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Abstract

Services replicated using a quorum system allow operations
to be performed at only a subset (quorum) of the servers,
and ensure consistency among operations by requiring that
any two quorums intersect. In this paper we explore the con-
sequences of requiring this intersection property to hold only
with very high probability. We show that doing so can offer
dramatic improvements in the performance and availability
of the service, both for services tolerant of benign server fail-
ures and services tolerant of arbitrary (Byzantine) ones. We
also prove a lower bound on the performance that can be
achieved with this technique.

1 Introduction

Quorums are tools for increasing the availability and effi-
ciency of replicated services. A quorum system is a set of
subsets of servers, every pair of which intersect. Intuitively,
the intersection property guarantees that if a “write” oper-
ation is performed at one quorum, and later a “read” op-
eration at another quorum, then there is some server that
observes both operations and therefore is able to provide the
up-to-date value to the reader. Thus, system-wide consis-
tency can be maintained while allowing any quorum to act
on behalf of the entire system. Compared with performing
every operation at every server—as in the State Machine Ap-
proach [Sch90]—using quorums reduces the load on servers
and increases service availability despite server crashes.

Quorum systems have been extensively studied and mea-
sured (cf., [Gif79, Tho79, Mae85, GB85, Her86, BG87, ET89,
CAA90, AE91, NW94, PW95a, PW95b]). Three measures of
a quorum system will be of particular interest in this paper:
load [NW94], fault tolerance [BG87], and failure probability
(see [BG87, PW95b]). The load of a quorum system is a mea-
sure of its efficiency. Intuitively, the load is the rate at which
the busiest server will be accessed. The fault tolerance, also
called the availability, of a system is the number of servers
that can fail without disabling the system. A related mea-
sure is failure probability, the probability that the system is
disabled. (Load, fault tolerance, and failure probability will
be defined precisely in Section 2.} The fault tolerance of any
quorum system is bounded by half of the number of servers.
Moreover, as we show in Section 3, there is a tradeoff between
low load and good fault-tolerance (and failure probability),
and in fact it is impossible to simultaneously achieve both
optimally.

To break these limitations, in this paper we relax the
intersection property of a quorum system so that “quorums”
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chosen according to a specified strategy intersect only with
very high probability. We accordingly call these probabilistic
quorum systems, and henceforth refer to systems that satisfy
the original definition of quorums as strict. Probabilistic
quorum systems admit the possibility, albeit small, that two
operations will be performed at non-intersecting quorums, in
which case consistency of the system may suffer.

We show, however, that even a small relaxation of con-
sistency can yield dramatic improvements in the fault toler-
ance and failure probability of the system, while the load re-
mains essentially unchanged. Probabilistic quorum systems
are thus most suitable for use when availability of operations
despite the presence of faults is more important than certain
consistency. This might be the case if the cost of inconsis-
tent operations is high but not irrecoverable, or if obtaining
the most up-to-date information is desirable but not criti-
cal, while having no information may have heavier penalties.
For example, probabilistic quorum systems could be useful
wherever quick access to an answer that is likely to be cor-
rect can greatly improve efficiency in the normal case, and
the cost of dealing with incorrect answers when they do oc-
cur is not too high. Lampson [Lam83] describes this kind of
mechenism as hints, and describes several systems that use
such hints [LS79, MW77, Smi81}. More recently, hints have
been used in mobile systems to find more direct routes to the
current location of a mobile device [JP96, CP96].

