consensus in the timed asynchronous model [6], and the
works of Lamport on Paxos [11] and of Keidar and Dolev
on extended 3-phase commit (E3PC) [8]. These works com-
pose a (not necessarily safe) mutual exclusion protocol with
a commit protocol to derive solutions to problems equiva-
lent to our ordering problem. Paxos and E3PC, while build-
ing on mutual exclusion protocols, do not propose mutual
exclusion implementations of their own. Fetzer and Cristian
employ a mutual exclusion protocol that rotates the prefer-
ence for access to the critical section among the possible
contenders in sequence, but enables the next preferred con-
tender to be bypassed without delay if that contender is u-
navailable. As such, its mutual exclusion primitive is also
adaptive in the sense above. In order to achieve this, how-
ever, the protocol relies on clock synchronization among
the participating servers. Clock synchronization is not re-
quired by our protocol. More generally, however, our work
contributes relative to all the above by providing a new and
efficient mutual exclusion primitive, and by admitting arbi-
trary (Byzantine) server failures in our ordering protocol.

3 System model

Our system model divides the set of processes into
clients and servers. We assume a fixed, known set U of
n servers and an arbitrary, finite, but unknown number of
clients. The protocol of a process is described in terms
of event handlers that are triggered by the arrival of events
such as the receipt of a message, the tick of a local clock, or
input from a calling application. Once triggered, we assume
that the event handler runs to completion without delay.

Processes that obey their protocol specifications and re-
ceive (and handle) infinitely many events in an infinite run
are called correct. Other processes are called faulty. Up to
a threshold b of servers may fail, and may do so arbitrari-
ly (Byzantine failures); i.e., the event handlers of a faulty
server may not conform to their specifications. While any
number of clients may fail, clients are assumed to fail on-
ly by crashing, i.e., simply by no longer receiving events.
This restriction of client failures to crashes may seem unre-
alistic when servers are presumed to fail arbitrarily. How-
ever, typically little can be done to protect an application
from Byzantine clients, as such clients can always corrupt
an object’s data by submitting requests with incorrect con-
tent. One way of dealing with this in practice is to allow the
creator of an object to prohibit untrusted clients from mod-
ifying objects using access control mechanisms that remain
in force at correct servers provided that b or fewer servers
fail (even arbitrarily). Thus, our assumption of client crash-
es in practice reduces to an assumption about the clients
trusted to modify that object by its creator.

We assume that the local clock of each correct process
ticks at the same rate as real time, so that a process can ac-
curately measure the passage of a chosen, real-time timeout
period. Since the timeout periods involved in our protocol-
s would be very short in practice, this is a reasonable as-
sumption. We do not assume that clocks at processes are
synchronized.

Processes communicate by message passing. We assume
that communication channels provide at-most-once mes-
sage transmission: if p; and p are correct, then ps receives
any message m from p; at most once, and then only if p;
sent m to po. (Obviously, we further assume that p; never
sends the same message twice to p», which it can implement
by, e.g., including a unique sequence number in the mes-
sage.) There is a globally known constant §. We say that a
run is stable at real time 7' if for each correct client, there
exists a quorum of correct servers such that any message
sent at time 7" > T between that client and a server in that
quorum arrives by time 7" + 4. The definition of quorum
that we use will be given in Section 4. A run is synchronous
if it is stable at the time the run begins. Though processes
communicate by message passing, we present our protocol-
s in terms of remote operation invocations on servers, for
simplicity of presentation. In synchronous runs, we also
neglect the processing time of such remote invokations and
assume that they complete instantaneously. We will return
to explicit message passing events when necessary to prove
correctness.

4 Mutual exclusion

In this section we present our mutual exclusion protocol
by which clients can contend for the opportunity to run for

A time units without interference by other clients. More
precisely, there is an operation contend that a client can in-
voke. When the invocation returns at the client, the client
then has A time units in which to execute in isolation. After
A time units pass, however, another client’s contend oper-
ation may return. As discussed in Section 1, in addition to
requiring mutual exclusion, we will also be concerned with
the system response time.

The idea of the protocol is for clients to access servers
simply to find out whether other clients are simultaneous-
ly contending. In order to provide mutual exclusion, every
pair of clients must access 2b + 1 correct servers in com-
mon. If a client detects that another client is contending,
it backs off for a random delay, chosen from a distribution
that adapts to the number of contending clients. Intuitive-
ly, clients thus delay an amount of time proportional to the
number of simultaneously contending clients, while even-
tually, when they sufficiently space their contentions, each
succeeds. More precisely, the protocol is probabilistically
live in a synchronous system, i.e., with probability 1 some
client’s contend operation returns.

