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Abctract

Services replicated using a quorum Bystem allow operations
to be performed at only a subset (quorum) of the servers,
and ensure consistency among operatiom by requiring that
any two quorums intersect. In this paper we explore the con-
sequences of mquking this intersection property to hold only
with very high probsbilit y. We show that doing so can offer
dramatic improvements in the performance and avaiiabtity
of the service, both for services tolerant of benign server fail-
ures and services tolerant of arbitrary (Byzantine) ones. We
also prove a lower bound on the performance that can be
achieved with this technique.

1 Introduction

Quomms are tools for increasing the availability and effi-
aency of replicated services. A guorum system is a set of
subsets of servers, every pair of which int eraect. Intuitively,
the intersection property guarantees that if a “write” oper-
ation is performed at one quorum, and later a ‘Yeadn op-
eration at another quorum, then there in some server that
observes both operations and therefore is able to provide the
up-to-date value to the reader. Thus, system-wide consis-
tency can be maintained while allowing any quorum to act
on behalf of the entire system. Compared with performing
every operation at every mrv-as in the State Machine Ap-
proach [Sch90]-using quorums reduces the load on servers
and increases service availebilit y despite server crashes.

Quorum sygtems have been extensively studied and mea-
sured (cf., [Gf19, Tho79, Mae85, GB85, Her86, BG87, ET89,
CAA90, AE91, NW94, PW95a, PW95b]). Three meaaurea of
a quorum system will be of particular interest in this papa
load ~W94], fault tolerance ~G87], and failure probability
(see [BG87, PW95b]). The load of a quorum system is a mea-
sure of its effiaency. Intuitively, the load iu the rate at which
the busiest server will be accessed. The ~ault tolerance, also
called the availability, of a system is the number of servers
that can fail without disabling the system. A related mea-
sure is ~ailrme probability, the probabfit y that the system is
disabled. (Load, fault tolerance, and failure probability will
be defined preasely in Section 2.) The fault tolerance of any
quorum system is bounded by half of the number of servers.
Moreover, as we show in Section 3, there is a tradeoff between
low load and good fault-tolerance (and failure probabilityy),
and in fact it is impossible to simultaneously achieve both
optimally.

To break these limitations, in this paper we relax the
intersection property of a quomm system so that “quorums”
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chosen according to a specified strategy intersect only with
very high probabilityy. We accordingly call these probabilistic
guorum .qptems, and henceforth refer to systems that satisfy
the original defition of quorums as strict. Probabilistic
quorum systems admit the possibtity, albeit small, that two
operations will be performed at non-intersecting quorums, in
which case consist ency of the system may suf%r.

We show, however, that even a small relaxation of con-
sistency can yield dramatic improvements in the fault toler-
ance and failure probabilityy of the system, while the load re-
mains essentially unchanged. Probabtistic quorum systems
are thus most suit able for use when availabiit y of operations
despite the presence of faults is more important than certain
consistency. This might be the case if the coat of inconsis-
tent operations is high but not irrecoverable, or if obtaining
the most up-to-date information is desirable but not criti-
cal, while having no information may have heavier penalties.
For example, probabilistic quorum systems could be useful
wherever quick access to an answer that is likely to be cor-
rect can greatly improve efficiency in the normal case, and
the cost of dealing with incorrect answera when they do oc-
cur is not too high. Lampson ~am83] describes this kind of
mechanism as hints, and describes several systems that use
such hints [LS79, MW77, Smi81]. More recently, hints have
been used in mobile systems to find more direct routes to the
current location of a mobile device [JP96, CP96].

1.1 Related Work

Though ours is the first work to study probabilistic quorum
systems as such, the use of replicated variables to give prob-
ably correct results has proved usethl in other contexts. Two
examples of this are used to efiiaently simulate a PRAM us-
ing an asynchronous system ~PRR92, AR92]. Specifically,
Kedem et aL ~PRR92] use a replicated variable in a way
that a correct copy can be reliably identified and probably ex-

ists. They then use these variables to crest e a global counter
that processors use to determine whether they are roughly

synchronized with other processors, and behave appropri-
ately if they are not. Aumann and Rabin [AR92] exhibit a

clock construction in an asynchronous system with multiple
processors that use shared memory to create an object that

correctly behaves as a clock with high probabtit y. They
use the clock to ensure that processors stay synchronized

throughout the computation. In both cases, the protocols to

read and write the replicated variables are somewhat com-
plex due to the need to detect or mask incorrect copies.

