
1

Gossip-based protocols

Where we were

Programmers face problems in building

distributed applications

Fundamental problems

Consensus

Atomic Broadcast / Multicast

Group membership

Isis Toolkit [Birman, van Renesse et al.]

Where we are

Scalability

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing, Vancouver, BC, August 1987, pp. 1-12.

Setup

Database replicated at thousands of sites

Network is slightly unreliable

Point-to-Point communication abstraction

Crash failure model

2

Setup

Database replicated at thousands of sites

Network is slightly unreliable

Point-to-Point communication abstraction

Crash failure model

Updates injected at a single site

Updates must propagate to all other sites*

Want contents of all replicas to be identical if

updates stop and system left alone

Notation

S is a set of n sites (replicas)

K is a set of keys

V is a set of values

T is a set of timestamps (totally ordered)

For any site s and key k,

s.ValueOf : K (V T)

More notation

Pretend there is only one key

s.ValueOf (V T)

Consistency definition

 s, s’ S : s.ValueOf = s’.ValueOf

To update the database with value v at time t

s.ValueOf := (v, t)

Direct mail

Idea: If an update is injected at site s, then s mails the
update to every other site in S

Upon an update at site s:
 for each s’ S \ {s} do

send (Update, s.ValueOf) to s’

 endloop

Upon receiving (Update, (v,t)):

 if s.ValueOf.t < t then

s.ValueOf := (v,t)

 endif

Weakness: send is not reliable

 what if site crashes?

3

Anti-entropy

Idea: Every site regularly chooses another site at random

and exchanges database contents with it to resolve

differences.

Each server s periodically executes:
 for some s’ S \ {s} do

ResolveDifference(s,s’)

 endloop

Push:

 ResolveDifference(s,s’) {

 if s.ValueOf.t > s’.ValueOf.t then

s’.ValueOf := s.ValueOf

 endif

Pull:

 ResolveDifference(s,s’) {

 if s.ValueOf.t < s’.ValueOf.t then

s.ValueOf := s’.ValueOf

 endif

Push vs. pull analysis

Let pi be the probability that a site still has not

been updated by the ith try at anti-entropy

For large values of n:

Push: pi+1 = pi e
-1

Pull: pi+1 = (pi)
2

Converges much faster for small pi

Example using pull mechanism

s1

s2

s3

s4

(v, 1)

Update

direct mail

(v, 1)

anti-entropy

(v, 1)

(v, 2)

direct mail

(v, 2)

(v, 2)

(v, 2)

Anti-entropy facts

Guaranteed to eventually propagate update

to everyone with probability 1

Anti-entropy infects everyone in O(log n) for

uniformly chosen sites

Backup mechanism for direct mail

Weakness: must go through entire database

4

Epidemic terminology

Complex epidemics

Sites can become “cured”

Terminology: susceptible, infective, removed

Strengths: sites do not mail everyone and do not

have to enumerate entire database

Weakness: some may be left susceptible

Resilient to unreliable communication

Anti-entropy is a simple epidemic

Rumor mongering (informal)

All sites start out susceptible

When a site s receives a new update, it

becomes infective

s periodically chooses another site s’

Rumor mongering (informal)

All sites start out susceptible

When a site s receives a new update, it

becomes infective

s periodically chooses another site s’

If s’ does not know the rumor, then it receives

the update and also becomes infective

If s’ already knows the rumor, then s

becomes removed with some probability

Rumor mongering protocol

For a site s:

let L be a list of (initially empty) infective updates

periodically:

for some s’ S \ {s} do

 for each update u L

 send u to s’

if s’ already knows about u then

 remove u from L with probability 1/k

 endloop

upon receiving new update u:

insert u into L

5

Analysis of rumor mongering

i = fraction of infective sites

s = fraction of susceptible sites

r = fraction of removed sites

si
dt

ds
=

is
k

si
dt

di
)1(

1
+=

ksk

k

ds

di 11
+

+
=

ds
ksk

k
di +

+
=

11

c
k

s
s

k

k
si ++

+
=

ln1
)(

k

k
c

1+
=

()
k

s
s

k

k
si

ln
1

1
)(+

+
=

()()sk
es

+= 11

Rumor mongering facts

Expected fraction of susceptible sites

s = e-(k+1)(1-s)

Back up mongering with anti-entropy

Mongering vs. direct mail

Redistribution

Consider case when half of sites receive update

Old rumors die fast

Death and its consequences

Replace deleted item with a death

certificate = (NIL, tnow)

Provided no further updates, a death

certificate eventually “deletes” all copies of an

item…but when?

Problem: what if a single site is down?