1.1 Related Work

Though ours is the first work to study probabilistic quorum
systems as such, the use of replicated variables to give prob-
ably correct results has proved useful in other contexts. Two
examples of this are used to efficiently simulate a PRAM us-
ing an asynchronous system [KPRR92, AR92]. Specifically,
Kedem et al. [KPRR92) use a replicated variable in & way
that a correct copy can be reliably identified and probably ex-
ists. They then use these variables to create a global counter
that processors use to determine whether they are roughly
synchronized with other processors, and behave appropri-
ately if they are not. Aumann and Rabin [AR92] exhibit a
clock construction in an asynchronous system with multiple
processors that use shared memory to create an object that
correctly behaves as a clock with high probability. They
use the clock to ensure that processors stay synchronized
throughout the computation. In both cases, the protocols to
read and write the replicated variables are somewhat com-
plex due to the need to detect or mask incorrect copies.
Malkhi et al. use essentially a hybrid construction of quo-
rums, combining randomized and deterministic choice of mem-
bers, to solve the problem of secure reliable multicast in a
large network with many components [MMR97]. Their work
focuses on a protocol that enforces random choice of mem-
bers by involving a set of deterministically chosen processes,
whose sige is constant, in every operation. Because of this,
if any member of this set fails, the probabilistic “quorums”
become inaccessible, in which case their protocol reverts to



strict quorums.

Unlike these previous works, which are tailored to spe-
cific application requirements, in our work we strive for a
general technique for replicating data with a high degree of
simplicity, efficiency and fault-tolerance. Our techniques are
consequently very different from those used in these previ-
ous works. A possible direction of future work is to deter-
mine whether our techniques could be useful in the context
of PRAM simulation.

1.2 Our Results

We begin by exploring the limits of probabilistic quorum
systems. In particular, we show a lower bound on the load of
probabilistic quorum systems that is within a small constant
fraction of the bound for strict systems. Thus, probabilistic
quorum systems cannot yield substantial improvements on
load in general.

In contrast, we show that probabilistic quorum systems
can yield substantial improvements on load when high fault-
tolerance is also needed. Strict quorum systems over n servers
that achieve the optimal load of 7‘: can tolerate at most /n

faults, and more generally suffer from an inherent tradeoff
between load and fault-tolerance, where improving one must
come at the expense of the other. We show that this limita-
tion does not hold for probabilistic quorum systems. Specif-
ically, we explore probabilistic quorum systems for the case
where up to a constant fraction of the servers fail, for any
constant smaller than 1. We construct a probabilistic quo-
rum system tolerant of such failures and that has a load of
only 0(71:) More precisely, we provide a generic construc-

tion whose load is -4, for any chosen parameter £ < /n,
n
such that the achieved consistency guarantee (probability of

quorum intersection) is at least 1 — et Thus, using prob-
abilistic techniques, we break the tradeoff between low load
and high fault tolerance, achieving optimal load with essen-
tially limitless resiliency. In addition, our construction has
failure probability better than any strict quorum system.
Relaxing consistency can also provide dramatic improve-
ments in an environment in which servers may experience
Byzantine failures. The intersection property of quorums
does not suffice for maintaining consistency in this model,
since two quorums may intersect in a set containing foulty
servers only, who may deviate arbitrarily and undetectably
from their assigned protocol. Therefore, stronger require-
ments are necessary in order to use quorums in Byzantine
environments. For such environments, Malkhi and Reiter de-
fined (strict) dissemination quorum systems [MR97] to sup-
port replicated servers that store self-verifyingdata, i.c., data
that servers can suppress but not undetectably alter (e.g.,
digitally signed data). Briefly, in a t-dissemination quorum
system, any two quorums intersect in ¢ + 1 servers. Dis-
semination quorums systems can be constructed only for
t < |25] arbitrarily faulty servers, and the load of a ¢-

dissemination quorum system is at least 4/ %‘.‘—1 We define
a probabilistic dissemination quorum system in an analogous
way to the definition above, where a probabilistic consistency
property replaces the dissemination consistency one. Once
again, we are able to construct a probabilistic dissemina-
tion quorum system resilient to the Byzantine failure of any
constant fraction of the system and with outstanding fail-
ure probability, for sufficiently large universes, whose load
is O(Jz). For large n, this construction provides consid-
erable advantage over strict dissemination quorum system
constructions.
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The contributions of this paper can be summarized as
follows.

¢ the introduction of probabilistic quorum systems

¢ a lower bound on the load of probabilistic quorum sys-
tems that is within a small constant fraction of the
bound for strict quorum systems.

o ageneric probabilistic quorum system construction that
achieves asymptotically optimal load and fault toler-
ance, with arbitrarily high consistency.