The requirement that any two clients access at least
2b+1 common correct servers can be satisfied if each client
queries the servers according to a special variant of mask-
ing quorum systems [14]. The specific variant we need is a
system Q C 2 such that (i) for any quorums Q1, Q2 € Q:
Q1N Q2| > 3b+1, and (ii) for every B C U with |B| = b,
there exists Q € Q such that @ N B = (. Property (i) en-
sures that if each client queries a quorum of servers, then
any two clients’ queries intersect in at least 2b + 1 correct
servers. Property (ii) ensures that some quorum is always
available. These quorum systems are a special variants of
the request sets used in Maekawa’s protocol [12] (see Sec-
tion 2) to address up to b arbitrary server failures. Using a
straightforward adaptation of Corollary 4.4 in [14], we find
that our requirement of quorums implies n > 5b.

The protocol, then, is extremely simple; see Figure 1.
In this figure, “||” denotes concurrent invocation of state-
ments, and “d < g S” denotes the selection of an element
of set S uniformly at random and assignment of that ele-
ment to d. At a high level, the protocol executes as follows.
When presented with a request from a client, the server re-
turns FREE if it last returned FREE over A + 24§ time ago;
otherwise it returns LOCKED. To contend, a client collects
FREE Or LOCKED responses from a quorum and succeeds if
at most b responses are LOCKED. If more than b respons-
es are LOCKED, then it delays for some random duration in
the interval [(A + 46) ... 2°(A + 44)] before trying again,
where s is a “retry value” that records the number of times
the client has previously queried servers in this contend op-
eration. That is, clients employ an exponential backoff strat-
egy: the expected duration of a client’s delay is proportional
to twice its delay during its last retry.

contend ():

5+ 0;
repeat [
Q1 0
|luer [status, < u.try();
Q1+ {u}uQy
Juntil GQ € Q: Q C Q1)

if ([{u : status, = locked}| < b)
return;
else
s+ s+1;
d<pr [(A+40)...25(A +49)];
sleep(d);

] until (false);

(a) Client program

try ():

if (clock() — lastGranted > A + 24)
lastGranted « clock();
return FREE;

else
return LOCKED;

(b) Server program

Figure 1. Mutual exclusion protocol

The correctness of this protocol is proved easily in the
following lemma:

Lemma 1 If the system is synchronous, and a client’s con-
tend operation returns at real time 7', then no other client’s
contend returns in the interval [T, T + A].

Proof : Suppose that at client ¢, a contend returns at time 7. By
assumption, this implies that ¢ invoked try on servers no earlier
than T — 24. Consider any other client ¢’ whose contend returns
in the interval [T, T + A]. Again, our assumption implies that ¢’
invoked try on servers no earlier than T' — 24. Then all correct
servers in the quorum @ that ¢ queried, except at most b, responded
to ¢ in the time frame [T — 24, T'] with the response FREE. Similar-
ly, all correct servers in the quorum ' that ¢’ queried responded
to ¢’ in the time frame [T — 24, T + A] with FREE. Since @ and
Q' intersect in at least 2b + 1 correct servers, at least one such
correct server must have responded FREE to both ¢ and ¢’. Since
any correct server returns FREE to only one client in any A + 2§
time period, this is a contradiction.O

As discussed previously, the measure of quality on which
we focus for our mutual exclusion protocol is amortized
system response time. The following lemma implies that
the expected amortized system response time is O(At).

Lemma 2 If the system is synchronous, ¢ clients contend,
and none of these clients fails, then all client’s contend op-
erations return in expected O(At) time.