Death certificates

Death certificate contains two values

t – time of deletion

t1 – threshold value, all servers discard death

certificate after time t + t1

6

Dormant death certificates

Death certificate contains four values

R – set of sites that keep a dormant death certificate

after t + t1
t – time of deletion

t1 – threshold value, all servers not in R discard death

certificate after time t + t1

t2 – all servers discard the certificate after t + t2

Dormant death certificates

Death certificate contains five values

R – set of sites that keep a dormant death certificate

after ta + t1
t – time of deletion

ta – time of activation

t1 – all servers not in R discard certificate after ta + t1

t2 – all servers discard the certificate after ta + t2

1

Bimodal multicast

K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal

Multicast. ACM Transactions on Computer Systems. 17(2): 41-88. May 1999

War games

general

Class I – Strong reliability

Properties: Agreement, validity, termination, integrity

Costly protocols

Limited scalability

Unpredictable performance under

congestion

Degraded throughput under transient

failures (full buffers and flow control)

Class II – Best effort reliability

“If a participating process discovers a failure,

a reasonable effort is made to overcome it.”

Better scalability than Class I protocols

Difficult to reason about systems without

concrete guarantees

2

Bimodal multicast claims

Scales well

Provides predictable reliability and steady

throughput under highly perturbed conditions

Very small probability a few processes deliver

High probability almost everyone delivers

“Vanishingly small probability” in between

A problem to our solution

Applications that need high throughput

(frequent updates) and can tolerate small

inconsistencies

Examples: health care, stock trading,

streaming data

System assumptions

At least 75% of healthy processes will

respond to incoming messages within a

known bound

75% of messages will get through the

network

Crash failures

Protocol details

Consists of two subprotocols

Unreliable multicast (i.e. – IP multicast)

Anti-entropy that operates in rounds

Each round contains two phases

Phase 1: randomly choose another process and

send message history to it

Phase 2: upon receiving a message history, solicit

any messages you may be missing

3

Bimodal multicast example

p0

p1

p2

p3

M0
M1

Anti-entropy

Phase 1 Phase 2

M0

Optimizations

Reducing unnecessary communication

Service only recent solicitations

Retransmission limit

Most recent first transmission

Random graphs for scalability

Multicast some retransmissions

What’s new about this?

To save space, keep a message for anti-

entropy only for a fixed number of rounds

Processes try to achieve a common prefix

If a process cannot recover a message, it

gives up and notifies application

suffix

Recovery from delivery failures

In previous protocols, a lagging process

could drag the system down

In bimodal multicast, a lagging process is

effectively partitioned from the rest of the

system

Do nothing

Maintain a few very large buffers

Employ a state transfer technique

4

Throughput results

Eight processes running on an SP2

Data rate = 75 7 KB multicasts per second

Two cases

Sleep a process for 100 ms with .05 probability

Sleep a process for 100 ms with .45 probability

1

Lightweight Probabilistic Broadcast

P. Th. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.-M. Kermarrec.
Lightweight Probabilistic Broadcast. ACM Transactions on Computer Systems (TOCS)
21(4):341-374, November 2003

Bimodal Multicast

Scalability addressed with respect to
reliability and throughput

Processes knew entire membership set

Probabilistic Membership

Each process has a view of l processes it

believes are members

Each buffer b has at most |b|m elements

i.e. - |view|m = l

Piggyback membership updates on each
gossip message

Setup

Set of processes {p1, p2, …} with
distinct identifiers

Unreliable point-to-point network

Processes join and leave dynamically

Two kinds of messages
Broadcast messages (events)

Gossip messages
(events, membership updates)

2

Broadcast message

id = uniquely identifies each
message as well as the sender

event

Gossip message

1. events =
Set of all events received for the first time since
the last outgoing gossip message

2. eventIDs =
Set of all eventIDs for messages received by this
process

3. subs = Set of processes “currently” joining

4. unsubs = Set of processes “currently” leaving

Process variables

Each process maintains 6 variables

1. events : set of events received for first time
since last gossip

2. eventIDs : set of eventIDs received

3. subs : set of processes “currently” joining

4. unsubs : set of processes “currently” leaving

5. view : set of l “current” members

6. retrieveBuf : set of eventIDs to retrieve

periodically

let gossip be a new gossip message

gossip.events := events

gossip.eventIDs := eventIDs
gossip.subs := subs {pi }

gossip.unsubs := unsubs
choose F random members t1, t2, … , tF view

for all j [1..F] do

send gossip to tj

events :=

Gossip transmission

Broadcast reception

Upon receipt of broadcast (id, event)