¢ a modification of the construction to work for the case
of Byzantine server failures.

The rest of this paper is structured as follows. We review
the basic definitions of quorum systems and ways of measur-
ing them in Section 2. Section 3 defines probabilistic quo-
rum systems, proves a lower bound on the load of any such
quorum system, and presents a construction of one that ex-
hibits very good load, fault tolerance and failure probability.
Section 4 introduces probabilistic dissemination quorum sys-
tems and provides a construction tolerant of the Byzantine
failure of any constant fraction of the servers. We conclude
in Section 5.

2  Preliminary definitions

In this section, we define precisely the concepts introduced
in Section 1. Assume a universe U of servers, |U| = n.

Definition: A set system Q over a universe U is a set of
subsets of U. |

Definition: A (strict) quorum system Q over a universe
U is a set system over U such that for every ¢,,Q: € @,
Q1NQ2 #0. Each Q € Q is called a quorum. O

As discussed in Section 1, quorum systems are gener-
ally insufficient to guarantee consistency in case of Byzantine
server failures. A t-dissemination quorum system increases
quorum overlap to ¢+ 1 servers, which suffices to mask faulty
server behavior for some types of data [MR97).!

Definition: A quorum system Q is a t-dissemination quo-
rum system if for every Q1,Q3 € Q, |Q1 N Q2| >t + 1.
0

Intuitively, clients pick quorums to access in accordance
with some access strategy, which defines the likelihood that
a quorum is chosen for any given access.

Definition: An access strategy (or just strategy) w for a set
system @ specifies a probability distribution on the elements
of @. That is, w: @ — [0, 1] satisfies EQGQ w(@)=1 [

In this paper we consider several measures of quorum sys-
tems, including the load, fault tolerance, and failure proba-
bility of the system.

The load of a quorum system, defined in [NW94], cap-
tures the probability of accessing the busiest server in the
best case. Load is a measure of efficiency; all other things
equal, systems with lower load can process more requests
than those with higher load.

1The original definition of [MR97] treats dissemination quorum sys-
tems more generally than we do here. The simplified definition pre-
sented here suffices for our purposes.



Definition: Let w be a strategy for a set system @ =
{@1,...,Qm} over a universe U. For an element u € U, the
load induced by w on u is l.(u) = Eq;au w(Q;). The load
induced by a strategy w on Q is Lw(@) = maxucu{lw(u)}.
The loadof Q is L(Q) = minw{Lw(Q)}, where the minimum
is taken over all strategies. 0

Load is a best-case definition (of a worst-behavior prop-
erty). The load of the quorum system will be achieved only if
an optimal access strategy is used, and only in the case that
no failures occur. A strength of this definition is that load
is a property of a quorum system, and not of the protocol
using it.

Fault tolerance and failure probability capture the re-
siliency of the service to crash failures. The fault tolerance of
a quorum system @ is the size of the smallest set of servers
that intersects all quorums in Q.

Definition: For a set system @ = {Qi1,...,Qm} define § =
{§158NnQi#0forall 1 <i< m}. The fault tolerance of Q
is A(Q) = minses|S|. O

Thus, a quorum system Q is resilient to the failure of any
set of A(@) — 1 or fewer servers. In particular, the failure of
at least A(Q) servers is necessary to disable every quorum in
the system, and some particular set of A(Q) failures can in
fact disable them all.

The failure probability Fp(@) of a quorum system is the
probability that there exists a quorum containing no faulty
servers, assuming that servers fail independently with prob-
ability p.

Definition: Assume that each server in U fails with proba-
bility p, and that server failures are independent. The failure
probability Fp(Q) of Q is the probability that every Q € @
contains at least one faulty server. O

A good failure probability Fp(@) for a strict quorum system
@ has limp_00 Fp(@) = 0 when p < 1 [NW94]. For p =
%, there exist strict quorum constructions with Fy(Q) = i,
whereas for p > 1, Fp(@) tends to 1 for all strict quorum
systems.

3 Probabilistic quorum systems

In this section, we show that relaxing the consistency re-
quirement for quorum systems to require only that any two
quorums intersect with high probability can yield dramatic
improvements in the fault tolerance of the system.

