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AbstractÐCoordination among processes in a distributed system can be rendered very complex in a large-scale system where

messages may be delayed or lost and when processes may participate only transiently or behave arbitrarily, e.g., after suffering a

security breach. In this paper, we propose a scalable architecture to support coordination in such extreme conditions. Our architecture

consists of a collection of persistent data servers that implement simple shared data abstractions for clients, without trusting the clients

or even the servers themselves. We show that, by interacting with these untrusted servers, clients can solve distributed consensus, a

powerful and fundamental coordination primitive. Our architecture is very practical and we describe the implementation of its main

components in a system called Fleet.

Index TermsÐDistributed systems, scalability, survivability, quorums, Byzantine failures, consensus.

æ

1 INTRODUCTION

IN this paper, we propose a system architecture that
supports efficient and scalable coordination among

distributed clients. Our architecture strives to support
coordination in perhaps the most difficult circumstances
possible: We consider a widespread distributed system
where message delays and losses are unpredictable and
where clients may be transient, may need to take actions at
different times (and may not be available at others), and
may even exhibit arbitrary behavior, e.g., due to being
corrupted by an attacker. To support coordination in this
setting, we postulate a collection of persistent and generic
object servers with which clients can interact (see Fig. 1), but
that, like clients, may fail arbitrarily. We are developing a
software system, called Fleet, that implements these servers
and protocols for clients to use them to emulate shared data
abstractions (e.g., shared variables and locks).

The properties that distinguish Fleet from other systems

that provide shared data services are its scalability and its

survivability: Fleet is designed to scale to hundreds of

servers spread across a wide area and to be capable of

serving thousands of clients at a time. Moreover, Fleet can

survive the arbitrarily malicious corruption of up to a

threshold of its servers and any number of clients while still

providing useful services.
The Fleet architecture, and our coordination protocols

using it, are motivated by large-scale distributed

applications that have a need for shared state with intrinsic

survivability and security requirements. These applications

include, for example:

1. Public key infrastructures: Common to many
proposals for public key infrastructures (PKIs) are
on-line services that support critical functions.
These functions may include certificate-generating
services that create certificates (i.e., bindings
associating attributes to public keys) as in [24],
[35], revocation services that enable a client to
promptly invalidate her certificate as in [12], [20],
and directory services that enable a client to
locate the most up-to-date certificate for a name
or key, such as X.509 directories [15]. A PKI is a
prime example of a system that may need both
to survive hostile attempts to penetrate it due to
the security requirements it embodies and to
scale to worldwide proportions.

2. Robust publishing and dissemination: The Eter-
nity service [2] is a proposed service that would
enable a client to publish a document so that
anyone can retrieve it, but so that nobodyÐeven
the author or an adversary with the means to
mount a military strike against the serviceÐcould
eliminate the document from existence or other-
wise deny access to it. Such a service will
inherently require massive replication over a
wide area that can survive attempts to corrupt
the data it holds. The Eternity service is one
(ambitious) example of a broader class of robust
publishing and dissemination services that Fleet is
designed to support.

3. National voting systems: The AT&T Secure
Systems Research Department (of which we were
members in 1998) was tasked in 1998 with
designing a fully electronic national election
system for Costa Rica. Among the goals of this
system was to ensure that each voter identifier
can be used to cast a vote only once. Achieving
this requires ªlockingº each voter identifier when
it is used to cast a vote, thereby promptly
precluding its use at any one of the more than
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1,000 other voting stations in the country. This
locking is an example of distributed coordination
that should survive tampering by parties trying
to sway the election results.

Fleet is based on a class of techniques that we have
recently developed for building survivable systems that
must scale. At the foundation of Fleet are novel quorum
constructions that enable clients to complete operations on
shared data objects after interacting with only a typically
small subset (quorum) of servers, with no centralized
locking or management and with no server-to-server
interaction. Quorums can be surprisingly smallÐe.g.,
comprised of only O� ���np � out of a total of n serversÐand,
thus, client access protocols can efficiently scale to
hundreds and possibly even thousands of servers. Quorum
systems can be constructed to tolerate failures ranging from
benign to fully arbitrary [27], [32], [30] and, for either type
of failure, can provide either strict consistency guarantees
or only probabilistic ones [31]. Fleet allows clients to
dynamically tune the quorums they use for their applica-
tion needs.

The goal of this paper is to give an overview of this
architecture with an eye toward how it can be used to
support client coordination. We describe various shared
data elements emulated by servers that constitute powerful
tools for client interaction in the most challenging settings.
In particular, we present an access protocol by which clients
can interact with these servers to emulate a shared consensus
object. This is a shared object to which a client can propose a
value and receive a value in return. The consensus object
returns the same value to each client, and the returned
value is one proposed by some client. Applications of
consensus objects to achieving distributed coordination are
numerous. For example, a consensus object can be used to
implement distributed locking: Each client proposes its own
identifier and the consensus object returns the identifier of
the client to which the lock is granted.

In our consensus protocol, clients communicate directly
only with servers, performing operations on primitive
objects implemented at the servers. One of the contributions
of this paper is the design of a new object type, called timed
append-only array (TAOA), which servers emulate in order
to facilitate consensus among clients. TAOAs are shared
objects to which clients can append values and from which

they can read. In an append operation, a client irreversibly
writes a value at the next available slot in an array. The
servers include a timestamp with an appended value which
is returned in a read operation together with the value.
These timestamps serve to capture the partial ordering of
appends on all the arrays in the system. The value and
timestamp are both impossible to modify or erase, even by
the original writer. Intuitively, TAOAs support nonmalle-
able communication among the clients using shared objects
in that, once a client appends a value to a TAOA, it is
prevented from modifying it or from denying the relative
ordering of appends captured by its timestamp. At the same
time, TAOAs are simple enough to implement in our
setting, involving a few message exchanges between clients
and quorums of servers.

Using TAOAs, the clients emulate a consensus object
with the specification described above. The result is a
consensus object emulation that allows a client to obtain a
consensus value in an expected low-degree-polynomial
number of primitive object operations as a function of the
number of clients (implementations that deterministically
guarantee termination are known to be impossible to
achieve [11]), regardless of how many other clients
simultaneously engage the object. Moreover, the consensus
object retains its correctness despite even the malicious
behavior of any number of clients and a limited number of
servers and is, thus, survivable in a Byzantine environment.

