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The Island of Paxos used to host a great civilisation, which was unfortunately destroyed by a
foreign invasion. A famous archaeologist reported on interesting parts of the history of Paxons and
particularly described their sophisticated part-time parliament protocol [15]. Paxos legislators main-
tained consistent copies of the parliamentary records, despite their frequent forays from the chamber
and the forgetfulness of their messengers. Although recent studies led to new ways to describe the
parliament algorithm [16, 17], as well as powerful tools to reason about its correctness [20], our
desire to better understand the Paxon civilisation motivated us to revisit the Island and spend some
time deciphering the ancient manuscripts of the legislative system. We discovered that Paxons
had precisely codified various aspects of their parliament protocol within specific sub-protocols: one
sub-protocol used to ensure the progress of the parliament and one sub-protocol used to ensure its
consistency. The precise codification of these sub-protocols helped Paxons adapt their algorithm to
various seasons of their parliament.

1 Introduction

The Paxos part-time parliament algorithm of Lamport [15] provides a very practical way to im-
plement a highly-available deterministic service by replicating it over a system of (non-malicious)
processes communicating through message passing. Replicas follow the state-machine pattern, also
called active replication [14, 22]. Each replica is supposed to compute every request and return the
result to the corresponding client, which selects the first returned result. Paxos maintains safety
(replica consistency) by ensuring total order delivery of requests. It does so even during unstable
periods of the system, e.g., even if messages are delayed or lost and processes crash and recover.
Thus, Paxos is indulgent in the sense of [11]. Paxos ensures liveness (result delivery) whenever the
system stabilizes, and it does so in a very efficient way. Paxos involves however many tricky details
and it is difficult to factor out the abstractions that comprise the algorithm. Deconstructing Paxos
and identifying those abstractions is an appealing objective towards practical implementations of
the algorithm, as well as effective reconstructions and adaptations of it in specific settings.

In [17, 20, 16], Paxos was described as a sequence of consensus instances. The focus was on
consensus which, from a solvability point of view, is indeed equivalent to ensuring total order request
delivery [6]. However, providing the efficiency of the original Paxos algorithm goes through breaking
the consensus abstraction and combining some of its underlying algorithmic principles with non-
trivial techniques such as log piggy-backing and leasing. In particular, this means that the modular
correctness proof given in [20] does not apply to the actual (optimized) Paxos algorithm. The goal
of our paper is to describe a deconstruction of the Paxos that is faithful in that the underlying
abstractions do no need to be broken in order to preserve the efficiency of the original Paxos
replication scheme.

The key to our faithful deconstruction is the identification of the new notion of �Register,
which can be implemented with a majority of correct processes in an asynchronous system and
does not fall within the FLP impossibility of consensus [10]. We use �Register in conjunction with
a �Leader abstraction, which captures the exact amount of synchrony needed to ensure agreement
among replicas [5]. In short, the leader election abstraction encapsulates the progress procedure of
Paxos that ensures liveness (i.e., service availability), whereas the register abstraction encapsulates
the state management procedure of Paxos that ensures safety (i.e., consistency of service).

Our abstractions are both first class citizens at the level of the replication algorithm. Hence,
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instead of considering Paxos as a sequence of consensus instances [16, 17, 20], we consider it as a
sequence of compositions of finer-grained �Register and �Leader instances. Our deconstruction of
Paxos is modular, and yet it preserves the resilience and efficiency of the original algorithm in terms
of stable storage logs, message complexity and communication steps. In a companion paper, we
show how to use these abstractions to reconstruct powerful variants of Paxos that are customized
to specific settings of the distributed environment [3].

The rest of the paper is organised as follows. Section 2 describes the model. Section 3 describes
the problem solved by Paxos. Section 4 gives the specification of our abstractions. We show how to
implement these specifications in a crash-stop model and get a simple variant of Paxos in Section 5.
We then show how to transpose the implementation in a more general crash-recovery model and get
the faithful deconstruction of Paxos in Section 6. Section 7 discusses related work and concludes
the paper.

2 Model

2.1 Processes

We consider a set of processes Π = {p1, p2, ..., pn}. At any given time, a process is either up or
down. When it is up, a process progresses at its own speed behaving according to its specification,
i.e., it correctly executes its program. While being up, a process can fail by crashing; it then
stops executing its program and becomes down. A process that is down can later recover; it then
becomes up again and restarts by executing a recovery procedure. The occurrence of a crash (resp.
recovery) event makes a process transit from up to down (resp. from down to up). A process
pi is said to be unstable if it crashes and recovers infinitely many times. We define an always-up
process as a process that never crashes. We say that a process pi is correct if there is a time after
which the process is permanently up.2 A process is faulty if it is not correct, i.e., either eventually
always-down or unstable.

A process is equipped with two local memories: a volatile memory and a stable storage. The
primitives store and retrieve allow a process that is up to access its stable storage. When it crashes,
a process loses the content of its volatile memory; the content of its stable storage is however not
affected by the crash and can be retrieved by the process upon recovery.

2.2 Link Properties

Processes exchange information by sending and receiving messages through channels. We assume
the existence of a bidirectional channel between every pair of processes. We assume that every
message m includes the following fields: the identity of its sender, denoted sender(m), and a local
identification number, denoted id(m). These fields make every message unique throughout the
whole life of the process, i.e., two distinct messages sent by the same process cannot have the same
id even after the sender crash and recover between the two send events. Channels can lose messages
and there is no upper bound on message transmission delays. We assume channels that ensure the
following properties between every pair of processes pi and pj :

• No creation: If pj receives a message m from pi, then pi has sent m to pj .

2The validity period of this definition is the duration of an execution, i.e., in practice, a process is correct if it
eventually remains up long enough for the algorithm to terminate.
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• Fair loss: If pi sends a message m to pj an infinite number of times and pj is correct, then
pj receives m from pi an infinite number of times.

