Gossip-based protocols

Where we were

- Programmers face problems in building distributed applications
- Fundamental problems
 - Consensus
 - Atomic Broadcast / Multicast
 - Group membership
- Isis Toolkit [Birman, van Renesse et al.]

Where we are

Scalability

- Database replicated at thousands of sites
- Network is slightly unreliable
- Point-to-Point communication abstraction
- Crash failure model

Setup

Setup

- Database replicated at thousands of sites
- Network is slightly unreliable
- Point-to-Point communication abstraction
- Crash failure model
- Updates injected at a single site
- Updates must propagate to all other sites*
- Want contents of all replicas to be identical if updates stop and system left alone

Notation

- S is a set of n sites (replicas)
- K is a set of keys
- V is a set of values
- T is a set of timestamps (totally ordered)
- For any site s and key k,

 $s.\text{ValueOf} : K \rightarrow (V \times T)$

More notation

- Pretend there is only one key

 $s.\text{ValueOf} \in (V \times T)$

- Consistency definition

 $\forall s, s' \in S : s.\text{ValueOf} = s'.\text{ValueOf}$

- To update the database with value v at time t

 $s.\text{ValueOf} := (v, t)$

Direct mail

Idea: If an update is injected at site s, then s mails the update to every other site in S

```
Upon an update at site $s$:
  for each $s' \in S \setminus \{s\}$ do
    send (Update, s.\text{ValueOf}) to $s'$
  endloop

Upon receiving (Update, (v,t)):
  if $s.\text{ValueOf}.t < t$ then
    $s.\text{ValueOf} := (v, t)$
  endif
```

Weakness: send is not reliable what if site crashes?
Anti-entropy

Idea: Every site regularly chooses another site at random and exchanges database contents with it to resolve differences.

Each server s periodically executes:

```plaintext
for some $s' \in S \setminus \{s\}$ do
  ResolveDifference(s, s')
endloop
```

Push vs. pull analysis

Let p_i be the probability that a site still has not been updated by the i^{th} try at anti-entropy.

For large values of n:

- Push: $p_{i+1} = p_i e^{-1}$
- Pull: $p_{i+1} = (p_i)^2$ Converges much faster for small p_i

Example using pull mechanism

- Guaranteed to eventually propagate update to everyone with probability 1
- Anti-entropy infects everyone in $O(\log n)$ for uniformly chosen sites
- Backup mechanism for direct mail
- Weakness: must go through entire database
Epidemic terminology

- Resilient to unreliable communication
- Anti-entropy is a simple epidemic
- Complex epidemics
 - Sites can become “cured”
 - Terminology: susceptible, infective, removed
 - Strengths: sites do not mail everyone and do not have to enumerate entire database
 - Weakness: some may be left susceptible

Rumor mongering (informal)

- All sites start out susceptible
- When a site s receives a new update, it becomes infective
- s periodically chooses another site s’
- If s’ does not know the rumor, then it receives the update and also becomes infective
- If s’ already knows the rumor, then s becomes removed with some probability

Rumor mongering protocol

For a site s:
let L be a list of (initially empty) infective updates
periodically:
 for some s ∈ S \ {s} do
 for each update u ∈ L
 send u to s'
 if s’ already knows about u then
 remove u from L with probability 1/k
 endloop
upon receiving new update u:
 insert u into L
Analysis of rumor mongering

\[\frac{ds}{dt} = -si \]

\[\frac{di}{dt} = +si - \frac{1}{k}(1-s)i \]

\[\frac{di}{ds} = - \frac{k+1}{k} + \frac{1}{ks} \]

\[i(s) = \frac{k k+1}{k k} \ln \frac{1}{s} \]

\[c = \frac{k+1}{k} \]

\[s = e^{-(k+1)(1-s)} \]

Rumor mongering facts

- Expected fraction of susceptible sites
 \[s = e^{-\frac{(k+1)}{k}(1-s)} \]
- Back up mongering with anti-entropy
- Mongering vs. direct mail
 - Redistribution
 - Consider case when half of sites receive update
 - Old rumors die fast

Death and its consequences

- Replace deleted item with a death certificate = (NIL, t_{now})
- Provided no further updates, a death certificate eventually “deletes” all copies of an item…but when?
- Problem: what if a single site is down?