Our consensus object exemplifies many of the strengths
of the Fleet architecture. It is implemented using data
sharing primitives that are emulated by the servers using no
server-to-server or client-to-client communication. Hence,
for example, a client that proposes a value alone obtains the
consensus value with only a few message exchanges
between the client and a fraction (quorum) of the servers.
Moreover, some of the mechanisms supporting the
consensus protocol are of general value, e.g., TAOAs
provide a form of nonmalleable communication among
arbitrarily faulty clients and servers. A distributed coin-
flipping technique used in our protocol can be useful in
other randomized protocols as well.

The remainder of this paper is structured as follows: We
provide a comparison to prior work in Section 2. We give an
overview of the Fleet architecture in Section 3. We then
focus on the design of TAOAs in our architecture in
Section 4, which are employed in Section 5 to emulate a
consensus object. Section 6 concludes.

2 COMPARISON TO PRIOR WORK

The foremost approach for building a survivable service
today is state machine replication (SMR) [37], in which every
(available) server receives, processes, and responds to every
client request; some examples of systems implementing this
approach are [38], [34], [13], [16], [6]. Because every server
must reliably receive every request, this approach generally
does not scale well. By employing our own advances to
quorum systems, specifically those that mask Byzantine
server failures, our approach allows each operation to
complete at only a fraction of the servers. This reduces the
load inflicted on each individual server and provides better
scalability and availability than SMR.
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More generally, Fleet serves as an interesting case study
in data replication using quorum systems, which have
seldom been deployed in practice despite over 20 years of
quorum research (e.g., [14], [40]; see [25] for an overview of
quorum systems). The main reason that quorums have not
been utilized in practice is that most data replication
systems require a client's read operation to access only a
single replica (and, when possible, a local one) for best read
performance, which in turn requires that write operations
be delivered to all replicas. This approach has been taken,
e.g., in group communication systems (see [33]), distributed
transactional systems (e.g., Argus [22] and Thor [23]), and
shared-memory emulation systems (e.g., Ivy [21] and
Munin [5]). However, accessing only a single replica
precludes any ability to mask arbitrary server failures
and, therefore, is unsuitable for our survivability goals.
Moreover, as recently discussed in [41], the communication
overhead of accessing multiple servers has been steadily
decreasing with improvements in network technology and,
thus, in some cases, these costs may no longer outweigh the
benefits of reduced overall server load that quorums can
offer.

One of the primary focuses of this paper is the enhanced
coordination services that our architecture can support, in
particular, consensus objects. Many systems support only
shared data with primitive read/write operations on it (e.g.,
Ivy [21], Munin [5] and Vault [13]). Others, primarily
transactional systems (e.g., Thor [23] and [6]), allow
compound operations on data, but these operations cannot
be guaranteed to terminate in settings such as ours. All of
our protocols are guaranteed to make progress so long as
some quorum in the system remains available. Specifically,
in our consensus protocol, which is the strongest coordina-
tion object we provide, we employ randomization to
guarantee that operations terminate with probability one.

Our goals also render existing consensus protocols
inadequate for coordination in our setting. Consensus
objects have traditionally been studied in two system
models: the shared memory model and the message passing
model. In each model, clients execute a distributed protocol
to implement the consensus specification. In the shared
memory model, clients communicate via shared memory
locations. In the message passing model, clients commu-
nicate by exchanging messages over a network. An
important distinction between the two is that, in the shared
memory model, consensus object implementations are
possible in which each client can obtain the consensus
value even if it is the only client that participates in the
protocol [3]. In the message passing model, typically, a
threshold of (correct) processes need to simultaneously
cooperate to achieve agreement.

The consensus implementation described here mixes
elements of both models: Clients communicate via shared
objects as in the shared memory model, but these shared
objects are emulated by exchanging messages with servers,
a threshold of which are required to participate to emulate
those shared objects. This approach is more suited to our
goals than executing a standard message-passing consensus
protocol either among the servers (where the decision value
is made available to clients) or the clients themselves.

Indeed, implementing a consensus object using an inter-
server protocol complicates server design and mandates
server-to-server communication, which would hurt the
scalability of Fleet. And, an interclient consensus protocol
would require the simultaneous participation of a high
percentage of the client population to converge on a
consensus value.

Consensus cannot be implemented deterministically in a
message-passing or shared-memory system, i.e., in a way
that guarantees a unique consensus value and termination
in a finite number of steps [11]. Numerous message-passing
protocols have employed randomization to guarantee finite
termination with probability one; see [7] for a survey.
Aspnes and Herlihy [3] introduced a shared-memory
randomized consensus protocol for a benign failure envir-
onment that uses read/write shared registers and termi-
nates in expected time polynomial in the number of clients.
Similarly, our consensus protocol is randomized and its
expected converging time is polynomial in the number of
clients (assuming a computationally bounded adversary).
Of the previous works, our protocol most closely resembles
[3], but differs significantly due to its tolerance to Byzantine
faulty clients and servers and, due to its implementation in
a message-passing (as opposed to shared memory) system.

3 FLEET OVERVIEW

In this section, we give an overview of the Fleet architec-
ture. Fleet is based on a design similar to a rudimentary
prototype system called Phalanx that we developed to
support an electronic voting application [28]. Fleet shares
no code with Phalanx, however, and substantially gener-
alizes and extends that system with additional capabilities,
e.g., for intrusion detection [1] and dissemination of
updates [26]. These additional capabilities will not be our
focus here.

As discussed in Section 1, we presume a system
consisting of possibly large numbers of servers and clients
that need not necessarily be distinct. Our system admits the
possibility that a client or server can fail, in which case, it
may deviate from its specification arbitrarily (Byzantine
failures), including collaborating with other faulty clients
and servers. A client or server that is not faulty (i.e.,
conforms to its specification) is correct.

There is a parameter b that characterizes the fault
tolerance of the system, in that we assume that at most b
servers are simultaneously faulty (though any number of
clients can fail). In a long-lived system, there might be many
transient server failures over a long period of time that
eventually exceed any resilience threshold b. Therefore, to
tolerate more than a cumulative number of b failures over
time, we assume that a server that is detected as faulty is
eventually recovered. Informally, a server is ªrecoveredº
when its state becomes one that could have resulted from
executing every update operation in which the server
participated, as well as possibly some additional update
operations. In practice, there are various ways to recover
servers. For example, a benign failure can be immediately
recovered if the server keeps its local copies of objects in
nonvolatile storage. In some cases, a ªrealº Byzantine
failure can be recovered in practice by resetting the server
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to its initial state and waiting until it receives an update to
each object it has in store locally (so its state is more recent
than when the server failed).