There is a tradeoff between load and fault tolerance in

strict quorum systems. It is known that for any strict quorum
€

system Q over n servers, L(Q) > max{?‘cs, X1} where

¢(Q) is the size of the smallest quorum in Q@ [NW94). In
particular, this implies that for any strict quorum system
Q, L(Q) > 7‘; Moreover, the intersection property im-
plies that the failure of any full quorum in Q will disable all
quorums (i.e., A(Q) < ¢(Q)), and so by the aforementioned
lower bound on load, A(Q) < nL(Q). It follows that any
strict quorum system with optimal load of 9(7‘;) has fault
tolerance of (only) O(+/n).

We show that probabilistic quorums are not subject to
this tradeoff by demonstrating a probabilistic quorum sys-
tem over a universe of n elements that has a load of 0(71;)

and fault tolerance of f1(n), with an increasing guarantee of
consistency as n grows. We show that our construction has

exceptionally good failure probability for essentially limitless
component failure probabilities, for appropriate system sizes.
The failure probability of our construction is provably better
than any strict system.

We begin by defining probabilistic quorum systems. Q is
a probabilistic quorum system if the total access probability
of pairs of intersecting quorums is at least 1 — ¢. Formally,
we have the following.

Definition: Let @ be a set system, w an access strategy
for @, and € a constant, 0 < € < 1. The tuple (@, w,€) is a
probabilistic quorum system if

Y. w(@Qu(Q) > 1--

2:Q":(QnQ")#e
a

Abusing terminology slightly, we still call elements of Q quo-
rums, even though a probabilistic quorum system will not in
general be a (strict) quorum system.

Several points are noteworthy with regards to this defi-
nition. First, a probabilistic quorum system is defined with
respect to a specific guarantee level ¢, and thus, there are dif-
ferent systems for different levels of consistency guarantee.
Second, the definition contains an access strategy, which is
chosen to achieve the desired level of guarantee. Other ac-
cess strategies on the same set system may fail to achieve the
required consistency level, as can be trivially demonstrated
by a strategy that chooses each of two nonintersecting quo-
rums with probability 1/2. Thus, for a probabilistic quorum
system to obtain the advertised probability of consistency
when used in a protocol, the specified access strategy must
be enforced. In addition, we have to adjust our definition of
load accordingly.

Definition: If (Q,w,¢) is a probabilistic quorum system,

then L({Q,w,¢€)) = Lw(Q). g

Similarly, the definitions of fault tolerance and failure prob-
ability carry over as expected:

Definition: Let (Q, w,¢) be a probabilistic quorum system.
Then the fault tolerance of (Q,w,¢) is A({@,w,€)) = A(Q)
and the failure probability of (Q,w,e) is Fp((@,w,€})) =
Fp(Q)- O

3.1 A lower bound on load

We start by exploring the limits of the improvements over
strict quorum systems that can be achieved by probabilistic
quorum systems, Specifically, we show a lower bound on the
load of probabilistic quorum systems. This lower bound is
close to the lower bound for strict quorum systems, and thus
indicates that we should not look to probabilistic quorums
as a technique to circumvent the lower bound for strict ones.

In order to state and prove our lower bound, we make
use of the following notation. Given a probabilistic quorum
system {Q,w,e}, we denote

‘P={QeQ: 3

Q"1Q'nQye

w(Q)>1- JE}

Thus, Q@ ¢ P when ), oing-e @(Q') > . Note that P

is not empty because probabilistic consistency requirement
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implies that the total probability of choosing pairs Q, @' such
that QN Q' = @ is at most €. Thus,

e > Y ow@ Y, w@)
Q Q:QNQ'=9
> Y w@ Y w(@)
QeP Q':QnQ’'=9
> Y w(Q)e
QgP

or, equivalently, e > 3 QuEP w(Q;). It then follows that
ZQ.EP w(Q;) > 1 - +/c. Finally, we let ¢(P) denote the
size of the smallest quorum in P.