Malkhi et al. use essentially a hybrid construction of quo-
rums, comb- randomized and deterministic choice of mem-
bers, to solve the problem of secure reliable multicast in a
large network with many components ~MR97]. Their work
focuses on a protocol that enforces random choice of mem-
bers by involving a set of determini stically chosen processes,
whose sise is constant, in every operation. Because of this,
if any member of this set faila, the probabilistic “quorums”
become inaccessible, in which case their protocol reverts to
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strict quorums.
Unlike these previous works, which are tailored to spe-

cific application requirements, in our work we strive for a
general technique for replicating data with a high degree of
simplicity, efficiency and fault-tolerance. Our techniques are
consequently very different from those used in these previ-
ous works. A possible direction of future work is to deter-
mine whether our techniques could be useful in the context
of PRAM simulation.

1.2 Our Results

We begin by exploring the limits of probabilistic quorum
systems. In particular, we show a lower bound on the load of
probabtistic quorum systems that is within a small constant
fraction of the bound for strict systems. Thus, probabilistic
quorum systems cannot yield substantial improvements on
load in general.

In contrast, we show that probabilistic quorum systems
can yield substantial improvements on load when high fauh.-
tolerance is also needed. Strict quorum systems over n servers
that achieve the optimal load of ~ can tolerate at most W
faults, and more generally suiTer from an inherent tradeoff
between load and fault-tolerance, where improving one must
come at the expense of the other. We show that this limit~
tion does not hold for probabilistic quorum systems. Specif-
ically, we explore probabilistic quorum systems for the case
where up to a constant fraction of the servers fail, for any
constant smaller than 1. We construct a probabilistic quo-

rum system tolerant of such failures end that has a load of
OdY 0(-&). More precisely, we provide a generic comtruc-

‘ion ‘hose 10ad ‘s %’ for any chosen parameter t ~ fi,

such that the achieved consistency guarantee (probab)lit y of

quorum intersection) is at least 1 – e-z’. Thus, using prob-
abilistic techniques, we break the tradeoff between low load
and high fault tolerance, achieving optimal load with essen-
tially limitless resiliency. In addition, our construction has
failure probability better than any strict quorum system.

Relaxing consistency can also provide dramatic improve-
ments in an environment in which servers may experience
Byzantine failures. The intersection property of quorums
does not suffice for maintaining consistency in this model,
since two quorums may intersect in a set containing ~aulty
servers only, who may deviate arbitrarily and undetectable
from their assigned protocol. Therefore, stronger require-
ments are necessary in order to use quorums in Byzantine
environments. For such environments, Mrdkhi and Reit er de-
fined (drict) dimernination quorum ~~dema ~R97] to sup-
port replicated servers that store se~-ueri~ingdata, i.e., data
that servers can suppress but not undetectable alter (e.g.,
digitally signed data). Briefly, in a t-dissemination quorum
system, any two quomms intersect in t+ 1 servers. Dis-
semination quorums systems can be constmcted only for
t < [~] arbitrarily faulty servers, and the load of a t-

dissemination quorum system is at least ~. We define
a probabili~tic dimemination quorum ayatem m an analogous
way to the definition above, where a probabilistic consistency
property replaces the dissemination consistency one. Once
again, we are able to construct a probabilistic dissemina-
tion quorum system resilient to the Byzantine failure of any
constant fraction of the system end with outstanding fail-
ure probabilityy, for sufficiently large universes, whose load
is O(*). For large n, this construction provides consid-
erable advantage over strict dissemination quorum system
const ructiorw.

The contributions of this paper can be summarized as
follows.