3.1 Quorum Systems

As mentioned in Section 1, our protocols leverage the power
of quorum systems to make operations as efficient as
possible. A quorum system Q is a set of subsets of servers
with the property that, for any Q1; Q2 2 Q, Q1 \Q2 6� ;.
Intuitively, this property can be used to ensure that
consistency is preserved across multiple operations per-
formed at different quorums. For example, supposing only
benign failures for the moment, if a client reads a variable at
a quorum of servers, then, because there is a server in that
quorum that also received the last-written value of the
variable, the client will be sure to obtain it. Of course, in our
setting, simply requiring a nonempty intersection between
two quorums may not suffice since all servers in that
intersection may be ªtruly Byzantineº faulty. Therefore, the
Fleet system makes use of several variations of quorum
systems that are better suited to our environment.

One example of a quorum system, that is used in Fleet
and that will be useful in subsequent sections as well, is a b-
masking quorum system [27]. A b-masking quorum system Q
is a set of subsets (quorums) of servers such that 1) for any
Q1; Q2 2 Q, jQ1 \Q2j � 2b� 1 and 2) for any set B of
servers where j B j� b, there is some Q 2 Q such that
B \Q � ;. In our protocols, clients interact with servers by
contacting a quorum of them. Intuitively, 1) enables clients
to infer correct replies from the contacted quorum, and 2)
ensures that a client can always contact a full quorum [27].

The architecture of Fleet is multilayered, as depicted in
Fig. 2, the bottom-most layer being a client-server protocol
called Q-RPC. Given a quorum system, a client's invocation
of Q-RPC(m), where m is a request, returns responses from
a quorum of servers to the request m. To do this, Q-RPC(m)
sends m to servers as necessary to collect responses from a

quorum and, then, returns these responses to the client. The
Q-RPC module provides additional interfaces, e.g., that
enable a calling routine to specify servers to avoid because
those servers have been detected to be faulty (e.g., based on
responses they returned to other Q-RPCs), or that enable a
calling routine to issue a query to a partial quorum to
complete a previous Q-RPC in which faulty servers
returned useless (e.g., syntactically incorrect) values. A
companion paper [1] discusses some of the techniques we
use in Fleet for mining server responses in order to detect
failures. For the purposes of this paper, however, we omit
these interfaces and techniques from further discussion.
Q-RPC can be implemented in an asynchronous system, i.e.,
without assuming any known bound on message
transmission delays and, thus, our protocols are suited for
an asynchronous system. In our protocols, correct servers
never send messages to other servers, and correct clients
never send messages to other clients.

3.2 Data Objects

As depicted in Fig. 2, Fleet servers implement an object
store that is accessed via Q-RPC by object stubs residing at
clients. An application programmer using Fleet need not be
aware of the underlying replication and is supplied with an
emulation of a persistent, shared data store. Through the
consistency mechanisms built into our protocols, the
application has the illusion that every data item has a
single copy. These shared data elements are a powerful tool
for building higher level applications in the most
challenging settings. In [28], we demonstrate one such
application, namely an electronic voting system. Some of
the shared data types supported by the Fleet architecture
are listed below.

1. Shared storage: The most simple type of object that
facilitates information sharing in Fleet is a shared
variable. Shared variable abstractions support read
and write operations by clients. For most classes of
failure assumptions, we can guarantee atomic up-
dates [18] and, under the most severe failure
scenariosÐvariable readers, writers, and (a limited
number) of servers are all potentially faultÐthen we
provide only safe semantics [18]. The protocols for
implementing these variable semantics are pre-
sented in [28]. As a practical matter, we note that
shared variables can be used to store arbitrary
contents, e.g., files and directories.

2. At-most-one mutual exclusion: In addition to the
need for shared state, many applications need
mechanisms to coordinate updates to that state or
to otherwise enforce mutual exclusion for other
operations. One type of exclusion Fleet provides is
an at-most-one mutual exclusion object. This object
supports a contend operation, which succeeds in at
most one among all contending clients. If a client is
alone in contending for mutual exclusion, it is
guaranteed to succeed, though no client might
succeed if multiple clients contend for it. This object
is useful in some applications where one may need
to achieve exclusive access to certain resources, but
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contention for those resources may a priori be
unlikely or indicative of foul play. In particular,
one of the goals in an electronic election system may
be to ensure that each voter identifier can be used to
cast a vote only once. Achieving this may require
enforcing mutual exclusion on attempts to cast a
vote for each voter identifier, thereby precluding its
use at multiple voting stations. Contention for a
voter identifier indicates an attempt to use the voter
identifier multiple times, in which case, all voters
can be (and probably should be) delayed until this
contention is resolved.

3. Consensus objects: A consensus object is a shared
object to which a client can propose a value and
receive a single value in return. The consensus object
returns the same value to each client and the
returned value is one proposed by some client.
Consensus is useful for achieving distributed
coordination in a variety of scenarios. For example,
consensus objects may be used to provide an exactly-
one mutual exclusion, i.e., an object guaranteeing
that some client among contending ones succeeds in
acquiring it. One of the main contributions of this
paper is an algorithm for emulating a consensus
object supporting potentially arbitrarily faulty
clients. This is the most powerful coordination object
that we have designed for the Fleet architecture, and
is the topic of discussion in subsequent sections of
this paper.

3.3 Scale

The scalability that we believe Fleet can achieve is based on
two factors: efficient protocol design that enables Fleet to
scale well as the number of clients grows and the use of
quorum systems that enable Fleet to scale well as the
number of servers grows. In this section, we briefly consider
these two factors.

In our design, clients need never communicate with one
another nor do servers communicate among themselves
and, thus, interaction is limited to occur between clients and
(quorums of) servers. We have designed the objects
supported by servers, such as the shared variables of [28]
and the objects described in Section 4, to ensure that servers
process a small constant number of messages and perform a
small constant number of computations (in particular,
digital signatures and verifications) per client operation.
Thus, growth in the number of clients should degrade
performance of client operations no worse than linearly.
And, with a proper choice of quorum system, this
degradation can be far smaller than linear. Our emulation
of a consensus object described in Section 5 does not scale
quite as elegantly because the amount of work a client must
do in this emulation is a function of the number of clients
that have proposed values for the consensus object.
However, we expect that, in the applications we envision,
consensus objects will seldom be contended for by more
than a handful of clients at any time.

Scalability with growth in the number of servers is
primarily dictated by the quorum system used, as quorum
systems exist with a wide array of properties [27], [30], [32],
[31]. For example, there are Byzantine constructions that

have quorum sizes as small as O� �����bnp �. Moreover, prob-
abilistic constructions exist with such quorum sizes that
simultaneously have outstanding availability. These latter
constructions admit a certain well-defined probability of
inconsistency in any given operation.

The best quorum system to use can differ from protocol
to protocol. Thus, we are constructing Fleet to be flexible as
to the quorums it uses to maintain objects and to allow even
switching between quorum systems dynamically at run
time. In particular, different Fleet objects can be maintained
simultaneously using different quorum systems.