Death certificates

- Death certificate contains two values
 - t = time of deletion
 - t_{1} = threshold value, all servers discard death certificate after time t + t_{1}
Dormant death certificates

- Death certificate contains four values
 - R – set of sites that keep a dormant death certificate after $t + t_1$
 - t – time of deletion
 - t_1 – threshold value, all servers not in R discard death certificate after time $t + t_1$
 - t_2 – all servers discard the certificate after $t + t_2$

Dormant death certificates

- Death certificate contains five values
 - R – set of sites that keep a dormant death certificate after $t_a + t_1$
 - t – time of deletion
 - t_a – time of activation
 - t_1 – all servers not in R discard certificate after $t_a + t_1$
 - t_2 – all servers discard the certificate after $t_a + t_2$
Bimodal multicast

Class I – Strong reliability

- Properties: Agreement, validity, termination, integrity
- Costly protocols
- Limited scalability
- Unpredictable performance under congestion
- Degraded throughput under transient failures (full buffers and flow control)

Class II – Best effort reliability

- “If a participating process discovers a failure, a reasonable effort is made to overcome it.”
- Better scalability than Class I protocols
- Difficult to reason about systems without concrete guarantees

War games
Bimodal multicast claims

- Scales well
- Provides predictable reliability and steady throughput under highly perturbed conditions
- Very small probability a few processes deliver
- High probability almost everyone delivers
- “Vanishingly small probability” in between

A problem to our solution

- Applications that need high throughput (frequent updates) and can tolerate small inconsistencies
- Examples: health care, stock trading, streaming data

System assumptions

- At least 75% of healthy processes will respond to incoming messages within a known bound
 - 75% of messages will get through the network
 - Crash failures

Protocol details

- Consists of two subprotocols
- Unreliable multicast (i.e. – IP multicast)
- Anti-entropy that operates in rounds
 - Each round contains two phases
 - Phase 1: randomly choose another process and send message history to it
 - Phase 2: upon receiving a message history, solicit any messages you may be missing
Bimodal multicast example

What’s new about this?

- To save space, keep a message for anti-entropy only for a fixed number of rounds
- Processes try to achieve a common prefix
- If a process cannot recover a message, it gives up and notifies application

Optimizations

- Reducing unnecessary communication
 - Service only recent solicitations
 - Retransmission limit
 - Most recent first transmission
- Random graphs for scalability
- Multicast some retransmissions

Recovery from delivery failures

- In previous protocols, a lagging process could drag the system down
- In bimodal multicast, a lagging process is effectively partitioned from the rest of the system
 - Do nothing
 - Maintain a few very large buffers
 - Employ a state transfer technique
Throughput results

- Eight processes running on an SP2
- Data rate = 75.7 KB multicasts per second
- Two cases
 - Sleep a process for 100 ms with .05 probability
 - Sleep a process for 100 ms with .45 probability
Lightweight Probabilistic Broadcast

Bimodal Multicast

- Scalability addressed with respect to reliability and throughput
- Processes knew entire membership set

Probabilistic Membership

- Each process has a view of \(l \) processes it believes are members
- Each buffer \(b \) has at most \(|b|_m\) elements
 i.e. \(|\text{view}|_m = l\)
- Piggyback membership updates on each gossip message

Setup

- Set of processes \(\{p_1, p_2, \ldots\} \) with distinct identifiers
- Unreliable point-to-point network
- Processes join and leave dynamically
- Two kinds of messages
 - Broadcast messages (events)
 - Gossip messages
 (events, membership updates)
Broadcast message