●

●

●

●

the introduction of probabilistic quorum syatema

a lower bound on the load of probabilistic quorum sys-
tems that is within a small constant fraction of the
bound for strict quorum systems.

a generic probabilistic quorum system construction that
achieves asymptotically optimal load and fault toler-
ance, with arbitrarily high consistency.

a modification of the construction to work for the case
of Byzantine server failures.

The rest of this paper is structured as follows. We review
the basic definition of quorum systems and ways of meazur-
ing them in Section 2. Section 3 defines probabilistic quo-
rum systems, proves a lower bound on the load of any such
quorum system, and presents a construction of one that ex-
hibits very good load, fault tolerance and failure probability.
Section 4 introduces probabilistic dissemination quorum sys-
tems and provides a construction tolerant of the Byzantine
failure of any constant fraction of the servers, We conclude
in Section 5.

2 Preliminary definitions

In this section, we define precisely the concepts introduced
in Section 1. Assume a universe U of servers, IU ~= n.

Definition: A set system Q over a universe U is a set of
subsets of U. ❑

Definition: A (strict) quorum ayntem Q over a universe

U is a set system over U such that for every Q1, Q2 E Q,
Q1 n Q~ #0. Each Q E Q is celled a quorum. o

As discmsed in Section 1, quorum systems are gener-
ally insufficient to guarantee consistency in case of Byzantine
server failuren. A t-dimernination quorum ,@em increases

quorum overlap tot + 1 mrvers, which suffices to mask faulty
server behavior for some types of data ~R97].1

Definition: A quorum system Q is a t-dimemmation quo-
rum sgdemif for every Q1, Qz c Q, IQI n Qz[ ~ t + 1.

❑

Intuitively, clients pick quorums to access in accordance
with some access strate~, which defines the likelihood that
a quomm is chosen for any given access.

Definition: An access strategy (or just strateg~) w for a set
system Q specifies a probabfit y distribution on the elements
of Q. That is, w : Q ~ [0,1] satisfies ~~eQW(Q) = 1. ❑

In this paper we consider several measures of quorum sys-
tems, including the load, fault tolerance, and failure proba-
bility of the system.

The load of a quorum system, defined in [NW94], cap-
tures the probability of accessing the busiest server in the
best case. Load is a measure of efficiency; all other things
equal, systems with lower load can process more requests
than those with higher load.

1The original detlnition of [MR97]treats dissemination quorum sys-
tems more generally than we do here, The simplified definition pre-
sented here cuf?lces for our purposes.
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Definition: Let w be a strategy for a set system Q =
{Ql,..., Q-} over a universe U. For an element u E U, the
load induced by w on u is lU(u) = ~~fa~ w(Qi). The load

induced by a strategy w on Q is LW(Q) = maxUEu{lW(u)}.
The load of Q is L(Q) = minW{LW(Q)}, where the minimum
is taken over all strategies. ❑

Load is a best-case definition (of a worzt-behavior prop-
erty). The load of the quorum system will be achieved only if
an optimal access strategy is used, and only in the case that
no failures occur. A strength of this definition is that load
is a property of a quorum system, and not of the protocol
using it.

Fault tolerance and failure probability capture the re-
siliency of the service to crash failures. The fault tolerance of
a quomm system Q i8 the sise of the smallest set of servers
that intersects all quorums in Q.

Definition: For a set system Q = {Ql,..., Q~} define S =
{S I S n Qi # 0 for all 1< i < m}. The fault tolerance of Q
is A(Q) = mins~~ ISI. •1

Thus, a quorum system Q is resilient to the failure of any
set of A(Q) – 1 or fewer servers. In particular, the failure of
at least A(Q) servers is necessary to disable every quorum in
the system, and some particular set of A(Q) failures can in
fact disable them all.

The failure probability F’P(Q) of a quorum system is the
probabilityy that there exists a quorum containing no faulty
servem, assuming that servem fail independent y with prob-
abilityy p.