The last property is sometimes called weak loss [18]. It reflects the usefulness of the communication
channel. Without this property, no interesting distributed problem would be solvable.

We assume the presence of a discrete global clock whose tick range τ is the set of natural
numbers. This clock is used to simplify presentation and not to introduce time synchrony, since
processes cannot access the global clock. We will indeed introduce some partial synchrony assump-
tions (otherwise, fault-tolerant agreement, and hence, total order are impossible [10]), but these
assumptions are encapsulated inside our �Leader abstraction and used only to ensure progress
(liveness) of the replication algorithm.

3 Problem

The Paxos algorithm coordinates a set of replica processes so that they behave in a consistent way.
More precisely, the main problem solved by Paxos is to ensure total order delivery of messages,
i.e., total ordering of requests broadcast to replicas. This problem can be precisely defined by two
primitives: TO-Broadcast and TO-Deliver. We say that a process TO-Broadcasts a message m
when it invokes TO-Broadcast with m as an input parameter. We say that a process TO-Delivers
a message m when it returns from the invocation of TO-Deliver with m as an output parameter.
Total order broadcast satisfies the following properties (inspired by [12]):

• Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then
pi eventually TO-Delivers m.

• Agreement: If a process TO-Delivers a message m, then every correct process eventually
TO-Delivers m.

• Validity: For any message m, (1) every process pi that TO-Delivers m, TO-Delivers m only
if m was previously TO-Broadcast by some process, and (2) every process pi TO-Delivers m
at most once.

• Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi

TO-Delivers some message m′ before m, then pj also TO-Delivers m′ before m.3

4 Abstractions: Specifications

Our deconstruction of the Paxos replication algorithm is based on two main building blocks: a
�Register and a �Leader abstractions. Roughly speaking, Paxos ensures that all replica processes
agree on the order associated with every request message. The �Register abstraction encapsulates
the algorithm used to “store” and “lock” the agreement value (i.e., the order), whereas �Leader
encapsulates the algorithm used to eventually choose a unique leader that succeeds in storing and
locking a final agreement value in the register.

3The total order property we consider here is slightly stronger than the one introduced in [12]. In [12], it is stated
that, if any two processes pi and pj both TO-Deliver messages m and m′, then pi TO-Delivers m before m′ if and only
if pj TO-Delivers m before m′. With this property, nothing prevents a process pi from TO-Delivering the sequence
of messages, say m1; m2; m3, whereas another (faulty) process TO-Delivers m1; m3 without ever delivering m2. Our
specification clearly excludes that scenario and more faithfully captures the (uniform) guarantee offered by Paxos.
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�Register and �Leader are “shared memory” like abstractions that export operations invoked
by the processes implementing the replicated service. We give here the specifications of these ab-
stractions, and we illustrate their use through a simple consensus algorithm using these abstractions.
(Implementations of these abstractions are given in Section 5 and 6.)

As in [13], we say that an operation invocation inv2 follows (is subsequent to) an operation
invocation inv1, if inv2 was invoked after inv1 has returned. Otherwise, the invocations are con-
current.

4.1 �Register

The �Register provides a distributed storage facility with a write-once semantics; it encapsulates
the act of locking a value in Paxos. The act of storing a value in the register might however fail: if
several processes try to store some value in the register, none of them might succeed.

Processes access �Register through a single primitive propose(). A process invokes propose()
with a single argument v ∈ V alues, where V alues is the set of possible values that can be stored
in the register. The primitive returns a value in V alues ∪ {abort} (abort /∈ V alues). If a process
pi invokes propose(v) we say that pi proposes v; if propose() at pi returns v′ �= abort, we say that
pi decides v′; if propose() at pi returns abort, we say that pi aborts.

�Register satisfies the following three properties:

• Validity: If a process decides a value v, then v was proposed by some process.

• Agreement: No two processes decide differently.

• Termination: (1) If a process proposes, it either crashes or returns from the invocation, and
(2) if a single correct process proposes an infinite number of times, it eventually decides.

Notice that the validity and agreement properties of �Register are identical to those of consen-
sus [10]. The termination property is strictly weaker: if more than one correct processes keeps on
proposing values, none of them is ever guaranteed to decide. As we will see in Section 5.1, this
weaker termination property makes it possible to implement �Register in an asynchronous system
(with a majority of correct processes), in spite of consensus being impossible in such a model [10].

To illustrate the behaviour of �Register, consider the example depicted in Figure 1. Three
processes p1, p2 and p3 access the same �Register. Process p1 invokes propose(X) and process
p2 invokes propose(Y ) concurrently. Both invocations return abort. Then p3 invokes propose(Z)
which returns Y : p3 decides Y . Then p1 invokes propose(X): this invocation returns Y but it could
also have returned abort.

p1

p2

p3

prop(X)

abort

 prop(Y)

prop(Z)

Y

prop(X)

Y

abort

Figure 1: �Register scenario
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4.2 �Leader

Intuitively, the �Leader abstraction is a shared object that elects a leader among a set of processes.
It encapsulates the sub-protocol used in Paxos to choose a process that decides on the ordering of
messages. The �Leader abstraction has one operation, named leader(), which returns a process
identifier, denoting the current leader. When the operation returns pj at time t and at process pi,
we say that pj is leader for pi at time t (or pi elects pj at time t). �Leader satisfies the following
three properties:

• Validity: There is a time after which every leader is correct.

• Agreement: There is a time after which no two processes elect two different leaders.

• Termination: After a process invokes leader(), either the process crashes or it eventually
returns from the invocation.