- **id** = uniquely identifies each message as well as the sender
- **event**

Gossip message

1. **events** = Set of all events received for the first time since the last outgoing gossip message
2. **eventIDs** = Set of all eventIDs for messages received by this process
3. **subs** = Set of processes “currently” joining
4. **unsubs** = Set of processes “currently” leaving

Process variables

Each process maintains 6 variables

1. **events** : set of events received for first time since last gossip
2. **eventIDs** : set of eventIDs received
3. **subs** : set of processes “currently” joining
4. **unsubs** : set of processes “currently” leaving
5. **view** : set of “current” members
6. **retrieveBuf** : set of eventIDs to retrieve

Broadcast reception

Upon receipt of broadcast (id, event)

- **events** := events ∪ {event}
- **eventIDs** := eventIDs ∪ {id}

Gossip transmission

periodically

- **let** gossip be a new gossip message
- gossip.events := events
- gossip.eventIDs := eventIDs
- gossip.subs := subs ∪ {p_i}
- gossip.unsubs := unsubs
- choose F random members t_1, t_2, ..., t_F ∈ view
- for all j ∈ {1..F} do
 - send gossip to t_j
- **events** := ∅
Upon reception of gossip

(phase 1: update unsubscriptions)
for all unsub ∈ gossip.unsubs do
 view := view \ {unsub}
 subs := subs \ {unsub}
while |unsubs| > |unsubs|m do
 view := view \ {unsub}
 subs := subs \ {unsub}
unsubs := unsubs

(phase 2: update subscriptions)
for all newsub ∈ gossip.subs \ {p} do
 if newsub ∈ view then
 view := view \ {newsub}
 subs := subs \ {newsub}
while |view| > i do
 target := random element in view
 view := view \ {target}
 subs := subs \ {target}
while |subs| > |subs|m do
 remove random element from subs

(phase 3: update events)
for all e ∈ gossip.events do
 if e.id ∈ eventIDs then
 events := events \ {e}
 DELIVER(e)
 eventIDs := eventIDs \ {e.id}
 for all id ∈ gossip.eventIDs do
 if id ∈ eventIDs then
 retrieveBuf := retrieveBuf \ {id}
while |eventIDs| > |eventIDs|m do
 remove oldest element from eventIDs
while |events| > |events|m do
 remove random element from events

Subscribing & Unsubscribing

- To subscribe, a process \(p_i \) must know a process \(p_j \) already in the membership set and send \((\emptyset, \emptyset, \emptyset, \{p_j\})\) to \(p_j \)
- To unsubscribe, a process \(p_i \) can inject its own unsubscription with a timestamp -or- just leave

Analytical evaluation

Assumptions

- \(n \) processes \(\{p_1, p_2, \ldots, p_n\} \)
- Gossip protocol runs in synchronized rounds
- Independent uniformly distributed views

Probability that a given process belongs to \(p_i \)'s view

\[
\begin{align*}
\text{# of possible views for } p_i \text{ containing our given process} & = \frac{(n-2)}{(n-1)} \\
\text{# of possible views for } p_i \text{ containing our given process} & = \frac{(n-2)}{(n-1)} \frac{(n-1)}{(n-2)} = \frac{len}{n-1}
\end{align*}
\]

\# of possible views for \(p_i \)

\(len = |\text{view}| = i \)
Event propagation analysis

Consider an event e

Let s_r be the number of processes infected with e at round r

$s_0 = 1$

Goal: define a lower bound on probability that a given susceptible process p_1 is infected by a given gossip message from a given process p_2

$$\text{(prob. that p is in p''s view)} \times \text{(prob. that p chooses p' to gossip with)} \times \text{(prob. that p' does not crash and message is not lost)}$$

$$p = \left(\frac{\text{len}}{n-1} \right) \times \left(\frac{F}{\text{len}} \right) \times k = \frac{F}{n-1} k$$