Proof : (Sketch.) Let T denote a time by which all ¢ clients are
contending, and let Ry, = Ele 2°(A + 44). Attime T + Ry,
every client ¢; whose contend operation has not returned has a
retry value s; that satisfies s; > k, since the s’th retry of a client is
made within at most 2°(A + 44) time units after the previous try.
Lett < t denote the number of number of clients whose contend
operations have not returned by time 7" + Ry, and denote them

c1,...,cy, . Foreach such client’s first attempt after T+ Ry, to fail,
the time at which it attempts must follow some other client’s by at
most A + 44. This happens with probability at most (¢ — 1)/2F.
Let X%, 1 <4 < t3, be an indicator random variable such that
XPE = 0if ¢;’s first attempt after time T’ + Ry, succeeds; X = 1
otherwise. By the analysis above, P[X} = 1] < (tx — 1)/2.
Let X* = 3" XF; X* is the number of clients whose attempt
following time T + Ry, fails. By linearity of expectation,

tk—l

E[X*] <ty 5

Since E[X*] > xP[X* > «], it follows that for any constant
c>1,

tk—l

ol

> P[X*>cE[X*]] > P [X’c > ctr
So, for example, when & > log,(2¢(t — 1)) we have

1 ks tk]
c_P[X 2

It follows that the expected k& by which all clients succeed is
O(logt), meaning that the expected time by which all clients’
contend operations return is at most

O(logt)

T+Z

S(A+48) = O(At).

O

Corollary 1 If the system is synchronous, then the expect-
ed amortized system response time [5] with ¢ contending
clients is O(At).

Corollary 2 If the system is synchronous and some correct
client invokes contend , then with probability 1, some clien-
t’s contend invocation returns.

In the mutual exclusion protocol as presented in Figure 1
and analyzed in Lemma 2, client backoff was exponential as
a function of the number of retries in its contend operation.
Even though exponential backoff yields O(At) amortized
system response time, analysis of backoff strategies in the
context of multiple access channels shows that it performs
less well in other measures than various polynomial back-
off strategies (e.g., [7]). While this analysis does not apply
to our case directly, we expect that similar properties hold
in our setting, and thus in practice it may be preferable to
experiment with other backoff strategies.

5 Improvements and optimizations for the
mutual exclusion protocol

In this section we sketch several possible improvements
and optimizations to the mutual exclusion protocol. The
implementation of the proposed ideas and the assessment
of their practical implications are the subject of our ongoing
work.

Avoiding backoff by breaking symmetry If the appli-
cation is such that one client ¢ repeatedly contends with
little delay between contentions, then we can improve ¢’s
response time if ¢ does not back off between consecutive
try attempts. The backoff protocol will adequately space
the other client’s retries, and c¢’s asymmetric strategy will
enable it to gain mutual exclusion quickly.

Enqueing client requests In this optimization, each serv-
er maintains an internal data structure, called delayed reply
list, where it records IDs of the clients whose try requests
arrive while the server is locked. As soon as the server’s
status becomes FREE, it goes through the records in the de-
layed reply list and sends FREE to the client with the lowest
ID and LOCKED to everyone else. This optimization may
allow the lowest ranking contending client a smooth entry
to the critical section, without backoff.

Making mutex safe It is possible to make the protocol
safe even during instability periods if clients disregard those
replies to their try() requests that arrive after 26 time units.
However, in practice, this optimization can negatively affect
the throughput of the applications whose implementation
does not require the underlying mutex to be safe (e.g., the
operation ordering presented in Section 6).

Parameterized contend In order to allow for better adap-
tation to changing system conditions and to application
needs, it is possible to make A a parameter of the contend
operation (and, consequently, of the try request) instead of

being a system-wide constant. Both safety and the expected
delay become parameterized by the actual A’s employed.

6 Operation ordering

As discussed in Section 1, one of the main applications
for the mutual exclusion protocol of Section 4 is a proto-
col for serializing operations on replicas of an object in a
distributed system. In order to perform an operation o on
the replicated object, a client application submits the opera-
tion for execution. The properties that our ordering protocol
satisfies are the following:

Order There is a well-defined sequence in which submit-
ted operations are applied, and the result of each oper-
ation that returns is consistent with that sequence.

Liveness If arun is eventually stable, then every operation
submitted by a correct client is performed with proba-
bility one, and if performed, its result is returned to the
client.

Due to the Order and Liveness properties, our proto-
col emulates state machine replication [19]. Among oth-
ers, our implementation supports the following distinct fea-
tures: First, the ordering responsibilities are delegated to
the clients, which are not Byzantine by assumption. This
way, we need not employ digital signatures or signature-
like cryptographic constructions, thus improving the perfor-
mance and scalability of the protocol. Second, our proto-
col makes progress by updating only quorums of replicas,
which helps to achieve better load balancing and enhances
scalability. Third, our protocol supports nondeterministic
operations, since each operation is applied at a client and
the resulting object state is then copied back to servers.