For particular applications, it may be possible to further
tune the quorum system used to enhance the performance
of our protocols. For example, if it is known that variable
reads far outnumber variable writes, then it should be
possible to employ a quorum construction with
distinguished read quorums and write quorums that
optimize reads at the cost of more expensive writes.

4 TIMED APPEND-ONLY ARRAYS

In this section, we detail an example data abstraction that is
supported by our architecture, namely a timed append-only
array (TAOA). TAOAs enable clients to append values, but
not to delete or modify previously appended values. In
addition, each appended value is labeled with a logical time
at which it was appended. As will be shown in Section 5,
timed append-only arrays are strong enough to enable
(randomized) consensus among clients and, at the same
time, are simple enough to implement in an asynchronous
environment, with no server-to-server communication and
simple server-resident logic. Intuitively, these objects
implement nonmalleable communication among clients,
because faulty clients cannot ªundoº what they once did;
they can only add to it. And, the timestamps partially
capture the order in which different clients appended
different values, which also cannot be reordered by
malicious clients.

We denote the clients by p1; . . . ; pn or just p; q; . . . when
subscripts are unnecessary. A TAOA �j is a single-writer
multi-reader object that allows pj to append values to the
array and any client to read values from the array.
Informally, the object provides the following properties:

. Append-Only: Values are appended to �j in a
sequential order.

. Write-Once: Values appended to �j are never
modified or erased.

. Timestamp: The ith element appended to �j is
timestamped with a vector t that satisfies the
following properties for each 1 � k � n. First, if
t�k� > 0, then the t�k�th append on �k completed
before the ith append to �j completed. Second, if the
`th append to �k completed before the �iÿ 1�th
append to �j began, then t�k� � `ÿ 1.

A reader can access any element of the array. The reader
obtains the vector timestamp along with the value of an
array element, if written.

Our implementation of TAOAs requires the use of a b-
masking quorum system as described in Section 3. And, like
many of the Fleet protocols, our implementation of timed
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append-only arrays requires the use of digital signature
schemes (e.g., [36]). We assume that each correct server
possesses a private key known only to itself with which it
can digitally sign messages and that any other client or
server can verify the origin of a signed message but cannot
forge the signature of any correct server. So, if a correct
client or server attributes a signed message to a correct
server u, then u sent it. Not all messages sent by servers will
be signed; we will explicitly indicate that the message m is
signed by u by denoting it hmiu.

4.1 Implementation

We begin by describing the implementation of TAOAs. Let
�1; . . . ; �n denote the TAOAs maintained by the servers.
Each TAOA �j supports two kinds of operations: Client pj
can append some value v to �j by executing �j:append(v),
and any client can read the ith value in �j by executing
�j:read(i). The �j:read(i) operation is the simpler of the two
and, so, we discuss it first.

Each TAOA �j is represented in each server u by a
sequence of addresses �j;u�1�; �j;u�2�; . . . that hold value/
timestamp pairs. Each address is initially ?. The protocol
for a client to read the ith element of �j is shown in Fig. 3.
The client executes a Q-RPC to obtain the value/timestamp
pair in �j;u�i� from each server u in some quorum Q. More
specifically, each server responds with a message of the
form h�j-value : i; �j;u�i�iu; note that this is digitally signed
by u so that it can be used in the append protocol below if
necessary. The client obtains the result of the read by
discarding any value/timestamp pair returned by b or
fewer servers and choosing the remaining (unique, as we
show below) value/timestamp pair, say hv; ti. The client
also records the fact that it has read the ith element of �j by
setting the jth element of a local array seen to be i (if larger
than seen�j�) and retains the set Cj;i � fh�j-value : i; hv; tiiû :
û 2 Qg of at least b� 1 signed messages for hv; ti.

The �j:append operation is significantly more involved
than the �j:read operation; see Fig. 4. Each server u
maintains, in addition to array entries, a vector Du and a
per-client vector Lu;j, both of which are vectors of indices
into TAOAs. Intuitively, Du�j� records the highest index i
such that u knows that the ith append to �j has completed (a
precise definition of ªcompletedº is given in Section 4.2).
Lu;j�k� simply records the value of Du�k� when pj executed
its last append at u. Server u uses Lu;j as a ªlower-boundº

on the timestamp of pjs next append, as detailed below.
Each server u also maintains an echo-inhibitor eu;k,
1 � k � n, per array, initially zero, to guarantee that each
server echoes only one ith �j:append value.

The ith �j:append proceeds in three Q-RPCs. In the first,
pj sends its timestamp vector t � seen to a quorum of
servers. Each server verifies several properties. First, each
server u requires that, for each 1 � k � n, it holds a value in
�k;u�t�k��. Since this value may have been written to a
quorum not containing u, pj piggybacks Ck;t�k� as needed on
its request, which it collected from servers when it read
�k�t�k��. (These piggybacked messages are not shown in
Fig. 4.) Second, each server u verifies that t reflects any
append that was already complete at the previous
�j:append, that is, that t�k� � Lu;j�k� for all k. This implies
that pj is expected to read all the arrays for all appended
values that were completed by the time pjs previous
append completed. Each server u then responds to the
client with its current value of Du, which indicates the
appends that u knows to have completed. This completes
the first Q-RPC.

In the second Q-RPC, pj includes the responses to the
first Q-RPC, along with the value v that it intends to
append. Each server u updates its Du vector to incorporate
the additional knowledge it can glean from the forwarded
responses about which appends have completed and, then,
copies Du into Lu;j; this new value of Lu;j will be used in the
�i� 1�th �j:append to verify that pj read from all arrays in
the interim. The server u also verifies that i > eu;j and, if so,
ªechoesº v and t to pj digitally signed. The purpose of the
echoes is to ensure that no two correct servers write
different values into �j;u�i�; this is ensured because each
server echoes only one ith �j:append value. Server u then
sets eu;j  i so that it will never again echo a value for the
ith �j:append.

Upon the completion of this second Q-RPC, pj now
forwards the digitally signed replies back to the servers via
a third Q-RPC. Upon receiving this request, each server u
assigns �j;u�i�  hv; ti and acknowledges.