Calculating distribution for s_r

Let s_r be the number of processes infected with e at round r

$$P(s_{r+1} = j \mid s_r = i) = \begin{cases}
\frac{(n-i)}{j-i} \left(1 - q \right)^{j-i} \left(q \right)^{i-j}, & j \geq i \\
0, & j < i
\end{cases}, \quad q = 1 - \frac{F}{n-1} k$$

$$P(s_0 = j) = \begin{cases}
1, & j = 1 \\
0, & j = 0
\end{cases}$$

$$P(s_{r+1} = j) = \sum_{i=0}^{n} P(s_r = i) P(s_{r+1} = j \mid s_r = i)$$

Event propagation analysis

Let s_r be the number of processes infected with e at round r

$$p = \frac{F}{n-1} k$$

Probability that a given susceptible process p_1 is infected by a given gossip message from a given process p_2

$$q = 1 - p$$

Probability that a given susceptible process p_1 is not infected by a given gossip message from a given process p_2

of combinations of susceptible processes to infect

$$P(s_{r+1} = j \mid s_r = i) = \begin{cases}
\frac{(n-i)}{j-i} \left(1 - q \right)^{j-i} \left(q \right)^{i-j}, & j \geq i \\
0, & j < i
\end{cases}$$

Analysis?

- $|\text{view}|_m$ has no expected effect on latency or reliability
- Mathematical guarantees only hold for independent uniformly distributed views
- Results show that their algorithm is “close” to perfect views, but also show that their reliability does depend on l
Events buffer optimization

- Age-based message purging
 - Idea
 - Estimate number of rounds event has been in system
 - If necessary, purge buffer of “older” events

Why can’t you use age-based for subs buffer, too?

Subs buffer optimization

- Frequency-based message purging
 - Idea
 - Tag each subscription with number of times it has been gossiped
 - If necessary, purge subscriptions that have been gossiped more

Why does this not work for events buffer?
Directional Gossip

Probabilistic broadcasts
- Initial unreliable multicast followed by subsequent gossip rounds
- Achieves high reliability
- Assumes an underlying point-to-point communication mechanism

Example WAN

Flooding
- Upon receiving a new message, a process forwards it to all neighbors the process believes have not received it yet
- Easy to implement
- High overhead in LAN
Marrying gossip and flooding

- Uniform gossip:
 - Less overhead in LAN than flooding
 - Only sends to random subset of processes

- Flooding
 - Less overhead on inter-network routers than uniform gossip
 - Only sends to neighbors

First marriage

Idea: Forward messages to processes with less connectivity.
Gossip to processes with more connectivity

```plaintext
when p receives a new message m
while p believes not enough neighbors have m {
  q = a neighbor process of p
  send m to q
}
```

Setting

Each gossip server maintains a set of adjacent routers.
Two servers are neighbors if their adjacent routers sets have a common element.

How to measure connectivity?

Link cut sets

- Given a connected graph $G = \langle V, E \rangle$, the link cut set is a set of edges E_{LCS}, such that $G' = \langle V, E \setminus E_{\text{LCS}} \rangle$ is disconnected.
- The link cut set with respect to nodes p and q is a set of edges E_{pq}^\prime such that removing all edges in E_{pq}^\prime will disconnect p and q.
Weights and link cut sets

- \(p \) assigns a weight to \(q \) equal to the size of the smallest link cut set for \(p \) and \(q \)
- Menger’s Theorem:

 For any two nodes of a graph, the maximum number of link-disjoint paths between them equals the size of the minimum link cut set between them.