Some modern protocols for implementing state machine
replication in Byzantine environments (e.g., [17, 9, 4]) as-
sume a less restricted failure model by allowing arbitrary
client failures. In these solutions, clients do not actively par-
ticipate in the protocol, but serve merely as users that inject
new operations into the server universe and collect respons-
es. While this approach prevents Byzantine clients from
interfering with the ordering protocol, it does not prevent
attacks in which faulty clients corrupt object’s data by sub-
mitting operations with arbitrary parameter values. Thus,
in practice, the added value of providing protection against
Byzantine client failures in terms of the system security
guarantees is outweighed by the performance and scalabil-
ity gain resulting from delegating ordering responsibilities
to the clients.

The detailed client and server programs are shown in
Figure 2 and Figure 3 respectively. The client program for
submit(o) consists of two threads executed concurrently.
The first thread, described in lines 2.3-7, simply submits

the operation o to the servers for execution and awaits re-
sponses. The second thread, lines 2.8-32, invokes opera-
tions to create a new state and commits states in a serial
order; we call this the ordering thread. If f and g are func-
tions, then f|g denotes a function such that (f|g) (o) = g(0)
if g(o) # L and f(o) otherwise; see line 3.24. The follow-
ing subsections contain details about operations, states, and
ranks that are essential to understanding the ordering thread.

6.1 Operationsand states

Our protocol works by applying an operation to a state
to produce a new state and a return result. A client submits
an operation o to be performed by invoking submit(o). For
simplicity of presentation, we assume that the same opera-
tion is never submitted by two distinct clients or twice by
the same client. In practice, enforcing such uniqueness of
operations can be implemented by each client labeling each
of its operations with the client’s identifier and a sequence
number.

A state, denoted by & (possibly with subscripts and/or
superscripts), is an abstract data type that has the following
interfaces:

e g.version is an integer-valued field. It denotes the “ver-
sion” of the state. This field can be set by the protocol
manipulating the state.

e ¢.doOp(0) applies the operation o to the state o, per-
forming any modifications on ¢ in place.

e o.response(o), if defined, is the return result for oper-
ation o.

e o.reflects(o) indicates whether o.doOp(0) was previ-
ously executed.

A state’s interfaces are assumed to satisfy the following
properties. First, o.reflects(o) = true iff doOp(o) was
invoked on some previous state. In practice, this can be
implemented by recording within the state the highest oper-
ation sequence number already performed for each clien-
t. Second, if o is the result of applying operations (via
doOp) to a prior instance o’ such that o' .reflects(o) = false,
o.reflects(o) = true, and o.version = ¢'.version + 1, then
o.response(o) is defined and returns the result for operation
o. Note that by this assumption, o.response(o) can be elimi-
nated (“garbage collected”) when o.version is incremented.
In this way, the size of ¢ can be limited.

Aside from the instance of garbage collection just men-
tioned, we do not further elaborate on garbage collection
here. The primary data structures that grow in our proto-
col as presented in Figures 2 and 3 are (i) the record of
which client operations have been performed (to compute
o.reflects(o)) and (ii) a response function maintained at

each server that records the response for each client opera-
tion (see lines 3.3-4,24). In practice, eliminating unneces-
sary data from these structures can be achieved, for exam-
ple, by propagating information among servers in the back-
ground (e.g., using the techniques of [13]) to convey when
information about a given operation can be purged from the
system. Other optimizations are possible, e.g., that trade off
passing complete states versus update suffixes.

6.2 Rank

Each client executes the ordering thread of our protocol
with an associated integer called its rank. We assume that
no two clients ever adopt the same rank, which can be en-
sured, e.g., if each client’s rank is formed with its identifier
in the low-order bits. When invoking an operation on a serv-
er u in our protocol, a client always sends its current rank as
an argument to the invocation; this rank is denoted by r in
u.get(r), u.propose(o,) and u.commit(o,) invocations.
A server responds to only the highest-ranked client that has
contacted it. In particular, if a server v is contacted by a
client with a lower rank than another client to which it has
already responded, then it throws a RankException that no-
tifies the client of the higher rank under which another client
contacted it. In order to get u to respond to it, the client will
have to abort its current protocol execution, adjust its rank,
and try again (starting at line 2.8).