Note that, as mentioned above, between its ith and
�i� 1�th �j:append operations, pj is expected to read all the
arrays for all appended values that were completed by the
time pj completed its ith �j:append; otherwise, the �i� 1�th
�j:append will not complete. This is a technical condition
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that is in place here due to the fact that, in Section 5, we will

use TAOAs to implement consensus and will need this

condition to prove correctness. Thus, it is not entirely

accurate to present append and read operations as

independent operations, since the completion of an append

depends on the clients previous execution of read

operations. Nevertheless, for tractability of presentation, it

is easiest to present TAOAs in this form.
Moreover, these read operations can be replaced by one

large ªscanº operation that reads all arrays to their last

appended elements, using only one exchange with a

quorum of servers. This is a practical necessity when

implementing TAOAs. However, for ease of the exposition,

we describe each read as done separately.

4.2 Properties

In proving properties of this implementation, we need to

introduce some additional notation and terminology. Note

that reads by faulty clients are ignored in the following.

Definition 4.1. A �j:read(i) operation by a correct client begins

when the client initiates the corresponding �j:read protocol,

and completes when the client returns from the �j:read

protocol.

Definition 4.2. The ith �j:append begins when some correct

server receives h�j-appendinit : i; ti from pj and it com-

pletes when �j;u�i� 6� ? at each correct server u in some

quorum.

Note that, in this definition, we had to capture the
duration of appends by faulty clients, as well as correct
ones. Therefore, the definition is driven by the effects of an
operation on the (correct) servers in the system. Also, note
that, by this definition, once the ith �j:append has begun, it
is possible for it to complete before the protocol in Fig. 4
completes. In particular, if a client pj0 reads the value of the
ith �j:append while that append is going on and then
performs a �j0 :append, its own �j0 :append could complete the
ith �j:append before the protocol for the ith �j:append itself
completes. This property is made precise in Lemma 4.3.

Definition 4.3. Let e, e0 be any two operations (other than reads
by faulty clients). We say that e happens before e0, denoted
e � e0, if e completes before e0 begins. If e0 6� e, we denote it
e � e0.

Note that � forms an irreflexive partial order and that if
e1 � e2 � e3 � e4, then e1 � e4. Moreover, for any two
operations e1; e2 at a correct process, either e1 � e2 or
e2 � e1. That is, the operations executed by a correct process
are totally ordered. On the contrary, operations by a faulty
client are not necessarily totally ordered by � . Never-
theless, if e1 and e2 are the kth and k0th �j:append operations,
respectively, by a faulty process pj (i.e., corresponding to
h�j-appendinit : k; ti andh�j-appendinit : k0; t0i messages
from pj) such that k < k0, then we will often use
ªe1 � e2ºas a shorthand to denote this. If e is an append

operation of the form e � �j:append(v) such that v is stored
with timestamp t, we denote this timestamp by T �e� � t.
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Lemma 4.1 (Write-Once). Let e1 � �j:read�i� and e2 �
�j:read�i� be two operations at correct clients. If e1 returns

hv; ti, then e2 returns either ? or hv; ti.
Proof. A correct server u assigns �j;u�i�  hv̂; t̂i in two

different protocols: The ith �j:append or any e �
�j0 :append such that T �e��j� � i (due to the piggybacking

of Cj;i). In the latter case, u sets �j;u�i�  hv̂; t̂i only after

receiving signed �j-value messages (i.e., Cj;i) that show

that some correct server u0 has already assigned

�j;u0 �i�  hv̂; t̂i. So, the first correct server u to assign

�j;u�i�  hv̂; t̂i must do so in the ith �j:append protocol.
Suppose that e1 returns hv; ti. The first correct server

to execute �j;u�i�  hv; ti did so (in the ith �j:append
protocol) after receiving a message h�j-commit :
fh�j-echo : i; v; tiûgû2Qi for some quorum Q. Since any
two quorums intersect in some correct server and since
any correct server û sends at most one message of the
form h�j-echo : i; �; �iû1 (due to the management of the
echo counter eû;j), no other correct server u0 ever assigns
�j;u0 �i�  hv0; t0i where v0 6� v or t0 6� t. So, the only value
that e2 could return, other than ?, is hv; ti. tu

Lemma 4.2 (Append-Only). Let e1 be the ith �j:append and let

e2 � �j:read�k�, 1 � k � i, be an operation by a correct

process such that e1 � e2. Then, e2 does not return ?.

Proof. The proof is by induction on i. Suppose the lemma

holds for the ith �j:append and let e1 be the �i� 1�th
�j:append. By the definition of � , e1 � e2 implies that

each correct server u in some quorum assigned �j;u�i�
1�  hv; ti for some hv; ti before any correct server

received h�j-query : ki. There are two cases to consider:

. Case 1: If k � i� 1, then, since quorums overlap
in at least b� 1 correct servers, at least b� 1
servers return hv; ti to the client in their �j-value
messages. Thus, the read returns hv; ti.

. Case 2: Now, suppose that 1 � k � i. Before any
correct server u sends h�j-gather : i� 1; t; duiu
(and, thus, before any correct server u0 sends
h�j-echo : i� 1; v; tiu0 ), u verifies that �j;u�i� 6� ? as
shown in Fig. 4. So, since the first correct server u
to assign �j;u�i� 1�  hv; ti requires h�j-echo :
i� 1; v; tiû messages from a quorum of servers
(see the proof of Lemma 4.1), the fact that the
�i� 1�th �j:append completed implies that the ith
�j:append previously completed. If we let e3

denote the ith �j:append, this means that e3 � e2.
So, the result follows from the induction
hypothesis. tu

The next lemma shows an ªupper-boundº of values that

can be in T �e�. The subsequent lemma shows a ªlower-

boundº of values that must be in T �e�.
Lemma 4.3 (Timestamp-UpperBound). Let e1 be the ith

�j:append, and let e2 � �j0 :read�k�, where 1 � j0 � n and

1 � k � T �e1��j0�, be a read operation by a correct process such

that e1 � e2. Then, e2 does not return ?.

Proof: For the first correct server u to assign �j;u�i�  hv; ti
(i.e., T �e1� � t), it must first receive a �j-commit message
containing �j-echo messages from a quorum of servers.
Recall that, for this to happen, every correct server û in
some quorum verified that �j0;û�t�j0�� 6� ? before sending
its �j-gather message. This implies that the t�j0�th
�j0 :append has completed by the time that e1 completes.
So, by Lemma 4.2, e2 does not return ?. tu

Lemma 4.4 (Timestamp-LowerBound). Let e1 and e2 be
�j:append events, and e3; e4 be �j0 :append events, such that e1

i s the i1th �j:append and e1 � e2 � e3 � e4. Then,
T �e4��j� � i1.