It is important to notice that the properties above do not prevent the case where, for an arbitrary
period of time, various processes are simultaneously leaders.4 However, there must be a time after
which the processes agree on some unique correct leader. Figure 2 depicts a scenario where every
process elects process p1, and then p1 crashes; eventually every process elects process p2.

p1

p2

p3
 leader()

 p3

 leader()

 p1

 leader()

 p2

 leader()

 p1

 leader()

 p1

 leader()

 p1

 leader()

 p2

 leader()

 p2

 leader()

 p1

 leader()

 p2

crash

Figure 2: �Leader scenario

4.3 Illustration: Consensus

To illustrate the semantics of our abstractions, we show in Figure 3 how they can be composed
to build a simple consensus algorithm. In a sense, this also shows that, together, and from a
computational point of view, our abstractions are at least as powerful as consensus.

Every process is supposed to propose a value and some process eventually decides some value.
A process proposes a value v through invoking propose(v) and is said to have decided v′, if the
invocation returns v′. A consensus algorithm satisfies the following properties: (1) (Validity) if a
process decides v then some process has proposed v, (2) (Uniform Agreement) no two processes
decide differently, and (3) (Termination) some correct process eventually decides.

The algorithm uses a single �Register instance for ensuring agreement. After proposing a value
v, any process that is elected leader invokes propose(v) (on the �Register) and keeps on doing
so, unless it stops being the leader or it decides (i.e., the propose(v) invocation on the �Register
returns a non-abort value, or pi receives the decision value from some other process).

We assume here that some process is correct. The agreement and the validity properties of
consensus follow directly from those of �Register. To see how the termination property of consensus
is ensured, recall that the �Leader eventually elects the same correct process pl at all processes.

4In this sense our leader election specification is strictly weaker then the notion of leader election introduced
in [21].
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Suppose by contradiction that no correct process ever decides. It follows that pl never decides.
Thus, process pl invokes propose() on the �Register an infinite number of times (without deciding)
and all other processes invoke propose() only a finite number of times: a violation of the termination
property of �Register .

1: For each process pi:
2: procedure initialization:
3: register ← new �Register
4: ld ← new �Leader
5: decision ← abort
6: procedure propose(v)
7: while decision = abort do
8: if ld.leader() = pi then
9: decision ← register.propose(v)
10: return(decision)

Figure 3: Consensus

5 Abstractions: Implementations

In the following, we discuss implementations of our two abstractions, �Register and �Leader, and
then use these abstractions to implement a simple variant of Paxos in the crash-stop model (i.e.,
solve the total-order problem in the crash-stop model). The architecture of this implementation is
shown in Figure 4. Section 6 extends this implementation to the crash-recovery model to obtain a
faithful deconstruction of Paxos.

<>Leader <>Register

Message-passing

Paxos

Figure 4: Architecture

In the crash-stop model, we assume that messages are not lost or duplicated (although they
may be arbitrarily delayed) and processes that crash halt their activities and never recover. We also
assume that a majority of the processes never crash, and for the implementation of our �Leader
abstraction, we assume the failure detector Ω introduced in [5].

5.1 �Register

5.1.1 Overview

The algorithm of Figure 5 implements the abstraction of �Register. The algorithm works intuitively
as follows. Every process plays two distinct roles: initiator (when it has some value to propose) and
witness (when some process proposes some value). The propose() procedure captures the initiator
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1: procedure �Register() {Constructor, for each process pi}
2: readi ← 0 {Highest READ round number accepted by pi}
3: writei ← 0 {Highest WRITE round number accepted by pi}
4: vali ← ⊥ {pi’s estimate of the register value}
5: v∗ ← ⊥ {value with which WRITE message is sent}
6: k ← i − n {round number, initialized such that the first round number sent by pi is i}
7: procedure propose(v)
8: k ← k + n
9: send [READ,k] to all processes
10: wait until received [ackREAD,k,*,*] or [nackREAD,k] from �n+1

2
� processes

11: if received at least one [nackREAD,k] then
12: return(abort) {propose() aborts after READ}
13: else
14: select the [ackREAD,k, k′, val′] with the highest k′
15: if val′ �= ⊥ then
16: v∗ ← val′
17: else
18: v∗ ← v
19: send [WRITE,k, v∗] to all processes
20: wait until received [ackWRITE,k] or [nackWRITE,k] from �n+1

2
� processes

21: if received at least one [nackWRITE,k] then
22: return(abort) {propose() aborts after WRITE}
23: else
24: return(v∗) {pi decides v∗}
25: task wait until receive [READ,k] from pj

26: if writei ≥ k or readi ≥ k then
27: send [nackREAD,k] to pj

28: else
29: readi ← k
30: send [ackREAD,k, writei, vali] to pj

31: task wait until receive [WRITE,k, v′] from pj

32: if writei > k or readi > k then
33: send [nackWRITE,k] to pj

34: else
35: writei ← k
36: vali ← v′ {A new value is “adopted”}
37: send [ackWRITE,k] to pj

Figure 5: A �Register implementation in a crash-stop model
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role. The witness role is performed by the two message-reception tasks which reply to messages
generated by propose() invocations. The message-reception tasks at each process pj maintain an
estimate of the register’s value, denoted by valj and intialized to ⊥. Every process pj maintains
the current round number k. The first propose() invocation at process pj has round number j, and
in every subsequent invocation, the round number is incremented by n. Thus, the round number
associated with invocations at process pj are: j, j + n, j + 2n, and so on.5

Procedure propose() at a process pj consists of two phases: read and write. Each phase can
succeed or abort, and the write phase is initiated only if the read phase succeeds. Procedure
propose() returns a decision value if both phases succeed, otherwise, it aborts.

- The purpose of the read phase is to detect any value which has already been decided (i.e., has
been successfully written) and to get a promise from the witnesses that no subsequent read
or write will succeed with a lower round number [16]. Process pj initiates the read phase by
incrementing its round number k, and sending a read message with round number k to all
processes. On receiving a read message, a witness pi replies nackread if it has already seen
a read or write message with the same or a higher round number. Otherwise, pi sets readi

to k, and sends an ackread containing vali (estimate of the written value) and writei (round
number when vali was last updated): we say that the witness accepts the read message. On
receiving replies from the witness tasks at majority of processes, the initiator pj aborts if it
receives any nackread message. Otherwise, pj selects the val (�= ⊥) with the highest write
and proceeds to the write phase. However, if all received replies have val = ⊥, pj selects the
invocation value of propose(). We denote the value selected for the write phase by v∗.