The precise criteria that dictate when a client aborts its
protocol run to adjust its rank are important to the liveness
of our protocol. On the one hand, if a client aborts its proto-
col run based upon receiving a single RankException, then
the client risks being aborted by a faulty server who in fact
was not contacted by a higher ranking client. On the other
hand, if the client requires b + 1 RankExceptions in order
to abort, then the client may not abort even though b correct
servers have been contacted by a higher-ranking client and
thus will refuse to return responses to this client.

Our solution to this issue therefore mandates that the
quorum system Q we employ satisfy the following prop-
erty: For every By, By C U with |B;| = |Ba| = b, there
exists @ € 9 suchthat @ N (B U Bz) = (. This restriction
enables the client to complete its protocol run using quo-
rums provided up to b correct servers respond with RankEx-
ception. Consequently, whereas original masking quorum
systems existed as long as n > 4b [14], this stronger con-
straint limits their existence to systems in which n > 6b
(see Corollary 4.4 in [14]). When a client is forced to adjust
its rank due to receiving b + 1 RankExceptions, it does so
by choosing a value larger than the maximum of all ranks
reported by those RankExceptions.

We note that an alternative approach would be for clients
to digitally sign (e.g., [18]) their ranks using a key available
only to clients allowed to access the object (or a subset of

1) submit (0):

2) waiting « true;

3) | i« 0,Q1«rQ

4) ||u€Q1 [pu «— U-Smeit(O); Vi« {pu} U Vi,
5) Juntil Gp: [{pu € Vi :p=pu}| > b+1)

6) waiting + false;
7) return p: [{py €Vi:p=pu}| > b+1;

30) Juntil (3Q € Q: Q C Q2);
31) completed « max{completed, o.version};

32)] until (waiting = false);

8) || repeat]
9) contend();
10) Q2 « 0;
11) luew [(0%, 0%, proposer,, pending,) « u.get(r
12) Q2 + {u}UQs;
13) Juntil(3Q € 2: Q C Q2);
14) Y {0 {u:0' =05} > b+ 1}
15) 0° ¢ 0 : o.version = max,s ¢y {o’.version};
16) oP¢ + choose({(c*, proposer,) : ob° # 1});
17) completed + max{completed,
max{v : [{u : oP°.version > v}| > b+ 1}};
18) if (c¢ # L A o°.version > completed)
19) o+ 0%
20) else if (oP¢ # L A oPC.version > completed)
21) o+ oPc,
22) else
23) pending < {o : |{u : 0 € pending,}| > b+ 1};
24) o « apply(pending, c¢);
25) Qs 0;
26) luer [u.propose(o,r); Qa2 + {u} U Q2;
27) Juntil 3Q € Q: Q C Qo)
28) Q2+ 0;
29) ||uEU [u.commit(a, T); Q? ~ {’LL} U Q2;

33) choose({(ck¢, proposer,)}.) :

34) S[1,2,...] « {{o&°, proposer,) },, sorted
in descending order by
(o, proposer) > (o', proposer') <
(o.version > ¢’ .version V
(o.version = ¢'.version A
proposer > proposer’));

35) i< 1;count+ [0,0,...];
36) repeat[(o, proposer) « S[i];

37) countjo] + countjo] + 1;

38) i1+ 1,

39) Juntil (3o : countlc] >b+1 V i>|S]|);
)i

40) if (3o : countlo] > b+ 1)

41) return o : countjo] > b+ 1;

42) else

43) return L;

44) apply(pending, o'):

45) repeat[o < g pending;

46) pending + pending\ {o};
47) if (o'.reflects(o0) = false)
48) o'.doOp(o);

49)] until (pending = 0);
50) o' .version < ¢'.version + 1;
51) return o’;

Figure 2. Client side of

them designated to execute the ordering protocol). When
a server throws a RankException to a client, it passes the
highest rank under which any client has contacted it, includ-
ing the digital signature on that rank from that client. The
client receiving the RankException can verify the validity

ordering protocol

of the rank by verifying the digital signature on it. In this
implementation, a client can abort its protocol run based
on a single RankException with which the client receives a
validly signed rank, since a faulty server cannot forge sig-
natures. This approach imposes overheads in terms of key

1) submit(o):
2) pending « pendingU {o}; 6)
3) sleep until (response(o) # L); | 7)
4) return response(0); 8)
9)
10)

5) get(r):

if (r > maxRank)

maxRank < r;

return (o€, oP¢, proposer, pending);
else

throw RankException;

11) propose(o,T):

12) if (r > maxRank) 20)
13) maxRank < r; 21)
14) proposer < r; 22)
15) oP¢ — o; 23)
16) return;
17) else 24)
18) throw RankException; 25)
26)
27)

19) commit(o,7):

if (r > maxRank)
maxRank « r;
0¢ + o;
pending < pending \

{o: o.reflects(0) = true};
response <« response|a.response;
return;

else
throw RankException;

Figure 3. Server side of ordering protocol

management and computation, and we therefore opt against
it. In particular, digital signatures tend to be relatively in-
tensive to compute and verify. While for a small number
of clients, digital signatures can be emulated using message
authentication codes, this approach does not scale well.