events := events {event}

eventIDs := eventIDs {id}

3

upon reception of gossip

{phase 1: update unsubscriptions}
for all unsub gossip.unsubs do

view := view \ {unsub}

subs := subs \ {unsub}
unsubs := unsubs unsub

while |unsubs| > |unsubs|m do

remove random element from
unsubs

{phase 2: update subscriptions}
for all newsub gossip.subs \ {pi} do

if newsub view then
view := view newsub

subs := subs newsub

while |view| > l do

target := random element in view
view := view \ {target}

subs := subs \ {target}

while |subs| > |subs|m do

remove random element from subs

{phase 3: update events}

for all e gossip.events do

if e.id eventIDs then

events := events {e}

DELIVER(e)

eventIDs := eventIDs {e.id}

for all id gossip.eventIDs do

if id eventIDs then

retrieveBuf := retrieveBuf {id}

while |eventIDs| > |eventIDs|m do

remove oldest element from eventIDs

while |events| > |events|m do

remove random element from events

Subscribing & Unsubscribing

To subscribe, a process pi must know a
process pj already in the membership
set and send (, , , {pi }) to pj

To unsubscribe, a process pi can inject
its own unsubscription with a
timestamp -or- just leave

Analytical evaluation

Assumptions

n processes {p1, p2, … , pn}

Gossip protocol runs in synchronized
rounds

Independent uniformly distributed views

Probability that a given process belongs to pi’s view

()
() ()

()
() ()

1n

len

!len!1lenn

!1n

!1len!1lenn

!2n

==

of possible views for pi

of possible views for pi containing our given process

len

n

len

n

1

1

2

len = |view|m = l

4

Goal: define a lower bound on probability that a given susceptible process p1 is

infected by a given gossip message from a given process p2

Event propagation analysis

()
lostnot is message

andcrash not does

andcrash not does

 withgossip to

chooses that prob.
 views'in is that prob. 2

1

1

2

21 p

p

p

p
pp

k
len

F

n

len
p =

1

Consider an event e
Let sr be the number of processes infected with e at round r
s0 = 1

k
n

F

1
=

Event propagation analysis

k
n

F
p

1
=

pq =1

Probability that a given susceptible process

is infected by a given gossip message

Probability that a given susceptible process is

not infected by a given gossip message

() ()

<

===+

ij

ijqq
ij

in

isjsP
jniiji

rr

,0

,1
)|(1

Let sr be the number of processes infected with e at round r

of combinations of

susceptible processes to infect

prob. that j-i susceptible processes

will be infected in this round

prob. that n-j processes

will remain susceptible

Calculating distribution for sr

() ()

<

===+

ij

ijqq
ij

in

isjsP
jniiji

rr

,0

,1
)|(1

k
n

F
q

1
1=

()

() () ()isjsPisPjsP

j

j
jsP

rr

ji

rr =====

=

=
==

++ |

0,0

1,1

11

0

Let sr be the number of processes infected with e at round r

Analysis?

|view|m has no expected effect on latency or
reliability

Mathematical guarantees only hold for
independent uniformly distributed views

Results show that their algorithm is “close” to
perfect views, but also show that their
reliability does depend on l

5

Events buffer optimization

Age-based message purging

Idea

Estimate number of rounds event has been
in system

If necessary, purge buffer of “older” events

Why can’t you use age-based for subs buffer, too?

Age-based purging example

p1

p2

broadcast(m1)

broadcast(m2)

({ (m2.event, 1) }, {m2.guid}, ,)

events2 = { (m2.event, 0) }

events1 = { (m1.event, 0) }

events2 = { (m2.event, 1) }

events1 = { (m1.event, 0), (m2.event, 1) }

events1 = { (m1.event, 0) }
events1 = { (m1.event, 1) }

({ (m1.event, 1) }, {m1.guid, m2.guid}, ,)

Subs buffer optimization

Frequency-based message purging

Idea

Tag each subscription with number of
times it has been gossiped

If necessary, purge subscriptions that have
been gossiped more

Why does this not work for events buffer?

Frequency-based purging

p1

p2

p3

p4

Subscription(m1)

Subscription(m2)

Subscription(m2)

Subscription(m2)

Subscription(m3)

m1.freq = 1 m1.freq = 1

m2.freq = 1

m1.freq = 1

m2.freq = 2

m1.freq = 1

m2.freq = 3

m1.freq = 1

m2.freq = 3

m3.freq = 1

1

Directional Gossip

M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network.

In European Dependable Computing Conference (EDCC), pp. 364-379, 1999.