- The write phase tries to update val and write at the witness tasks, to v∗ and k, respectively. In
the write phase, the initiator pj sends a write message to all processes with v∗. On receiving
a write message, a witness pi replies nackwrite if it has seen a read or write with a higher
round number. Otherwise, pi updates vali to v∗ and writei to k, and sends ackwrite to pj :
we say that pi accepts the write message and adopts v∗. On receiving replies from a majority
of processes, pj aborts if it receives any nackwrite. Otherwise, pj returns v∗ as the decision
value.

5.1.2 Correctness

The validity property of �Register follows from (1) the observation that a process only tries to write
(and decide on) a value which it has either proposed or has read from other processes and (2) the
no creation property of the channels. The termination property follows from the assumptions that
messages are not lost and that a majority of processes never crash, as well as the use of an increasing
round number. Now we discuss agreement.

A process decides a value v in a given invocation only if both the read and the write phases
of the invocation succeed and the most recent value seen in the read phase is v. Let us call an
invocation writer if it sends at least one write message. We say that a writer tries to write v at
round k, if it sends a [write, k, v] message. It is easy to see that (1) every writer invocation has a
successful read phase, (2) any invocation in which some process decides is a writer invocation, and
(3) only writer invocations can change the estimates val at the message-reception tasks.

5We would like to point out that incrementing the round number by n is an optimization; processes may increment
the round number by any finite positive integer, and its value can vary between invocations and from process to
process.
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Notice that two successful read phases always overlap at the witness task of some process,
and therefore, no two successful read phases have the same round number. It immediately follows
that two writer invocations cannot have the same round number. Let k′ be the lowest round
number in which some process decides. Let v′ and W1 be the corresponding decision value and the
writer invocation,respectively. Therefore, there is a set of processes S which contain a majority of
processes, and every process in S replies ackwrite to W1. We claim that every writer with a higher
round number tries to write v′. This claim implies agreement, because only writer invocations can
decide, and a writer invocation decides on the value it tries to write.

Suppose by contradiction that there is a writer invocation which tries to write a value different
from v′. Consider the lowest round number k′′ > k′ such that some writer invocation W2 at round
k′′ tries to write v′′ �= v′. Thus, every writer invocation with round k such that k′ ≤ k < k′′, tries to
write v′. Consider the read phase of W2. Since set S contains a majority of processes, W2 receives
[ackread , k′′, write′i, val] from some process pi in S. As the message is an ackread, from line 26
we have write′i < k′′.

Let t1 be time when pi replied ackwrite to W1 and let t2 be the time when pi replied ackread to
W2. We claim that t1 < t2. Suppose by contradiction that t1 > t2. (t1 �= t2 because we assume
that the message reception tasks at a process treats one message at a time.) Then, pi sets readi to
k′′ at t2. Since, readi can never decrease with time (lines 26 and 29), readi ≥ k′′ > k at t1. Thus,
from line 32, it follows that pi sends a nackwrite to W1; a contradiction.

As pi sends a ackwrite to W1, so writei is k′ at t1. Also, from the message sends by pi to W2
we know that writei is write′i at t2. As t1 < t2 and writei can never decrease with time (lines 32
and 35), we have k′ ≤ write′i.

Thus, k′ ≤ write′i < k′′. Consider the ackread message from which W2 choose the value for
the write phase: [ackread , k′′, l, v′′]. (As W2 receives non-⊥ value from pi, W2 cannot choose its
own invocation value as the value for the write phase.) Since a writer chooses the latest value seen
in the read phase, write′i ≤ l. Furthermore, since it is an ackread message, from line 26 we have
l < k′′. Thus there is a writer which tried to write v′′ at round l and k′ ≤ write′i ≤ l < k′′. Recall
that every writer at round k such that k′ ≤ k < k′′, tries to write v′. Thus, v′ = v′′; a contradiction.

5.2 �Leader

In the presence of at least one correct process, �Leader corresponds to the failure detector Ω
introduced in [5]: Ω outputs (at each process) exactly one process called a trusted process, i.e., a
process that is trusted to be up. Failure detector Ω satisfies the following property: There is a
time after which all correct processes trust the same correct process. It was shown in [5] that Ω
is the weakest failure detector to solve consensus and hence total order broadcast in a crash-stop
system model with a majority of correct processes. The Ω failure detector can be implemented in
a message passing system with partial synchrony assumptions [6].

5.3 A Simple Variant of Paxos

The algorithm of Figure 7 is a simple and modular variant of Paxos in a crash-stop model (whereas
the original Paxos algorithm considers a crash-recovery model - see Section 6).
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5.3.1 Overview

Processes deliver messages in batches, and in increasing order of their batch numbers: messages
in batch L are delivered before messages in batch L + 1. Inside a batch, messages are delivered
in a deterministic order (e.g., lexicographically). For each batch, if processes can agree on the set
of messages which constitutes that batch, then the ordering of batches immediately implies the
total-ordering of messages.