Proof. Since e1 � e2 and e1 is the i1th �j:append, then e2 is
the i2th �j:append, where i2 > i1. Hence, after e2

completes, every correct server u in some quorum has
Du�j� � i2 ÿ 1 � i1. Before e3 can complete, pj0 must
obtain �j0 -gather messages from a quorum of servers
which intersect e2's quorum in at least b� 1 correct
servers. Therefore, when pj0 forwards these messages to a
quorum Q of servers, every correct server u in Q sets
Du�j� � i1 and, thus, Lu;j0 �j� � i1. Then, every correct
server û in the first quorum Q0 accessed in e4 verifies that
T �e4��j� � Lû;j0 �j�. Since at least one correct server (in fact,
b� 1 correct) is in Q \Q0, pj0 must send T �e4� such that
T �e4��j� � i1 in order for e4 to complete. tu

In the case of Lemma 4.4, we say that e4 definitely reflects e1.

5 A CONSENSUS PROTOCOL

In this section, we describe a protocol by which clients can
emulate a consensus object by performing a series of read
and append operations on TAOAs. Each client begins the
protocol with an initial preferred value and ends the protocol
by irrevocably deciding on a value. Intuitively, this decision
value is the value ªreturned byº the consensus object. The
protocol ensures the following two properties.

. Agreement: If any correct client decides v, then all
correct clients decide v.

. Validity: If any correct client decides v, then some
client had v as its initial value.

Our protocol employs a round structure and high-level
strategy similar to [3], but, otherwise, differs significantly.
In our protocol, each client executes a sequence of logical
rounds until it reaches a decision. There is one TAOA per
client for that client to communicate values to the system by
appending them to its array. Since rounds at different
clients proceed asynchronously, each client attaches its
round number to each value it appends. In each round, a
client starts by appending its currently preferred value and,
then, reads the latest values appended by all of the other
processes to their arrays (a ªglobal readº). Among these
values, the ones with the highest round number are called
the leaders' values. If the leaders agree (i.e., last appended
the same values), it tries to adopt their value as its own
preferred value and move to the next round (or decide); if
the leaders disagree and it is a leader itself, it attempts to
flip a (multivalued) coin, adopt the value of the coin as its
preferred value, and then move to the next round. Decision
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is possible for a leader when all the processes who disagree
with its preferred value are at least two rounds behind.
Intuitively, this protocol converges at the latest when a
round starts with all the leaders preferring the same value.
We argue in Section 5.5 that, by properties of the coin flip,
this occurs with some positive probability at each round.

Several points need to be refined in the description
above. First, to adopt a new preferred value in a round
(either the leaders or by coin flip), a client twice performs a
cycle of appending a value ªannouncingº its status and
executing a new global read of all clients' latest values. If
the status of the leaders' value hasn't changed during these
two cycles (i.e., either the leaders still disagree or the leaders
still agree on the same value), then the client adopts the
value it intended to. If, however, the client detects a change
in the status of the leaders' value, then it starts the round
over. The two append/read cycles guarantee that, with two
concurrently executing leaders, at least one will observe the
other's value and act consistently.

Second, the process for performing the global read, i.e.,
reading all clients' last-appended values, involves reading
the arrays of all clients up to the last filled slot, filtering out
any invalid values appended by faulty clients (which will
be defined precisely in Section 5.1), and returning a set of
latest (valid) values from all arrays. Even though this is a
compound operation, we will abuse notation and denote it
by a single event Last, allowing it to be ordered as a single
operation via � . In particular, if a Last operation e1 starts
before some append operation e2 terminates, i.e., e1 contains
a primitive read operation e01 such that e01 � e2, then we say
that e1 � e2.

Third, we need to specify how to flip a random coin. For
now, we denote this operation as subroutine Coin().
Meeting the two properties of consensus (Agreement and
Validity) requires simply that Coin() return a value that
was initially preferred by some process. In addition, the
Coin() operation is important to the running time of the
consensus protocol. This will be the topic of discussion in
Section 5.5.

In terms of data structures, each client maintains several
local variables: pref, which holds the clients present
preferred value; r, which holds the clients current round
number; hrj; vji1�j�n, which hold the latest (valid) round
number/value pairs read from clients' arrays; leader-
Vals, which is the set of leaders' values; and leader-

Round, which is the leaders' round number. And, as
described above, there is a separate timed append-only
array per client. At the beginning of its execution, each
client appends h0; prefi to its array. In the remainder of this
paper, an operation �j:append by a client pj is denoted
simply by append and is understood to apply to the array
to which pj is allowed to append.

The precise protocol executed by client p at round r is
given in Fig. 5. The Last subroutine, introduced above,
implements a ªglobal readº plus identification of the
leaders' round and values. If the leaders agree, the
LeadersAgree subroutine is invoked. This subroutine
simply appends the leaders' value twice and, if leader
disagreement or a change of leader value is not observed
between these appends, it moves the client to the next

round (or decides) with the leaders' value as its new
preferred value. If leader disagreement is observed by
Last, the LeadersDisagree subroutine is invoked. This
routine appends ? twice and, if the client is a leader, adopts
a new preferred value by flipping a coin, provided that
leader agreement is not observed while this routine is
executing.

5.1 Justified Values

As indicated above, after each global read, the client uses
the observed values to determine its next preferred value. In
order to ensure correctness of our protocol, it is important
that the plausibility of these observed values is verified
before they are used; otherwise, a faulty client could
append arbitrary values in an effort to misguide future
preferred values of other clients. We therefore introduce the
notion of a justified value, which intuitively is an appended
value that is consistent with the protocol and, in particular,
with the values that the appender's preceding global read
must have observed. After executing a global read, a client
discards any unjustified values and forms its next preferred
value based upon the justified values only.

Testing for justification is made possible by the proper-
ties of our array timestamps. Recall that, in the write
protocol, servers set a ªlower boundº on timestamps,
guaranteeing that every appended value has a timestamp
vector that succeeds all definitely reflected values (see
Lemma 4.4).

Definition 5.1. Let e be the ith �j:append, with timestamp
T �e� � t. The justification set for e is the set consisting of the
kth �j0 :append operations for all 1 � j0 � n and all
1 � k � t�j0�.

Definition 5.2. Let e be the ith �j:append. e is justified if all
previous �j:appends are justified and if the value appended in
e is consistent with correct execution by pj assuming that pj
observed exactly the appends in its justification set. A justified
value is one appended in a justified append.

We note that, by the properties of TAOAs, all correct
clients' appends are justified and, if a client executes an
unjustified append, then all of its future appends are also
unjustified.

5.2 The Coin() Operation

According to the protocol of Fig. 5, when a leader
repeatedly observes leader disagreement, it sets its pre-
ferred value to the output of a Coin() operation before
moving to the next round. At a correct client, this Coin()
operation (shown in Fig. 6) returns a value taken from
among the values that have been appended by all clients in
the protocol. More precisely, the Coin() operation works by
reading the value in the first element of each client's array
(which, by definition, is justified if it is of the form h0; v0i for
some v0) and, if this value exists, adding this value to a view
of the values in the system. We say that the view so
computed is the view of the client in round r. The Coin()
operation returns an element of this view.