Definition: Assume that each server in U fails with proba-
bility p, and that server failures are independent. The failure

probability F’(Q) of Q is the probability that every Q E Q
contains at least one faulty server. n

A good failure probabilityy FP(Q) for a strict quorum system
Q has lim.+~ F“(Q) = O when p < ~ [NW94]. For p =
~, there exist strict quorum constructions with Fp( Q) = ~,
whereas for p > ~, FP(Q) tends to 1 for all strict quorum
systems.

3 Probabilistic quorum systems

In this section, we show that relaxing the consistency re-
quirement for quorum systems to require only that any two
quorums intersect with high probability can yield dramatic
improvements in the fault tolerance of the system.

There is a tradeoff between load and fault tolerance in
strict quorum systems. It is known that for any strict quorum

@} wheresystem Q over n servem, L(Q) > m-{ ~ t .

C(Q) is the size of the smallest quorum in Q [NW94]. In
particular, this implies that for any strict quorum system
Q, L(Q) z ~. Moreover, the intersection property im-
plies that the failure of any full quorum in Q will disable all
quorums (i.e., A(Q) < c(Q)), and so by the aforementioned
lower bound on load, A(Q) s nL(Q). It follows that any
strict quorum system with optimal load of ~(~) has fault

tolenmce of (only) O(@.
We show that probabfistic quorums are not subject to

this tradeoff by demonstrating a probabilistic quorum sys-
tem over a univeme of n elements that has a load of 0( ~)

and fault tolerance of 0(n), with an increasing guarantee of
consistency as n grows. We show that our constmction has

exceptional y good failure probabllit y for essentially limitless
component failure probabilities, for appropriate e system sizes.
The failure probabilityy of our construction is provably better
than any strict system.

We begin by detlning probabilistic quorum systems. Q is
a probabilistic quorum system if the total access probability
of paim of intersecting quorums is at least I – c. Formally,
we have the following.

Definition: Let Q be a set system, w an access strategy
for Q, and e a constant, O < e <1. The tuple (Q, w,c) is a
prababtkdic quorum ayatem if

~ w(Q)w(Q’) 21 -C.

Q, Q’:(QnQ’)#0

❑

Abusing terminology slightly, we still ceil elements of Q quo-
mms, even though a probabilistic quorum system will not in
general be a (strict) quorum system.

Severe! points are noteworthy with regards to this defi-
nition. Fimt, a probabHistic quorum system is defined with
respect to a specific guarantee level q and thus, there are dif-
ferent systems for difTerent levels of consistency guarantee.
Second, the definition contains an access strategy, which is
chosen to achieve the desired level of guarantee. Other ac-
cess strategies on the same set system may fail to achieve the
required consist ency level, as can be trivially demonstrated
by a strategy that chooses each of two nonintersecting qu~
rums wit h probabilityy 1/2. Thus, for a probabilistic quorum
system to obtain the advertised probabtit y of consistency
when used in a protocol, the specified access strategy must
be enforced. In addition, we have to adjust our definition of
load accordingly.

Definition: If (Q, w, E) is a probabtistic quorum system,
then L((Q, w,e)) = L~(Q). ❑

Similarly, the definitions of fault tolerance and failure prob-
ability carry over as expected:

Definition: Let (Q, w, e) be a probabilistic quorum system.
Then the fault tolerance of (Q, w,.e) is A((Q, w,e)) = A(Q)
and the failure probabtity of (Q, w,e) is FP((Q, w,e)) =
FP(Q). ❑

3.1 A lower bound on load

We start by exploring the Limits of the improvements over
strict quorum systems that can be achieved by probabfist ic
quorum systems. Specifically, we show a lower bound on the
load of probabilistic quorum systems. This lower bound is
close to the lower bound for strict quorum systems, and thus
indicates that we should not look to probabtistic quorums
as a technique to circumvent the lower bound for strict ones.