Inter-network router notation

- A pair of servers (in different LANs) that are neighbors identifies an inter-network router
- A path of \(k \) servers \(\langle p_1, p_2, ..., p_k \rangle \) identifies a trajectory of \(k-1 \) inter-network routers

 \[\text{INR}(\langle p_1, p_2, ..., p_k \rangle) = \langle r_1, r_2, ..., r_{k-1} \rangle \]

Paths in a gossip message \(m \)

- \(m.\text{path} \) is a path of servers \(\langle p_1, p_2, ..., p_k \rangle \) such that \(p_1 \) originated the message and sent it to neighbor \(p_2 \) who then sent it to \(p_3 \), etc.
- A path of servers \(\langle p_1, p_2, ..., p_k \rangle \) implicitly contains \(n-1 \) timestamps

 - \(p_2.\text{timestamp} \) is the time that process \(p_2 \) received the message
 - Given \(\text{INR}(\langle p_1, p_2, ..., p_k \rangle) = \langle r_1, r_2, ..., r_{k-1} \rangle \),

 \(r_i.\text{timestamp} = p_{i+1}.\text{timestamp} \)

Initiating a gossip message

for process \(p \):

 let \(m \) be a new gossip message

 \(m.\text{path} = \langle p \rangle \)

 for each \(q \in \text{Neighbors}_p \)

 send \(m \) to \(q \)

\[\begin{align*}
 & p \quad m.\text{path} = \langle p \rangle \\
 \quad \quad \quad \rightarrow \quad \quad \quad \rightarrow \quad \quad \quad \rightarrow \\
 & q_1 \quad m.\text{path} = \langle p, q_1 \rangle \\
 \quad \quad \quad \rightarrow \quad \quad \quad \rightarrow \quad \quad \quad \rightarrow \\
 & q_2
\]
Initially: \(V q \in \text{Neighbors}_p : \text{Trajectories}(q) = \{ \text{INR}(p, q) \} \)

when \(p \) receives a gossip message \(m \) for the first time

\[
\text{int} \; \text{sent} := 0 \\
\text{for each} \; q \in \text{Neighbors}_p \\
\quad \text{if} \; (q \in m.\text{path}) \; \text{then} \\
\quad \quad \text{UpdateTrajectories}(\text{Trajectories}(q), \text{INR}(\text{Trim}(m.\text{path}, p))) \\
\]

void UpdateTrajectories(reference to set of trajectories \(T \), trajectory \(R \)) {
 \text{if} \; (\text{all trajectories in } T \text{ are disjoint with } R) \; \text{then} \\
 \quad T := T \cup \{ R \} \\
 \text{else} \; \text{for each} \; f \in T \\
 \quad \text{for each router } r_1 \in f \; \text{and router } r_2 \in R \\
 \quad \quad \text{if} \; r_1 = r_2 \; \text{then} \\
 \quad \quad \quad r.\text{timestamp} := \max(r.\text{timestamp}, r_2.\text{timestamp}) \\
}

Spatial Gossip [KKD01]
- Embed processes in \(D \) dimensional space
- let \(d_{u,v} \) be distance between \(u \) and \(v \)
- \(u \) sends a gossip message to \(v \) with probability proportional to \(\frac{1}{d_{u,v}^p}, \; p \in [1,2] \)

Expected time for message to reach nodes at distance \(d = O(\log^{1+\varepsilon} d) \)

DoS attacks [BKS04]?

System model
- Network is fully connected
- Asynchronous communication
- Insecure channels
- Loss rate on communication links is bounded and uniform
- Adversary can generate and insert messages into channels and snoop on messages
Drum protocol (informal)

- Use public key cryptography
- Pull mechanism
 - p sends \(\text{history, port}_{\text{rand}}\) to q on well-known port
 - q sends \(\text{msg}_{\text{miss}}\) to p on port_rand
- Push mechanism
 - p sends \(\text{push-offer, port}_{\text{rand}}\) to q on well-known port
 - q sends \(\text{history, port'}_{\text{rand}}\) to p on port_rand
 - p sends \(\text{msg}_{\text{miss}}\) to q on port_rand
- Bound number of messages processed per port
- Discard all messages in buffers after a round