Theorem 3.1 If (@, w,¢€) is a probabilistic quorum system,
then Lu{Q) > (1-+/€) max{;(%)-, 5%’)-} In particular, L. (Q)
> (1- va) .

Proof: Fix Q € P such that |@] = c(P). Summing the
loads induced by w on all the elements of Q we obtain:

D) = D w(Qi)

ueEQ u€Q Qidu

YooY w@)

Qi €EQ ue(QNQ;)
> w(@)
Q::QiNQ#9

> 1-+e

Therefore, some element in Q suffers a load of at least
s0 Ly (@) > i—fg@.

To prove the second part, we sum the total load induced
by w on all of the elements of the universe:

Dolelw) = 3D w(@y)

uelU uelU @Q;du

= ) w@)

QEQUEQ;

= ) 1Qilw(Qi)

QiEQ

> Y e(P)u(Qi)
Qi€EP

> (1-ve)e(P)

It follows that some element in U suffers a load of at least
(1-3&' (P) ‘g0 Lu(Q) > U=YI(P), n

Il

v

1~4/a
«(P) !

3.2 A probabilistic quorum construction

We now demonstrate a probabilistic quorum system Q with
0(71'-‘) load and Q(n) fault tolerance, that meets any re-
quired level of consistency guarantee for sufficiently large
universes. The construction is very simple: Given a uni-
verse of n servers, the quorums are all the sets of size £/n,
where the constant £ is chosen to make the probability that
two random quorums intersect sufficiently high. Intuitively,
it is easy to see that this should work—the expected, and
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most probable, size of the intersection of two such quorums
is £2, s0o by making £ sufficiently large, it should be possible
to reduce to any desired level the probability that the inter-
section of two quorums is empty. This is somewhat similar to
the well-known birthday paradox [CLR89]: Given two quo-
rums, the probability that any given element in one quorum
is also in the second quorum is quite small (é‘-), but the

probability that some element appears in both quorums is
quite high (at least 1 — e~ as we shall prove below).
Definition: Let U be a universe of size n. W(n,£),£>1,is
the system (@, w,¢) defined by @ = {Q C U : |Q| = &/n};
= 1. —e !
VQEQaw(Q)—I-QT,ande—e . O

The probability of choosing at random two quorums that
do not intersect can be made sufficiently small by appropriate
choice of £. We will need the following combinatorial fact.

Proposition 3.2 For non-negative integers n, c, and 1,
(529 i (ngyei
< @)EEDT

Lemma 3.3 Let Q1 and Q2 be quorums of size L/n each
chosen uniformly at random. Then Pr[Q: N @; = 0] < P

Proof:

n—tv/n v
Pl‘[Q:l n Qg = @] = ((t:{;)) S (n—n___g._ﬁ)
L/n.

< e'bn&l‘/; =e?
The first inequality follows from Proposition 3.2. [ ]

It is immediate from Lemma 3.3 that W(n, ) is a prob-
abilistic quorum system.

Theorem 3.4 W(n,!) is a probabilistic quorum system.

Since every element is in (t;y:.lx) quorums, the load
L(W(n,¢)) is 7"-' = 0(71'-') Because only Z./n servers need
be available in order for some quorum to be available, the
fault tolerance A(W(n,2)) = n—¢y/n+1 = (n). The failure
probability of W (n, £) is exceptionally good. Let p denote the
independent failure probability of servers. For the system to
fail, at least n — £4/n + 1 servers must fail. Using Chernoff’s
bound, this probability is at most

Fpy(W(n,l)) = P(#fail >n—Ly/n)
()’

L

IN

forall p<1- 7"-‘ Peleg and Wool showed that the failure
probability of any quorum system whose fault tolerance is f
is at least e~ (/) [PW95b]. Therefore, for any p < 1 - 7‘;.
the failure probability of W{(n,1) is asymptotically optimal.
Moreover, if % <p<1l- 7"-‘-, this probability is provably
better than any strict quorum system.