In order to state and prove our lower bound, we make
use of thefollowing notation. Given a probabilistic quorum
system (Q, w, e), we denote

{
P= QEQ: ~ w(Q’) 21-+

C)t:QJflQ#O 1

Th~, Q il 7 when ~@:@nQ=@ w(Q’) > @ Note that ‘P
is not empty because probabtistic consistencey requirement
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implies that the total probability of choosing pairs Q, Q’ such
that Q n Q’ = 0 is at most c. Thus,

~ w(Q) ~ w(Q’)
Q Q’:QtIQ’=0

~ w(Q) ~ w(Q’)
Qf?P Qt:QnQ1=O

QfZP

or, equivalently, ~ z ~QigP w(Qi). It then follows that

~:5pt;Jc’jd:t :;--m i:;~y! ‘e let ‘(p) “note ‘he

Theorem 3.1 If (Q,w,e) is a probabilistic quorum s~stem,
~ In particdar, L(Q)then Lw(Q) 2 (1–fi)max{~, m }.

> (1– ~+.

Proofi Fix Q E ? such that IQI = c(P). Summing the
loads induced by w on all the elements of Q we obtain:

UEQ UEQ Qi3u

Therefore, some element in Q stiers a load of at least ~,

-,- ,
To prove the second part, we sum the total

by w on all of the elements of the universe:

. .

load induced

It fo own that some elemynt in U Bfiers a load of at least
&

n , so LW(Q) ~ ~ ‘fl’(? ■

3.2 A probabilistic quorum construction

We now demonstrate a probabilistic quorum system Q with
0(~) load and Cl(n) fault tolerance, that meetn any re-
quired level of consistency guarantee for sufficiently large
universes. The construction is very simple: Given a uni-
verse of n servers, the quorums are all the sets of size tfi,
where the cormtant f is chosen to make the probabtity that
two random quorums intersect suflkiently high. Intuitively,
it is easy to see that this should work—the expected, and

most probable, size of the intersection of two such quorume
is fa, so by making .! sufficiently large, it should be possible
to reduce to any desired level the probabllit y that the inter-
section of two quorums is empty. This is somewhat similar to
the well-known bbthday paradox [CLR89]: Given two quo-
rums, the probabilityy that any given element in one quorum
is also in the second quorum is quite small (-$), but the

probability that some element appears in both quorums iB

quite high (at least 1 – e-~’, as we shall prove below).

Definition: Let U be a universe of size n. IV(n, .?), f z 1, is
the system (Q, w,e) defined by Q = {Q ~ U : IQI = lfi;

The probability of choosing at random two quorums that
do not intersect can be made sufficiently small by appropriate
choice of L We will need the following combinatorial fact,

Proposition 3.2 For non-negative integer~ n, c, and i,

~ ~ (:)i (S) ’-i

Lemma 3.3 Let Q1 and Qa be quorums of size 1+ each

chosen uniformly at random. Then Pr[Q1 n Q2 = 0] < e-ta.

Proofi

The first inequality follows from Proposition 3.2. ■

It is immediate from Lemma 3.3 that W(n, /) is a prob-
abtistic quorum system.

Theorem 3.4 W(n, 4) id a probabilistic quorum s@em.

Since every element is in (z~-~l) quorums, the load

L(W(n, ~)) is ~ = 0(~). Because only @ servers need
be available in order for some quorum to be available, the
fault tolerance A(W(n, 4)) = n–tfi+l = fl(n). The failure
probabllit y of W(n, .4)is exceptionally good. Let p denote the
independent failure probabtit y of servers. For the system to
fail, at least n – 4- + 1 servers must fail. Using Chernoff’s
bound, this probabfity is at most

Fp(w(ta,q) = P(#fail > n – l@)