The algorithm uses a series of �Registers (we simply say registers) indexed by batch numbers
to agree on the set of messages for each batch: registerL is used to agree on the set of messages
which constitute batch L, and we call this agreed set of messages the decided message set for batch
L.

p1

p2

p4

p5

p3

Decision

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Broadcast m

prop(m)

1
register

(a) p1 is leader
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TO-Broadcast m TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m
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m

register
1

(b) p5 is leader
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TO-Broadcast m TO-Deliver m
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 m m

prop(m)
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register

(c) p1 first elects p3 and then p5
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p4

p5

p3

TO-Broadcast m TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

Decision

 m m  m

prop(m)

prop(m)

register
1

register
1

(d) p1 first elects p3, then p2 and finally p5

Figure 6: Execution schemes

We give here an intuitive description of the algorithm. When a process pi TO-Broadcasts a
message m (i.e., m is supposed to contain a request to the replicated service), pi consults �Leader
and sends m to the leader, say pj . When pj receives a TO-Broadcast message m, pj checks whether
the local �Leader module elects itself as the leader. If pj indeed elects itself as the leader, pj triggers
a Converge task to decide on the next higher batch of messages, say batch L. The Converge task
repeatedly invokes propose() on registerL, until it decides on some set of messages,6 or pj stops

6Recall that a propose() invocation decides when it returns a non-abort value.
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being leader. The proposal value for each invocation is the set of messages which have been received
by pj but not yet delivered. If pj decides on a message set for batch L, it sends the decision value
to all processes. On receiving a decided message set for batch L, a process delivers the message set
as batch L if it has already delivered batch L-1. If it has not yet delivered batch L-1, the process
delays the delivery of batch L until batch L-1 is delivered to respect the total order. Within a batch,
processes deliver messages in the decided message set using a deterministic ordering function.

5.3.2 Examples

Figure 6 depicts four possible execution schemes of the algorithm. We assume for all cases that
(1) process p1 TO-Broadcasts a message m, (2) process p5 is the eventual perpetual leader, and
(3) L =1. (prop() stands in the figures for propose(), and since L = 1, all propose() invocations
are on the register1.) In Figure 6(a), p1 elects itself, triggers the task Converge(1, m) (which in
turn invoked propose(m) on register1), decides m, and sends the decision to all. In Figure 6(b),
p1 elects p5 and sends m to p5. Process p5 then invokes propose(m) on register1, decides m, then
sends the decision to all. In Figure 6(c), p1 first elects p3 and sends m to p3. In this case however,
p3 does not elect itself and therefore does nothing. Later on, p1 elects p5 and then sends m to p5.
As for case (b), p5 decides m and sends the decision to every process. Note that p3 could have sent
m to p5 if p3 had elected p5. Finally, in Figure 6(d), p1 elects p3 (which does not elect itself), then
p1 elects p2, which elects itself and invokes propose(m) but aborts. Finally, p1 elects p5, and, as for
case (c), p5 decides m and sends the decision to all.

5.3.3 Detailed description

We give here a detailed description of the algorithm. We first describe the primary data structure,
and then the main parts of the algorithm. Each process pi maintains a variable TO delivered[]
which is an array of message sets which have already been TO-Delivered, and indexed according to
their batch number. For ease of description, we denote the set of all messages in TO delivered[] by
TO delivered. When pi receives a message m, pi adds m to the set Received which keeps track of all
messages that need to be TO-Delivered. Thus Received - TO delivered, denoted TO undelivered,
contains the set of messages that were submitted for total order broadcast, but are not yet TO-
Delivered. The batches that have been decided but not yet TO-Delivered are put in the array
AwaitingToBeDelivered[] indexed by their batch number. The variable nextBatch keeps track of
the next expected batch in order to respect the total order property.

There are four main parts in the algorithm: (a) when a process pi receives some message, task
launch starts7 task Converge if the process pi is leader, or if pi is not leader, sends the messages
it did not yet TO-Deliver to the leader; (b) task Converge keeps on invoking propose() on a
�Register while pi is leader and until some message set is decided; (c) primitive receive handles
received messages, and stops task Converge(L, ∗) once pi receives a decision for batch L; and (d)
primitive deliver TO-Delivers messages. Each part is described below in more details. Initially,
when a process pi TO-Broadcasts a message m, pi puts m into the set Received which has the effect
of changing the predicate of guard line 15.

7When we say that a new task is started, we mean a new instance of the task with its own variables (since there
can be more than one batch of messages being treated at the same time).
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• In task launch, process pi triggers the upon case when the set TO undelivered contains new
messages or when pi elects another leader (line 15). Note that the upon case is executed only
once per received message to avoid multiple batches with exactly the same set of messages.
If the upon case is triggered by a leader change, pi jumps directly to line 26 and sends to
the leader all the messages it did not yet TO-Deliver. Otherwise, before trying to decide the
set of messages for the next expected batch, pi first verifies at line 16, (1) if it has already
received the decision for this batch, or (2) if it has already TO-Delivered this batch. Process
pi then verifies whether it is a leader, and if so, pi starts task Converge. The task Converge
takes in as parameters the message set TO undelivered and the batch number pi wants to
deliver next (nextBatch). If pi is not leader, then pi sends the message set TO undelivered
to the leader.

• In task Converge(L, msgSet), a process pi periodically invokes propose() on the registerL until
some message set is decided or pi stops electing itself the leader. By the property of �Leader,
eventually one of the correct processes (pl) will be the perpetual leader at all processes.
Once pl is elected by every process, for every subsequent batch, (1) pl directly receives every
message TO-Broadcast by processes,(2) is the only process to invoke propose() on the register
corresponding to that batch, and therefore, decides a message set. (If pl does not decide, then
pl proposes an infinite number of times the value to the register without deciding, and other
processes propose only a finite number of times to the register; a violation of termination.)
Process pl then sends the decision message for the batch to all.

• In the primitive receive, when process pi receives a decision message from pj for batch L (line
35), pi first stops task Converge(L, ∗). Process pi then verifies that the decision received is
the next decision that was expected (nextBatch). Otherwise, there are two cases to consider:
(1) pi is ahead, or (2) pi is lagging behind. For the first case (if pi is ahead, i.e., pi receives
a decision from a lower batch), pi sends to pj an update message for each batch that pj

is missing (line 39). For case 2 (if pi receives a future batch), pi buffers the messages of
the batch in the set AwaitingToBeDelivered and pi also sends to pj an update message with
nextBatch-1 (line 41) in order to update itself (pi): when pj receives this “on purpose lagging”
message, pj sends to pi the update message for all missing batches.