In Fig. 6, the element returned from the view is selected
by a flip operation that returns a nonnegative integer.
Correctness of the protocol requires nothing more of flip,

MALKHI AND REITER: AN ARCHITECTURE FOR SURVIVABLE COORDINATION IN LARGE DISTRIBUTED SYSTEMS 195



though flip is very important to the running time of the

protocol, as we show in Section 5.5.

5.3 Correctness

In this section, we prove that the protocol above meets the

Agreement and Validity properties given at the beginning

of Section 5. We use the following notation: appendrp�x� is an

execution of append�x� by p in round r; appendr;ip �x� is the

ith such execution; appendr;ÿip �x� is the ith-to-last such

execution (in particular, appendr;ÿ1
p �x� is the last); and

T �appendr;ip �x�� is the timestamp associated with

appendr;ip �x� (and, similarly, for T �appendr;ÿip �x��). Let

Lastrp denote an execution of Last by client p in round r;

Lastr;ip is the ith such execution; and Lastr;ÿip is the ith-to-

last such execution (in particular, Lastr;ÿ1
p is the last).

Definition 5.3. If append�hr; vi� is the first justified execution of

append�hr; �i� by p in round r, then we say that p initially

prefers v in round r.

Definition 5.4. In any execution, a client is first to execute

append�hr; vi� if this append is justified and its justification

set contains no justified operations of the form append�hr; vi�.

When a client is first to execute append�hr; vi� and also

initially prefers v in round r, we say, in short, that a client is

first to initially prefer v in round r.

Lemma 5.1. If all initial preferences in round r are v, then no

client (justifiably) executes append�hr0; v0i� (v0 6� v) or

append�hr0;?i�, where r0 � r.
Proof. For a contradiction, let p be first to execute

append�hr0; v0i� (v0 6� v) or append�hr0;?i�, where r0 � r.
For this to be justified, there must be an append in its

justification set in which a leader last appended some-

thing other than v. However, since this justification set

must also contain p's own last append of v in round r or

higher and since any other value so far appended by any

other client in round r or higher is v (by assumption), all

196 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

Fig. 5. Round r of the consensus protocol.



leaders agree on v. Thus, v0 and ? are not justified. tu

Lemma 5.2. If all initial preferences in round r are v, then each
correct client that enables round r� 1 decides v by the end of
round r� 1.

Proof. For a contradiction, let p be the first correct client to
not decide in round r� 1. Since p is the first one, p is a
leader when in round r� 1 and, by Lemma 5.1, p initially
prefers v in round r� 1. Because all clients in round r� 1
(justifiably) append only v (Lemma 5.1), p executes its
LeadersAgree routine to completion. If p cannot
decide at the end of this subroutine, then there must be
a client that (justifiably) executes append�hr0; v0i�, v0 6� v,
or append�hr0;?i�, where r0 2 fr; r� 1g. This contradicts
Lemma 5.1. tu

Lemma 5.3. If a correct client decides v in round r, then, prior to
deciding, all of its executions of append�hr; �i� were
append�hr; vi�.

Proof. Let p be the correct client that decides v in round r.
Since p decides, it must appear to be a leader right before
deciding (line 20), and, hence, p observes no other clients
in any round r0 > r. Now, suppose for a contradiction
that p executed append�hr;?i� or append�hr; v0i� at some
point prior to deciding. If p had executed append�hr;?i�
(in LeadersDisagree), then, for the rest of round r, p
would have observed the leaders in disagreement
because at least one leader, namely itself, last appended
?; this would have caused p to move to round r� 1,
contradicting the assumption that p decides in round r. If
p had executed append�hr; v0i� prior to deciding, then
subsequently, either it observed leader disagreement and
a contradiction results as in the previous case or it
detected only leader agreement (on v0), which contradicts
the assumption that p decides v in round r. tu

Lemma 5.4. If a correct client decides v in round r, then no client
(justifiably) initially prefers v0 6� v at round r.

Proof. Suppose that p decides v at round r. By Lemma 5.3,
it appended only v in round r. For a contradiction, let q
be first to append hr0; v00i for any r0 � r and v00 6� v.
Consequently (by Lemma 5.1), q is also the first to
initially prefer some v0 6� v at round r, i.e., q's initial
append in round r has a justification set that contains
no operations of the form append�hr0; v00i�, where r0 � r
and v00 6� v. We now look at the last two append

operations performed by q in round rÿ 1, namely
appendrÿ1;ÿ2

q �hrÿ 1; �i� and appendrÿ1;ÿ1
q �hrÿ 1; �i�. If

the values appended in these appends were v, then q
would have completed round rÿ 1 in LeadersAgree

with a preferred value of v and then initially preferred v

in round r, contrary to our assumption. Thus, q's last
two appends in round rÿ 1 do not have value v. Since p
decides v in round r, p must not read these two
appends, i.e., Lastr;ÿ1

p � appendrÿ1;ÿ2
q �hrÿ 1; �i�, and,

therefore:

appendr;ÿ1
p �hr; vi� � Lastr;ÿ1

p

� appendrÿ1;ÿ2
q �hrÿ 1; �i�

� appendrÿ1;ÿ1
q �hrÿ 1; �i�:

T h u s , appendr;ÿ1
p �hr; vi� � appendrÿ1;ÿ1

q �hrÿ 1; �i�.
Moreover, because

appendrÿ1;ÿ1
q �hrÿ 1; �i� � appendr;1q �hr; v0i�

and

appendr;ÿ2
p �hr; vi� � appendr;ÿ1

p �hr; vi�;
we know that

appendr;1q �hr; v0i�
definitely reflects appendr;ÿ2

p �hr; vi�, which means that
appendr;1q �hr; v0i� is not justified. tu

Theorem 5.5 (Agreement). If any correct client p decides v,
then all correct clients decide v.

Proof. Let q decide v in the lowest decision round r. By
Lemma 5.4, no client (justifiably) initially prefers any
v0 6� v in round r. By Lemma 5.3, no client decides
v0 6� v in round r and, by assumption, no client
decides in any round lower than r. By Lemma 5.2,
all correct clients decide by round r� 1 and, by
Lemma 5.1, they all decide v. tu

Theorem 5.6 (Validity). If any correct client decides v, then
some client had v as its initial value.