< e-a’’(’-)-’)’
e-n(n)=

for all p ~ 1 – -$. Peleg and Wool showed that the failure
probability of any quorum system whose fault tolerance is f
is at least e-nffj [PW95b]. Therefore, for any p ~ 1 – -$,

the failure probability of W(n, i) is asymptotically optimal.
Moreover, if ~ < p s 1 – ~, this probability is provably

better than any strict quorum system.
Figure 1 demonstrates the dramatic improvement in fail-

ure probability achieved by W(n, t) over majority and sin-
gleton (the strict quorum systems that are the two extremes
in terms of failure probabtities ~G87, PW95b]). The fig-
ure plots the failure probability of majority and singleton
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against W (n, 4), for n = 100 and n = 900, respectively. The
first comtruction plotted is W(1OO, 2), giving a probabAe-
tic consistency guarantee of at leaat 1 – e-’ x 0.982, and
the second one is W (900, 4), providing a guarantee level of
1 – e-le x 0.99999887. As shown, W(1OO, 2) has marginal
failure probabilityy (< O.1) for server failure probabfities p up
to 0.74, and W (9oO, 4) achieves similar failure probability for
p <0.83.

4 Probabilistic dissemination quorum systems

To achieve consistency in a Byzantine environment, it is not
sufficient that two quorums should have a nonempt y inter-
section. This is because two quommn may intersect in a set
containing @ltII servers only, which may deviate arbitrarily
and undetectable from their assigned protocol. Malkhi and
Reiter ~97] defined (strict) dissemination quorum .yatems
that can be used to construct Byzantine-fault-tolerant repli-
cated services that store certain types of data.

Similarly, to achieve probable corwistency in a Byzantine
environment, it is not sufliaent that two quorums should
have a probably nonempty intersection, since again two quo
rums may intersect in a Bet containing faulty servers only. We
define probabilidic dissemination guorum agatema, where the
strict dissemination quorum system conshtency requirement
is replaced by a probabilistic one. We show that relaxing
consistency can provide dramatic improvements in this set-
ting, as well. As with crash failures, we are able to comtruct
a probabilistic dissemination quorum system resilient to the
Byzantine failure of any constant i%action of the system and
with outstanding failure probabilityy, for sufiiaently large uni-
verses, whose load is 0(~). Indeed, the fault tolerance can
be increased to angconst~t thction of n for sufficiently large
n while retaining asymptotically optimal load. For large n,
this comtruction provides considerable advantage over strict
dissemination quorum system constructions.

Definition: Let Q be a quorum system, wan access strategy
for Q, and c a constant, O < e <1. The tuple (Q, w,c) is a
probabilidic t-dimemination quorum system if for all B ~ U
such that Iq = t,

x w(Q)w(Q’) z I -..
Q, Q’:QnQ’fZB

•1

Probabfistic dissemination quorum systems can be used
to implement Byzantine fault-tolerant services for the same
types of data that strict ones can, using identical protocols to
access them (see ~R97]). Note that, given a t-dissemination
probabtistic quorum system Q, tis the number of Byzantine
failures that can be tolerated, while A(Q) is the number of
crash failures that can be tolerated. Since servers that fail
arbkwily can always opt to send no messages, A(Q) ~ t.

4.1 A prohabifratic &Ikmination quorum construction

In this section we present a probabtistic t-dissemination quo-
m construction for t = f, the resiliency bound for strict
dissemination quorum systems ~R971. Our construction ex-
hibits much better load and fault tolerance than strict con-
struction for this resiliency. We use a comtruction similar
to W (n,.!), and show that for an appropriate choice of the
parameter t, this construction ensures consistency with any
desired probabfity for suiliciently large universes.

Definition: Let U be a universe of size n. W* (n, 4), 1 ~ 1,

is the system (Q, w,e) defined by Q = {Q G U : IQI = l@;

‘v’QE Q,w(Q) = ~, .mdc=ze–$. 0

Lemma 4.1 Let U be a universe of ~ize n, let B be a aubaet
of U of size twhere t = ~, and let Q1 and QZ be quorums of
size @ each chosen uniformly at random. Then Pr[(Ql n

Proofi

= ~Pr[(lQ,
i=O

(1)

= lQi nQ~ nBl]

lQ21=i)A(lQlnQznBl=i)]

(2)

Let c = lfi. Then (2) holds because Pr[(lQl nQ, n BI =
+ ? :-; :-:

i) I (IQ1nQ~l = i)] = ~) = ~ S (~)i;

(3) is by Proposit@ 3.2; (4) is because for the first part of

the sum: ~) (~)’ S ~~ = ~ and 1+= < e“, for the

second: ($ (~)i (=)=-i 51; (5) hol~ since e-~ ~
e-+ = e-z’(~)’ for i < $; (6) is since ~i>o $ = e+;

and (7) is because e <3 and 4 s W. ■

Theorem 4.2 W~ (n, 4) is a probabilidic ~-dimemination

guorum q@em.