Figure 1 demonstrates the dramatic improvement in fail-
ure probability achieved by W{n, ) over majority and sin-
gleton (the strict quorum systems that are the two extremes
in terms of failure probabilities [BG87, PW95b]). The fig-
ure plots the failure probability of majority and singleton



against W(n,¢), for n = 100 and n = 900, respectively. The
first construction plotted is W(100,2), giving a probabilis-
tic consistency guaranteec of at least 1 — e™* = 0.982, and
the second one is W(900, 4), providing a guarantee level of
1 —e~'® =~ 0.99999887. As shown, W(100,2) has marginal
failure probability (< 0.1) for server failure probabilities p up
to 0.74, and W (900, 4) achieves similar failure probability for
p < 0.83.

4 Probabilistic dissemination quorum systems

To achieve consistency in a Byzantine environment, it is not
sufficient that two quorums should have a nonempty inter-
section. This is because two quorums may intersect in a set
containing faulty servers only, which may deviate arbitrarily
and undetectably from their assigned protocol. Malkhi and
Reiter [MR97] defined (strict) dissemination quorum systems
that can be used to construct Byzantine-fault-tolerant repli-
cated services that store certain types of data.

Similarly, to achieve probable consistency in a Byzantine
environment, it is not sufficient that two quorums should
have a probably nonempty intersection, since again two quo-
rums may intersect in a set containing faulty servers only. We
define probabilistic dissemination quorum systems, where the
strict dissemination quorum system consistency requirement
is replaced by a probabilistic one. We show that relaxing
consistency can provide dramatic improvements in this set-
ting, as well. As with crash failures, we are able to construct
a probabilistic dissemination quorum system resilient to the
Byzantine failure of any constant fraction of the system and
with outstanding failure probabxhty, for sufficiently large uni-
verses, whose load is O(J=). Indeed, the fault tolerance can
be increased to any constant fraction of n for sufficiently large
n while retaining asymptotically optimal load. For large n,
this construction provides considerable advantage over strict
dissemination quorum system constructions.

Definition: Let Q be a quorum system, w an access strategy
for Q, and € a constant, 0 < ¢ < 1. The tuple {Q,w,¢) is a
probabilistic t-dissemination quorum systemif for all B C U
such that |B| =t,

Y w@u@) 21—

Q.Q:QqnQ’'¢P
0

Probabilistic dissemination quorum systems can be used
to implement Byzantine fault-tolerant services for the same
types of data that strict ones can, using identical protocols to
access them (see [MR97]). Note that, given a t-dissemination
probabilistic quorum system @Q, ¢ is the number of Byzantine
failures that can be tolerated, while A(Q) is the number of
crash failures that can be tolerated. Since servers that fail
arbitrarily can always opt to send no messages, A(@) > t.

4.1 A probabilistic J-dissemination quorum construction

In this section we present a probabxhstlc t-dissemination quo-
rum construction for ¢ = §, the resiliency bound for strict
dissemination quorum systems [MR97]. Our construction ex-
hibits much better load and fault tolerance than strict con-
structions for this resiliency. We use a construction similar
to W(n,¢), and show that for an appropriate choice of the
parameter £, this construction ensures consistency with any
desired probability for sufficiently large universes.
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Definition: Let U be a universe of size n. W (n,l), L>1,
is the system (@, w, €) defined by Q {QcC U Q| = t/n};

VQ € Q,w(Q) = —Q-,ande—Ze 0. 0

Lemma 4.1 Let U be a universe of size n, let B be a subset
of U of size t where t = 3, and let @1 and Q2 be quorums of
size L\/n each chosen uniformly at random. Then Pr[(Q: N

Q) C Bl <2e%.

Proof:

PI‘[Q: ngQ; c B] (1)

= Pr{@1NQa|=|Q:NQaN B[
LA

= Zprqu NQs| =4) A(|Q1 N Qs N B| =i)]
‘f “MGERE)

< noil (- 2

< E o (3) 2)
& (tym) (tm\ (n—tym) 1y

B (O (0T
O Ei)? 2

< DG Y

i=‘4§+1

iﬁ(i’_)u 3 a2 l\/; .
< Y5k ® 4 ;F: 3 (5)
8=0 i=fdn g,

< 1) .5 4 3 (6)
< 2% (7)

Let ¢ = £4/n. Then (2) holds because Pr{(|Q: NQ2NB| =

) (uNQal=i)] = %}(’Q}l YOS IPYAN

2-i)nt
(3) is by Proposmon 3. 2 (4) is because for the first part of
the sum: ()( ) = lhmd1+z<e,forthe

second: (%) (& )i ""‘)‘_' < 1; (5) holds since e - <

e-—i—“-,. L e (8 fori < §i(6)is since 37, -it =¥

and (7) is because e < 3 and £ < /n. [ ]
Theorem 4.2 W, (n,2) is a probabilistic T-dissemination
gquorum system.