Probabilistic broadcasts

Initial unreliable multicast followed by
subsequent gossip rounds

Achieves high reliability

Assumes an underlying point-to-point
communication mechanism

Example WAN

 LAN
1

 LAN
1

 LAN
2

 LAN
2

 LAN
3

 LAN
3

Flooding

Upon receiving a new message, a process
forwards it to all neighbors the process
believes have not received it yet

Easy to implement

High overhead in LAN

2

Marrying gossip and flooding

Uniform gossip:

Less overhead in LAN than flooding

Only sends to random subset of processes

Flooding

Less overhead on inter-network routers
than uniform gossip

Only sends to neighbors

First marriage

when (p receives a new message m)

while (p believes not enough neighbors have m) {

q = a neighbor process of p

send m to q

}

Idea: Forward messages to processes with less connectivity.

 Gossip to processes with more connectivity

s p1

p3

p2

pn Pn-1

M

Setting

 LAN
1

 LAN
1

 LAN
2

 LAN
2

 LAN
3

 LAN
3

B

Designated Gossip Servers

Each gossip server maintains a set of adjacent routers

Two servers are neighbors if their adjacent routers sets have a common element

How to measure connectivity?

 LAN
4

 LAN
4

D C

A

Link cut sets

Given a connected graph G = V, E , the

link cut set is a set of edges Elcs , such
that G’ = V, E \ Elcs is disconnected

The link cut set with respect to nodes p
and q is a set of edges Epq, such that
removing all edges in Epq will disconnect
p and q

3

Weights and link cut sets

p assigns a weight to q equal to the size
of the smallest link cut set for p and q

Menger’s Theorem:

For any two nodes of a graph, the maximum number

of link-disjoint paths between them equals the size of
the minimum link cut set between them.

Inter-network router notation

A pair of servers (in different LANs) that
are neighbors identifies an inter-
network router

A path of k servers p1, p2, … pk

identifies a trajectory of k-1

inter-network routers

INR(p1, p2, … pk) = r1, r2, … rk-1

Paths in a gossip message m

m.path is a path of servers p1, p2, … pk such

that p1 originated the message and sent it to
neighbor p2, who then sent it to p3, etc.

A path of servers p1, p2, … pk implicitly

contains n-1 timestamps

p2.timestamp is the time that process p2 received
the message

Given INR(p1, p2, … pk) = r1, r2, … rk-1 ,

ri.timestamp = pi+1.timestamp

Initiating a gossip message

for process p:

let m be a new gossip message
m.path = p

for each q Neighborsp

send m to q

A

p q1
m.path = p

B

q2

m.path = p, q1

4

Initially: q Neighborsp : Trajectories(q) = { INR(p, q) }

when p receives a gossip message m for the first time {

int sent := 0

for each q Neighborsp

if (q m.path) then

UpdateTrajectories(Trajectories(q), INR (Trim(m.path,p)))

void UpdateTrajectories(reference to set of trajectories T, trajectory R) {

if (all trajectories in T are disjoint with R) then

T := T { R }

else for each t T

 for each router r1 t and router r2 R

if r1 = r2 then

 r1.timestamp := max(r1.timestamp, r2.timestamp)

}

Initially: q Neighborsp : Trajectories(q) = { INR(p, q) }

when p receives a gossip message m for the first time {

int sent := 0
for each q Neighborsp

if (q m.path) then

UpdateTrajectories(Trajectories(q), INR (Trim(m.path,p)))

for each q Neighborsp

 remove old trajectories from Trajectories(q)
for each q Neighborsp

if ((q m.path) (| Trajectories(q) | < k)) then

m’ := m

append p to m’.path

send m’ to q

sent := sent + 1

let S be a random subset of Neighborsp \ { q : q m.path },

s.t. |S| = min(F – sent, | Neighborsp \ { q : q m.path } |)

for each q S

m’ := m

append p to m’.path

send m’ to q

}

Spatial Gossip [KKD01]

Embed processes in D dimensional space

let du,v be distance between u and v

u sends a gossip message to v with

probability proportional to , p [1,2]

Expected time for message to reach nodes at
distance d = O(log1+ d)

d
pD

vu ,

1

DoS attacks [BKS04]?

System model

Network is fully connected

Asynchronous communication

Insecure channels

Loss rate on communication links is bounded
and uniform

Adversary can generate and insert messages
into channels and snoop on messages

5

Drum protocol (informal)

Use public key cryptography
Pull mechanism

p sends history, portrand to q on well-known port
q sends msgmissed to p on portrand

Push mechanism
p sends push-offer, portrand to q on well-known port
q sends history, port’rand to p on portrand

p sends msgmissed to q on port’rand

Bound number of messages processed per port
Discard all messages in buffers after a round