• In the primitive deliver, process pi TO-Delivers only the messages that were not already TO-
Delivered (line 9 or 12) following the same deterministic order. We assume that pi removes
all messages that appear twice in the same batch of messages.8

6 A Faithful Deconstruction of Paxos

We show here how to step from our simple variant of Paxos in the crash-stop model to a faithful
variant of the algorithm in the crash-recovery model. The variant we obtain preserves the efficiency
of Paxos and tolerates temporary crashes of links and processes. As in the original Paxos algorithm,
we assume that there are no unstable processes: either processes are eventually always-up (correct)
or eventually always-down (faulty). (We show how to circumvent this restriction in [3].)

8In [15, 16], TO-Delivering a message and executing a round (in the Converge() task) are referred to as passing a
decree and conducting a ballot, respectively.
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1: For each process pi:
2: procedure initialization:
3: ld ← new �Leader; Received ← ∅; ∀l, TO delivered [l] ← ∅; ∀l, AwaitingToBeDelivered [l] ← ∅
4: TO undelivered ← ∅; K ← 1; nextBatch ← 1 start task{launch}
5: procedure TO-Broadcast(m)
6: Received ← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered [nextBatch] ← msgSet - TO delivered
9: atomically TO-Deliver each message in TO delivered [nextBatch] in some deterministic order {TO-Deliver}
10: nextBatch ← nextBatch +1
11: while AwaitingToBeDelivered [nextBatch] �= ∅ do
12: TO delivered [nextBatch] ← AwaitingToBeDelivered [nextBatch] - TO delivered ;

atomically deliver TO delivered [nextBatch] in some deterministic order {TO-Deliver}
13: nextBatch ← nextBatch+1
14: task launch
15: upon Received - TO delivered �= ∅ or leader has changed do {Upon case executed only once per received message.

If upon triggered by a leader change, jump to line 26.}
16: while AwaitingToBeDelivered [K+1] �= ∅ or TO delivered [K+1] �= ∅ do
17: K ← K+1
18: if K = nextBatch and AwaitingToBeDelivered [K] �= ∅ and TO delivered [K] = ∅ then
19: deliver(AwaitingToBeDelivered [K])
20: TO undelivered ← Received - TO delivered
21: if leader() = pi then
22: while Converge(K, ∗) is active do
23: K ← K+1
24: start task Converge(K, TO undelivered)
25: else
26: send(TO undelivered) to ld.leader()
27: task Converge(L, msgSet) {Keep on trying until some value is decided}
28: returnedMsgSet ← abort
29: registerL ← new �Register()
30: while returnedMsgSet = abort do
31: if ld.leader() = pi then
32: returnedMsgSet ← registerL.propose(msgSet)
33: send(decision,L, returnedMsgSet) to all processes
34: upon receive m from pj do

35: if m = (decision,Kpj ,msgSet
Kpj ) or m = (update,Kpj ,TO delivered[Kpj ]) then

36: if task Converge(Kpj , ∗) is active then stop task Converge(Kpj , ∗)
37: if Kpj �= nextBatch then {pj is ahead or behind}
38: if Kpj < nextBatch then {pj is behind}
39: for all L such that Kpj < L < nextBatch: send(update,L,TO delivered[L]) to pj {If pj �= pi}
40: else
41: AwaitingToBeDelivered [Kpj ] = msgSet

Kpj ; send(update,nextBatch-1,TO delivered [nextBatch-1 ]) to pj

{If pj �= pi}
42: else
43: deliver(msgSet

Kpj )
44: else
45: Received ← Received ∪ set of messages contained in m

Figure 7: A crash-stop variant of Paxos
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To step from a crash-stop model to a crash-recovery model, we mainly adapt the implementation
of �Register and slightly modify the global algorithm to deal with recovery (in shade in Figure 8(a)):
we only present the modified parts in this section. Every process stores some values in the stable
storage so that it can consistently retrieve its state when it recovers. To cope with temporary link
failures, we use a retransmission module with two primitives s-send and s-receive. We describe this
module below.

<>Leader <>Register
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Paxos

- Stable storage, recovery procedure

- Stable storage,       
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Figure 8: From crash-stop to crash-recovery

6.1 Retransmission Module

This module (Figure 9) encapsulates retransmission issues to deal with temporary crashes of com-
munication links. The primitives of the retransmission module (s-send and s-receive) preserve the
no creation and fair loss properties of the underlying channels, and ensures the following property:
Let pi be any process that s-sends a message m to a process pj, and then pi does not crash. If pj

is correct, then pj s-receives m from pi an infinite number of times. Figure 9 gives the algorithm
of the retransmission module. All messages that need to be retransmitted are put in the variable
xmitmsg. As in the original Paxos algorithm, once a process TO-delivers the message set of a batch,
all corresponding messages in xmitmsg of the used retransmission module could be erased, except
decision and update messages.

6.2 �Register

We give in Figure 10 the implementation of a �Register in a crash-recovery model. The main
differences with our crash-stop implementation given in the previous section (Figure 5) are the
following: (a) as shown in Figure 8(b), a process stores the variables readi, writei and vali, in
order to recover consistently its precedent state after a crash, (b) a recovery procedure at pi re-
initializes the process and retrieves all variables, and (c) the send (resp. receive) primitive is also
replaced by the s-send (resp. s-receive) primitive.