As with W(n, 4), the load L( W* (n, 4)) is ~, thefault

tolerance is A( W* (n, 4)) = n – tfi + 1, ~d the f~ure

probabfity is FP(W~ (n,l)) ~ e-z”~’, where v = 1--$ -p,

forp<l–~.

4.2 A probabilistic an-daaemma“ tion quorum construction

SUrpri@Y, the same technique can be used to overcome any
fraction a of Byzantine failures. The construction in this sec-
tion is essentidy identical to W* (n,.?), with the distinction
that c is chosen to depend on the fraction a of servers that
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Figure 1: Comparison of failure probabilities for W(n, l), majority, and singleton for n = 100 (with 4 = 2) and
n = 900 (with 4 = 4).

may simultaneously fail. The choice of the appropriate pa-
rameter 4 depends also on a. Since our construction works,
with appropriate choice of parameters, with t = an for any
constant fraction a of the servers, it is significantly more
versatile than cormtructiom of strict dissemination quorum
systems, where an upper bound of t = ~ limits the fault
tolerance. We present the construction here for ~ < a < 1,
as the case O < u s ~ was already covered. (A similar result

iholds for O < a <1, ut e is more complicated in this case).

Definition: Let U be a universe of size n. W(n, 4, a) where
t ~ 1 and ~ < a < 1 is the system (Q, W,C) defined by

Q={ QCU:lQl =&@; VQEQ, W(Q) =~;~d

E = 2aZa(*)*. ❑

An argument similar to that in Section 4.1 shows the
following lemma holds.

Lemma 4.3 Let U be a universe of n aeruera, let B be a
nubaet of U of eize t where t = an for ~ome $ < a <1, and
let Q1 and Qa be quorume of size 14 each chooen unijormlg

p x, ~
at mndom. Then Pr[(Ql n Q2) ~ B] s 2a ( 2 G“

Theorem 4.4 W(n, 4, a) is a prtrbabiiiatican-dimemination
guorum agatem.

Here, again the load is L(W(n, t,a)) = ~. Since we

assume that an servers may fail, we must have n —Zfi > an,
or equivalently, -4< W(1 – a).

Note that Q and w do not depend on a, Hence, even if
the fraction of Byzantine faults that may occur ie not known,
it is possible to use this construction, but the consistency
parameter e that is achieved will also be unknown. Ftwther-
more, not e that the construction has the desirable property
that actual probability of consistency will be better if fewer
Byzantine faults actually occur.

5 Conclusions

In this paper, we used a probabilistic approach in the con-
struction of quorum systems and obtained a new class of set

systems, called probabfistic quorum systems. We showed
a gemeric constmction of probabtistic quorum systems that
have optimal load but far exceed the resiliency of any known
strict quorum system. With modified parameters, we were
able to apply the general construction also to Byzemtine en-
vironments, demomtrat ing a dramatic improvement in re-
siliency for this model 6s well.

An obvious drawback of the probabilistic approach is the
chance of inconsistency allowed in any construction. We have
Bhown how t his probabllit y can be limited to any desired level
of guarantee, for appropriate universe sizes. Nevertheless,
the probabilistic comtructions are best suited for applicw
tione that can tolerate some (marginal and known) fraction
of inconsistency, and where availabilityy may be more im-
portant then utmost consistency. Moreover, our probabilis-
tic constmction may be easily combined with some strict
quorum constructions, e.g., the set of majorities, to produce
“hybrid” constructions with the following guarantee: Among
operations performed only on strict quorums, consistency is
provided absolutely, whereas all other operations provide the
appropriatee probabilistic guarantee.
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