6.3 Protocol overview

At a high level, the ordering thread of the protocol at a
client works by first contending for mutual exclusion, using
the protocol of Section 4 (line 2.9). Once this contend re-
turns, the protocol executes similarly to a 3-phase commit
protocol. It first invokes get on each server « in some quo-
rum @& to obtain the states last committed to u (<) and
last proposed to u (¢%°); the rank proposer, of the client
who proposed ¢%¢; and the current set pending, of pend-
ing operations submitted to u. The client then computes the
following values:

e o°issetto be the state with the highest version number
that has been committed to some correct server (i.e., at
least b + 1 servers) in Q8¢ (lines 2.14-15).

e oP¢ is set to be the state proposed to some correct serv-
er (i.e., at least b + 1 servers) in &t by the highest-
ranking set of proposers (lines 2.16,33-43).

e completed is set to be the highest version number of
all states that the responses from the servers in Q8¢
reveal to be committed at a full quorum. In particular,

if b+ 1 servers report proposed states o2¢ with version
numbers larger than v, then a state with version v must
be committed at a full quorum (line 2.17).

The client chooses which state o to propose and commit
to quorums based on these values. If ¢ has a version num-
ber larger than completed, then it will propose and com-
mit o¢ to ensure that o gets committed to a full quorum
(line 2.19). Its second choice will be to propose and com-
mit the proposed state o?¢ if its version number is larger
than completed (line 2.21). Otherwise, it creates a new s-
tate by applying operationsto o (lines 2.23-24,44-51),and
proposes and commits that state.

The protocol ensures that each newly proposed objec-
t state o’ is derived from the state & that has been most
recently committed by applying operations in the pending
sets of correct servers to o (line 2.24). This is guaranteed
as follows. If o has been committed to a full quorum, then
o® = ¢ at each correct server in that quorum. This implies
that any client that succeeds in invoking get at a full quo-
rum evaluates o°¢ to o, and applies any pending operations
to it. If, on the other hand, o has not been committed at
a full quorum, then it is possible for clients to evaluate o°
to a prior state. However, since o must be proposed to a
full quorum before it is committed, any client that invokes
get on a full quorum evaluates o€ to o. The client will
therefore complete the commitment of ¢ (bypassing o€ s-
ince completed > o¢.version) and then continue by apply-
ing new operations to o to derive o'.

Rank is used to break ties between clients that attempt
to propose different states simultaneously. Suppose that p
and ¢ each invoke get on a quorum of servers and obtain
o°¢ = ¢ as above. If p succeeds to propose the new state o’
at some full quorum, then the protocol ensures that p’s rank
is higher than ¢’s rank (otherwise, RankException would
be thrown by each correct server in the intersection). Note
that, even though ¢’s rank is lower than p’s, it might succeed
in proposing a new state to some servers (but not to a full
quorum) before intersecting with p’s quorum and incurring
RankExceptions. Nevertheless, p’s proposed state and ¢’s
proposed state must have the same version, and hence, the
choose subroutine will correctly identify p’s proposal as the
complete one.

7 Correctness proof of the ordering protocol

In this section we prove that Order and Liveness are sat-
isfied by our protocol. Let M denote a finite set of methods
that for any object state o, a rank » and an operation o, con-
sists of get(r), propose(o, r), commit(c, r) and submit (o).
We assume that any method p € M can be invoked at a
server u at most once throughout the execution. In prac-
tice such a requirement can be easily enforced using unique
method identifiers composed of client identifier and the se-
quence number. Let p.rank be the rank with which method
1 is invoked.

We consider the following system events: For a client p,
let p.send(u, i) be the client event that sends the method
invocation u € M to server u, and let p.ret(u.u, p), be the
client event triggered by the reply of the server u with return
value p to a previously sent method p.