As with W(n, ¢), the load L(W*(n,t)) is 7‘;, the fault
tolerance is A(Wy(n,f)) = n - £y/n + 1, and the failure
probability is F,(W* (n2)) £ e"""’, wherey =1 - 7"-. -~p,
forp<l- 5;

4.2 A probabilistic an-dissemination quorum construction

Surprisingly, the same technique can be used to overcome any
fraction a of Byzantine failures. The construction in this sec-
tion is essentially identical to W* (n,£), with the distinction

that e is chosen to depend on the fraction a of servers that
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Figure 1: Comparison of failure probabilities for W(n, ), majority, and singleton for n = 100 (with £ = 2) and

n = 900 (with £ =4).

may simultaneously fail. The choice of the appropriate pa-
rameter £ depends also on a. Since our construction works,
with appropriate choice of parameters, with t = an for any
constant fraction a of the servers, it is significantly more
versatile than constructions of strict dissemination quorum
systems, where an upper bound of ¢ = 2 limits the fault
tolerance. We present the construction here for } <a<l,
as the case 0 < a < 1 was already covered. (A similar result
holds for 0 < @ < 1, but ¢ is more complicated in this case).

Definition: Let U be a universe of size n. W(n, £,a) where
£ >1and ;7 < a < 1 is the system (Q,w,¢) defined by

Qo {QCU: Q= Ly Y@ € u(Q) = i and
e=2¢x‘=(3;¥§‘)l_:_°_ a

An argument similar to that in Section 4.1 shows the
following lemma holds.

Lemma 4.3 Let U be a universe of n servers, let B be a
subset of U of size t where t = an for some } <a < 1, and

let Q1 and Q3 be quorums of size £+/n each chosen uniformly
at random. Then Pr[(Q1 N Q;) C B] < 2a87055) 1

I—a

Theorem 4.4 W(n,{,«a) is a probabilistic an-dissemination
guorum system.

Here, again the load is L(W(n,{,a)) = 7‘; Since we
assume that an servers may fail, we must have n—£/n > an,
or equivalently, £ < 4/n(1 — a).

Note that @ and w do not depend on a. Hence, even if
the fraction of Byzantine faults that may occur is not known,
it is possible to use this construction, but the consistency
parameter € that is achieved will also be unknown. Further-
more, note that the construction has the desirable property
that actual probability of consistency will be better if fewer
Byzantine faults actually occur.

5 Conclusions

In this paper, we used a probabilistic approach in the con-
struction of quorum systems and obtained a new class of set
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systems, called probabilistic quorum systems. We showed
a generic construction of probabilistic quorum systems that
have optimal load but far exceed the resiliency of any known
strict quorum system. With modified parameters, we were
able to apply the general construction also to Byzantine en-
vironments, demonstrating a dramatic improvement in re-
siliency for this model as well.

An obvious drawback of the probabilistic approach is the
chance of inconsistency allowed in any construction. We have
shown how this probability can be limited to any desired level
of guarantee, for appropriate universe sizes. Nevertheless,
the probabilistic constructions are best suited for applica-
tions that can tolerate some (marginal and known) fraction
of inconsistency, and where availability may be more im-
portant than utmost consistency. Moreover, our probabilis-
tic construction may be easily combined with some strict
quorum constructions, e.g., the set of majorities, to produce
“hybrid” constructions with the following guarantee: Among
operations performed only on strict quorums, consistency is
provided absolutely, whereas all other operations provide the
appropriate probabilistic guarantee.
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