However, there are two problems which arise in this model due to the generation of duplicate
messages by the retransmission module, each of which can be addressed by considering the identifier
of messages. (Recall that every message has a unique identifier.)
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1: for each process pi:
2: procedure initialization:
3: xmitmsg ← ∅; start task{retransmit}
4: procedure s-send(m) {To s-send m to pj}
5: if m �∈ xmitmsg then {Ensure that m is not added to xmitmsg more than once}
6: xmitmsg ← xmitmsg ∪ m
7: if pj �= pi then
8: send m to pj

9: else
10: simulate s-receive m from pi

11: upon receive(m) from pj do
12: s-receive(m)
13: task retransmit {Periodically retransmit all messages}
14: while true do
15: for all m ∈ xmitmsg do
16: s-send(m)

Figure 9: Retransmission module

• Suppose that some correct process pl keeps on invoking propose() and no other process invokes
propose(). In the read phase of each invocation, retransmission module at pl s-sends the
corresponding read message. On receiving the first read message, a process pi replies
ackread, whereas on receiving the second message (the duplicate message generated by the
retransmission module), the process replies nackread (line 26). Since the channels are not
FIFO, the nackread may be received by pl before the ackread. This scenario may be
repeated infinitely often, thus violating termination. To avoid this problem, before sending
an ackread, a process stores (logs) the message identifier of the read message along with
its read variable (line 29). Subsequently, it replies ackread to every read message with the
same identifier.

• Since a process can crash and recover, a process pl may propose a value v with a round
number k, crash before completing the invocation, recover, and then propose v′ (�= v) with
the same round number k. It is possible that other processes reply ackread to the first
read message, and send nackread to the second message. Since the round number is the
same in both invocations, pl may complete the read phase of second invocation on receiving
the ackread messages for the previous invocation, and then pl may send a write message.
Thus there may be write messages with the same round number k but containing distinct
values, v and v′, which may lead again to a violation of agreement. This problem can also
be avoided by tagging each ack or nack message with the message identifier of the read or
write message which has generated it. An invocation only considers the replies of its own
read or write messages.

6.3 �Leader

The �Leader abstraction corresponds to failure detector Ω in the crash-recovery model. Although
Ω has only been defined in a crash-stop model [5], its definition (i.e.; there is a time after which all
correct processes trust the same correct process) does not change in a crash-recovery model. Notice
that the notion of correctness of a process changes from that in the crash-stop model. We give
in [2] an implementation of Ω in a partial synchrony model.
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1: procedure �Register() {Constructor, for each process pi}
2: readi ← 0
3: writei ← 0
4: vali ← ⊥
5: v∗ ← ⊥
6: k ← i − n
7: procedure propose(v)
8: k ← k + n
9: s-send [READ,k] to all processes
10: wait until s-received [ackREAD,k,*,*] or [nackREAD,k] from �n+1

2
� processes

11: if s-received at least one [nackREAD,k] then
12: return(abort)
13: else
14: select the [ackREAD,k, k′, val′] with the highest k′
15: if val′ �= ⊥ then
16: v∗ ← val′
17: else
18: v∗ ← v
19: s-send [WRITE,k, v∗] to all processes
20: wait until s-received [ackWRITE,k] or [nackWRITE,k] from �n+1

2
� processes

21: if s-received at least one [nackWRITE,k] then
22: return(abort)
23: else
24: return(v∗)
25: task wait until s-receive [READ,k] from pj

26: if writei ≥ k or readi ≥ k then
27: s-send [nackREAD,k] to pj

28: else
29: readi ← k; store{readi} {Modified from Figure 5}
30: s-send [ackREAD,k, writei, vali] to pj

31: task wait until s-receive [WRITE,k, v] from pj

32: if writei > k or readi > k then
33: s-send [nackWRITE,k] to pj

34: else
35: writei ← k
36: vali ← v; store{writei, vali} {Modified from Figure 5}
37: s-send [ackWRITE,k] to pj

38: upon recovery do {Added procedure to Figure 5}
39: initialization
40: retrieve{writei, readi, vali}

Figure 10: A �Register implementation in a crash-recovery model
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6.4 Paxos

The deconstructed Paxos algorithm is described in Figure 11. Figure 8(b) depicts the fact that,
compared to the crash-stop variant of Paxos, the crash recovery algorithm simply adds (1) a recovery
procedure, and (2) one stable storage log to store the set TO delivered and the variable nextBatch
while TO-delivering a batch. Also, the send and receive primitives are replaced by s-send and
s-receive primitives, respectively. We say here that a process TO-Delivers a message m exactly
when it completes storing a TO delivered value which contains m (Figure 11, line 9). The recovery
procedure at pi (1) re-initializes the process, (2) retrieves all variables, and (3) sends an update
message to all processes containing nextBatch of pi. (If pi is lagging behind, then on receiving this
update message, other processes will send the decided batches which pi has missed.)

Consider a stable period where (a) the processes elect the same leader, (b) a majority of the
processes are up, (c) no process crashes or recovers and (d) links do not lose messages. In such a
period, a process can TO-Deliver a message after three stable storage logs and five communication
steps if the leader is the TO-Broadcasting process: the read and the write phase at the leader each
requires two communication steps and a stable storage log, one communication step is required to
send the decided message set to all processes, and one stable storage log is done while TO-delivering
the message. We discuss optimized variants of Paxos in a companion paper [3].

7 Concluding Remarks

The contribution of this paper is a faithful deconstruction of the Paxos replication algorithm into
lower level abstractions. Our deconstruction is faithful in the sense that it preserves the efficiency
and the resilience of the original Paxos algorithm. The style of the deconstruction promotes both
the correctness reasoning and the practical implementation of the algorithm, in a modular man-
ner. It also makes it easy to reconstruct variants of the algorithms that are customised for specific
environments. In a companion paper [3], we discuss such reconstructions and show how, by com-
posing our abstractions or re-implementing them differently, we obtain even more resilient or more
efficient variants of Paxos that are adapted to specific settings of the distributed environment. Sim-
ilar approaches were used elsewhere to obtain variants of Paxos that deal with non-deterministic
replicas [8] or to deal with an infinite number of clients with shared memory [7].