A server event is a computation performed upon receiv-
ing get , propose , commit , or submit invocations from a
client. The event that occurs at a server u as a result of the
invocation of a yu € M is denoted u.u. The code executed
by a correct server upon reception of such an invocation is
the code of the corresponding server method (see Figure 3).
This code executes to completion (return) atomically, with
the exception of submit ; submit executes atomically un-
til the sleep command, and its return constitutes a separate
event. A faulty server can perform arbitrary computation
steps upon reception of client invocations.

We model the system execution as a countable set H of

events partially ordered by X velation induced by the natu-
ral order of the method invocations and returns. We define
the causal cone of an event e in H, denoted ccone(e, H), to
be the subset of H such that Ve' € H, ' € ccone(e, H) iff
e Be.

If a client p invokes method p on every serveru € S C
U in H, then we will unite all p.send(u, 1) events into a
single event called the client invocation of a method u, de-

noted p.u. We will write p.u KL u.p for some u € U iff
p.send(u,) € p.u. We also define the server invocation
of a method p to be simply the event u.u that occurs in
H. A server invocation u.u is called complete in H, if u.u
does not result in RankException. A client invocation p.u
is called complete in H if there exists a quorum @ such
that for each correct server u € @, u.u is complete. We
assume that each history begins with the complete propose
and commit invocations with the initial object state ¢® and
the rank 0 as the arguments.

We first set out to prove the Order property of the pro-
tocol. We start with proving simple facts that correlate the
causal order of propose events with their ranks:

Lemma 3 Let p.propose(sy,71) be complete in H and
q.prOpOSG(Uz,Tz) € H. If ry < 79, then

p.propose(oy,71) X g.propose(oz,r2). Otherwise,

H
g.get(rs) = p.propose(oy,ry).

Proof : The result is straightforward from the protocol and the
definition of the causal order. O

Corollary 3 If both p.propose(ay,T1) and
g.propose(oa,r2) are complete in H, then they are

ordered by the X relation.

For the following lemma, we introduce the following
definition. For any p.propose(a,r), we define its closes-
t complete propose to be p’.propose(a’,r') such that (i)
p'.propose(a’, r') is complete; (ii) p'.propose(a’,r") R
p.propose(o,r); and (iii) there does not exist a com-
plete p".propose(c”,r") such that p'.propose(c’,r’) K
p'".propose(c”, ") EES p.propose(o,r). Note that any
p.propose(a, r), other than the propose of o at system ini-
tialization, has a closest complete propose, and that its clos-
est complete propose is unique by Corollary 3.

Lemma4 Consider any q.propose(oz,Ts). If
p.propose(oy,r1) is its closest complete propose then all
the following results are true:

(1) o2.version = oy .version Or gs.version = g .version+1;
(2) if o3.version = o .version, then o1 = o3;

(3) if o5.version = oy .version + 1, then there exists a com-
plete p'.commit(oy,7') in ccone(g.propose(oa,r2)),
and o, is the result of applying operations in
{o : oyreflects(o) A —oy.reflects(o)} to o1 in some
sequential order.

Proof :(Sketch) We prove the result by induction on
ccone(g.propose(oa,r2)). That is, we suppose the result holds
for any ¢'.propose(a’,r’) € ccone(q.propose(o2,2)), and we
prove the result for g.propose(o2,72). Let p.propose(a,7) be
the first complete propose invocation in the causal chain leading

to p.propose(o1, r1) such that a.version = o1.version. By the
induction hypothesis for 4.2, ¢ = o1.

According to the protocol, the value of o5 is computed based
on the values of {o3,, o3¢, proposer,,, pending,,) returned by each
server v in some quorum (&("2) in response to g.get(r2) invo-
cation. Furthemore, if u is correct, then the value of each o, o£¢
and proposer,, is determined by some (not necessarily complete)
propose invocation p’.propose(c’,r’) € ccone(q.get(r2)). By
applying results of Lemma 3, Corollary 3 and the induction hy-
pothesis, we conclude the following: If »* > #, then the closest
complete propose of p’.propose(a”’, ') is either p.propose(a, 7)
or the one that causally follows p.propose(a, 7). Therefore, either
o' = o1, 0r ¢’ is a state that extends ¢1 with some previously sub-
mitted operations. Otherwise, if »’ < #, then the closest complete
propose of p'.propose(a”’, r') causally precedes p.propose(a, 7)
and therefore, o’ .version < &.version.

Once we know the possible values of o5, o4 and proposer,, as
returned by q.get(r2), and given that any two quorums intersect
by at least 2b + 1 servers, we derive that the value of oo computed
in lines 2.14-24 satisfies the lemma results.O

Theorem 1 (Order) There is a well-defined sequence in
which submitted operations are applied and the result of
each operation that returns is consistent with that sequence.

Proof :(Sketch) By Lemma 4 for each committed state o, o is
derived by applying a block of pending operations (line 2.24) to a
previously committed state o’ such that ¢’.version = a.version —
1 and for no state o” # o', 0" .version = o' .version. Since the
operations within each such pending block are applied in a serial
order (lines 2.44-51), there is a well-defined sequence in which
operations are applied.d

Theorem 2 (Liveness) If a run is eventually stable, then
every operation submitted by a correct client is performed
with probability one, and if performed, its result is returned
to the client.

Proof : (Sketch) Once the system is stable, eventually some correct
client ¢ returns from its invocation of contend with probability
one. This client executes for sufficiently long (if A is chosen ade-
quately) in isolation of other clients. It either commits an existing
state o to a full quorum or else extends o with operations in pend-
ing and proposes and commits the new state ¢’ at a full quorum.c

References

[1] L. Alvisi, D. Malkhi, E. Pierce and M. Reiter. Fault detection for
Byzantine quorum systems. In Proceedings of the 7th IFIP Interna-
tional Working Conference on Dependable Computing for Critical
Applications, pages 357-371, January 1999.

[2] T.E.Anderson. The performance of spin-lock alternatives for shared-
memory multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems 1(1):6-16, January 1990.

[3] R.Alurand G. Taubenefeld. Fast timing-based algorithms. Distribut-
ed Computing 10(1):1-10, 1996.

[4]

[5]

[6]

[71

8]

[0

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and
Implementation, February 1999.

M. Choy and A. Singh. Adaptive solutions to the mutual exclusion
problem. Distributed Computing 8(1):1-17, 1994.

C. Fetzer and F. Cristian. On the possibility of consensus in asyn-
chronous systems. In Proceedings of the 1995 Pacific Rim Interna-
tional Symposium on Fault-Tolerant Systems, December 1995.

J. Hastad, T. Leighton, and B. Rogoff. Analysis of backoff protocols
for multiple access channels. SIAM Journal of Computing, October
1995.

I. Keidar and D. Dolev. Increasing the resilience of distributed and
replicated database systems. Journal of Computer and System Sci-
ences 57(3):309-324, December 1998.

K. P. Kihlstrom, L. E. Moser and P. M. Melliar-Smith. The Se-
cureRing protocols for securing group communication. In Proceed-
ings of the 31st IEEE Hawaii International Conference on System
Sciences, pages 317-326, January 1998.

L. Lamport. Time, clocks, and the ordering of events in distributed
systems. Communications of the ACM 21(7):558-565, July 1978.

L. Lamport. The Part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133-169, May 1998.

M. Maekawa. A v/ N algorithm for mutual exclusion in decentral-
ized systems. ACM Transactions on Computer Systems 3(2):145-
159, May 1985.

D. Malkhi, Y. Mansour, and M. K. Reiter. On diffusing updates in a
Byzantine environment. In Proceedings of the 18th IEEE Symposium
on Reliable Distributed Systems, October 1999.

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed
Computing 11(4):203-213, 1998.

D. Malkhi and M. K. Reiter. Secure and scalable replication in Pha-
lanx. In Proceedings of the 17th IEEE Symposium on Reliable Dis-
tributed Systems, pages 51-58, October 1998.

D. Malkhi and M. K. Reiter. An architecture for survivable coordi-
nation in large-scale systems. IEEE Transactions on Knowledge and
Data Engineering 12(2):187-202, March/April 2000.

M. K. Reiter. The Rampart toolkit for building high-integrity ser-
vices. In Theory and Practice in Distributed Systems (Lecture Notes
in Computer Science 938), pages 99-110, Springer-Verlag, 1995.

R. L. Rivest, A. Shamir and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM 21(2):120-126, February 1978.

F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys 22(4):299—
319, December 1990.

M. Singhal. A class of deadlock-free Maekawa-type mutual exclu-
sion algorithms for distributed systems. Distributed Computing 4(3),
February 1991.

M. Singhal. A taxonomy of distributed mutual exclusion. Journal of
Parallel and Distributed Computing 18(1):94-101, May 1993.