As we discussed in the introduction, Paxos was viewed in [16, 17, 20] as a sequence of consensus
instances. Compared to the original Paxos algorithm, additional messages and stable storage logs
are required when relying on a consensus box. This is in particular because the very nature of
consensus requires every process to start consensus (which adds messages compared to Paxos), and
in a crash-recovery model, every process needs to store its proposal value in the stable storage.
Furthermore, consensus typically relies on an underlying notion of leader and, when this notion is
hidden within the consensus box, there is no way to know who the current leader is and to use
that information to reduce the number of messages in stable periods of the system. Considering
a finer-grained register abstraction, namely �Register, separate from a leader election procedure,
�Leader, is the key to our faithful deconstruction of Paxos.

�Register is close to the k-converge primitive (with k = 1) [23]. It is also very similar to the
“weak” consensus abstraction identified in [17] with one fundamental difference however. “Weak”
consensus does not provide any liveness property. As stated in [17], the reason for not having any
liveness property is to avoid the applicability of the impossibility result of [10]. Our �Register
specification is weaker than consensus and does not fall into the impossibility result of [10], but
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1: For each process pi:
2: procedure initialization:
3: ld ← new �Leader; Received ← ∅; ∀l, TO delivered [l] ← ∅; ∀l, AwaitingToBeDelivered [l] ← ∅
4: TO undelivered ← ∅; K ← 1; nextBatch ← 1 start task{launch}
5: procedure TO-Broadcast(m)
6: Received ← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered [nextBatch] ← msgSet - TO delivered ;
9: atomically TO-Deliver each message in TO delivered [nextBatch] in some deterministic order;

store{TO delivered,nextBatch}; stop retransmission module ∀ messages of nextBatch except decide or update
{modified from Figure 7}

10: nextBatch ← nextBatch +1
11: while AwaitingToBeDelivered [nextBatch] �= ∅ do
12: TO delivered [nextBatch] ← AwaitingToBeDelivered [nextBatch]- TO delivered
13: atomically deliver TO delivered [nextBatch]in some deterministic order;

store{TO delivered,nextBatch}; stop retransmission module ∀ messages of nextBatch except decide or update
{modified from Figure 7}

14: nextBatch ← nextBatch+1
15: task launch
16: upon Received - TO delivered �= ∅ or leader has changed do {Upon case executed only once per received message.

If upon triggered by a leader change, jump to line 27}
17: while AwaitingToBeDelivered [K+1] �= ∅ or TO delivered [K+1] �= ∅ do
18: K ← K+1
19: if K = nextBatch and AwaitingToBeDelivered [K] �= ∅ and TO delivered [K] = ∅ then
20: deliver(AwaitingToBeDelivered [K])
21: TO undelivered ← Received − TO delivered
22: if leader() = pi then
23: while Converge(K, ∗) is active do
24: K ← K+1
25: start task Converge(K, TO undelivered)
26: else
27: s-send(TO undelivered) to ld.leader()
28: task Converge(L, msgSet) {Keep on trying until some value is decided}
29: returnedMsgSet ← abort
30: registerL ← new �Register()
31: while returnedMsgSet = abort do
32: if ld.leader() = pi then
33: returnedMsgSet ← registerL.propose(msgSet)
34: s-send(decision,L, returnedMsgSet) to all processes
35: upon s-receive m from pj do

36: if m = (decision,Kpj , msgSet
Kpj ) or m = (update,Kpj ,TO delivered[Kpj ]) then

37: if task Converge(Kpj , ∗) is active then stop task Converge(Kpj , ∗)
38: if Kpj �= nextBatch then {pj is ahead or behind}
39: if Kpj < nextBatch then {pj is behind}
40: for all L such that Kpj < L < nextBatch: s-send(update,L,TO delivered[L]) to pj {If pj �= pi}
41: else
42: AwaitingToBeDelivered [Kpj ] = msgSet

Kpj ; s-send(update,nextBatch-1,TO delivered [nextBatch-1 ]) to pj

{If pj �= pi}
43: else
44: deliver(msgSet

Kpj )
45: else
46: Received ← Received ∪ set of messages contained in m
47: upon recovery do {Added procedure to Figure 7}
48: initialization
49: retrieve{TO delivered, nextBatch}; K ← nextBatch; nextBatch ← nextBatch+1; Received ← TO delivered
50: s-send(update,nextBatch-1,TO delivered [nextBatch-1 ]) to all

Figure 11: The Paxos deconstruction

ACM SIGACT News 65 March 2003 Vol. 34, No. 1



nevertheless features a meaningful liveness property. The liveness property of our �Register coupled
with �Leader is precisely what allows us to ensure progress at the level of the replication algorithm.

The round-based register introduced in [2] (and refined in [7], where it was given a precise spec-
ification) has the same power as our �Register: they can both be implemented in an asynchronous
system when a majority of processes are correct. However, unlike round-based register, �Register
does not involve rounds in its specification, and thus has simpler properties. The round-based
computation is hidden inside our implementation of the �Register which is indeed close to the im-
plementation of the round-based register [2]. However, the simpler properties of �Register can also
be satisfied by an inefficient implementation. In particular, the termination property of �Register
does not preclude a correct process pi from aborting the propose() invocation an arbitrarily large
number of times, even if pi is the only process invoking propose() on the register. This is prevented
in the specifications of [7].

Identifying the notion of �Leader in a precise way enables us to put Paxos and the agreement
algorithms of [6, 1] on the same ground; in short, they rely on equivalent failure detectors. Identi-
fying the actual register that would lead to a faithful deconstruction of those agreement algorithms
would be an interesting exercise. Intuitively, some notion of locking is used in those algorithms as
well, but it is not clear how that could be easily separated from the failure detection procedure
and captured within some form of register. In general, it would be interesting to come up with a
family of register abstractions that capture the various ways of locking decision values in indulgent
agreement algorithms [9, 19, 4]. These algorithms all intuitively share the same flavour but it is
not clear how to compare them in a rigorous way.
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