Proof. It suffices to argue that any append�hr; vi�, r > 0, is
justified only if some client executed append�h0; vi� as its
first operation. So, suppose that no client executes
append�h0; vi� as its first operation and that p is first to
execute append�hr; vi� for some r > 0. Since p is first, it
did not adopt v as its preferred value by adopting the
leaders' value in LeadersAgree. So, it must adopt v as
its preferred value as the result of executing a Coin()
operation. However, a Coin() operation at a correct
process is guaranteed to return a value that some process
initially appended. So, append�hr; vi� is not justified, a
contradiction. tu

5.4 The Flip Protocol

Before analyzing the running time of our protocol, it is
necessary to detail the implementation of the flip

operation. This operation is implemented by a distributed
protocol that returns the same value to every correct client
that invokes it in round r, i.e., the flip value for round r is
unique. In addition, the round r flip value cannot be
predicted by any client until some client completes the
flip protocol for that round. Intuitively, in the flip

protocol, the servers generate a deterministic digital
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signature (such as an RSA signature [36]) on a string that
includes the round number in which the flip protocol is
invoked. By definition, digital signatures are unpredictable
to those not knowing the key to generate them.

The signature generation process must ensure that faulty
servers cannot compute flip values ahead of time. This is
achieved by employing a threshold signature scheme to
generate a signature. Informally, a �k;m� threshold
signature scheme is a method of generating a public key
and m shares of the corresponding private key in such a way
that, for any message w, each share can be used to produce a
partial result from w, where any k of these partial results can
be combined into the private key signature for w. Moreover,
knowledge of k shares should be necessary to sign w, in the
sense that without the private key it should be computa-
tionally infeasible to 1) create the signature for w without k
partial results for w, 2) compute a partial result for w
without the corresponding share, or 3) compute a share or
the private key without k other shares. Our replication
technique does not rely on any particular threshold
signature scheme, provided that it is deterministic; the
literature includes such schemes (e.g., [8], [9]).

We implement the flip protocol as follows: At service
initialization time, a �k;m� threshold signature scheme, with
k � b� 1 and m equal to the number of servers, is used to
generate a public key and one share of the private key for
each server. Each server's share is known only to itself; the
corresponding public key is assumed to be available to all
clients. The flip protocol for round r then proceeds simply
as follows: The client executes a Q-RPC to obtain partial
results from a quorum of servers for the ªmessageº r and
combines them to form a valid signature for r. It returns this
value, interpreted as a nonnegative integer.

It is worth reviewing several properties of the flip

protocol that are necessary for the results of Section 5.5. First,
due to the properties of a threshold signature scheme, the flip
value for round r is known nowhere prior to some client
completing the protocol for that round. Second, if we view the
flip protocol as producing a result that is a sampling from the
space of integers up to some large (i.e., much larger than
j view j ; see Section 5.2) bound, it is reasonable to assume
flip samples uniformly at random from this space.2 Third,
because the flip protocol produces a digital signature for
which all parties are assumed to have the verifying public
key, any value claimed to be produced by the flip protocol
for round r can be immediately verified. Fourth, because the
threshold signature scheme is deterministic, the flip

protocol returns the same value to any correct client that
invokes it in round r. This does not imply that the Coin()
operation returns the same value to correct processes that
invoke it in round r because each client may have a different
view in round r (see Section 5.2). However, when all correct
processes invoking the Coin() operation in round r have the
same view, theCoin() operation will indeed return the same
value everywhere.

5.5 Running Time

One of the motivations guiding our design of a consensus
object was to allow any single (correct) client to access our
consensus object solo and obtain the consensus decision
within a finite number of steps. In fact, in such a case, a solo
client will obtain the consensus value within a small
number of steps, specifically within four append and three
Last operations. Even when multiple clients participate
simultaneously, if a leader emerges quickly, then every
client may terminate after engaging in only a small number
of protocol rounds and no coin-flips. We now proceed to
describe the expected running time of our algorithm more
generally.

Typically, one hopes that, in the common case, clients fail
only benignly and do not exhibit malicious behavior. With
the algorithm as described so far, we can prove that, in this
case, a client will complete the protocol in an expected
O�c4n� operations on timed append-only arrays (even in the
face of up to the threshold b of Byzantine server failures),
where c � n is the actual number of clients that append
values to their arrays before any correct process decides.
The strategy used for proving this result is to show that in
only O�c2� rounds can Coin() operations return different
values to different clients. Moreover, in each round r in
which the Coin() operation returns the same value to all
clients that invoke it, there is a constant probability that the
value returned by the Coin() operation is the same as the
first value appended in round r. When this happens, the
algorithm will quickly terminate. The result is an expected
O�c2� rounds in which each client executes O�c2n� array
operations, yielding a total of O�c4n� operations.

The story is different for the worst-case running time for
this algorithm in case of Byzantine client failures. In this
case, the algorithm no longer terminates with probability
one. The reason for this is twofold: First, there is nothing to
prevent faulty clients from invoking the flip protocol for
any round r far in advance, effectively rendering these flips
predictable to faulty clients. By carefully controlling the
scheduling of operations in the protocol, they can use this
advance knowledge of flip results to prolong the protocol
indefinitely. Second, even if flip values were withheld
from clients for long enough, a faulty client might
repeatedly use a different view in its Coin() operation
than correct clients, thereby resulting in a different coin
value than correct clients.

In order to prove termination in the general case, we are
thus forced to make some further stipulations on the
protocol. First, to prevent prematurely revealing flip

values to faulty clients, we stipulate the following:

Stipulation 5.1. A correct server does not respond to a client
invoking the flip protocol for round r unless that client has
executed two justified append operations in round r.

Second, we force each client to explicitly append the
value of view used in a Coin() operation and the
(verifiable) result of the flip operation to detect a faulty
client that attempts to report a different result from its
Coin() operation:

Stipulation 5.2. The Coin() operation returns, in addition to
the selected value, the result of the flip operation and the
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value of view computed in the Coin() operation; the client
appends this flip value and the view in the same
append operation as the coin value (i.e., in its first append
of the next round).

Though seemingly minor additional stipulations, the
first of these substantially increases server involvement in
the protocol in terms of the amount of protocol logic that
must be server-resident and the message traffic sent to
servers. This is due to the fact that each server is required to
test for justification of append operations (which we have
not required until now) prior to participating in a flip

protocol. In order to make this test as efficient as possible
for servers, each client can first forward copies of previous
commit and value messages (i.e., sets Cj;i in Section 4) as
needed to each server that it contacts in the flip protocol
(see Section 5.4) so that the server can update its local arrays
and then restrict its attention to its own local arrays to
determine justifiability of the client's append operations in
that round.

In the remainder of this section, we analyze the (worst-
case) expected running time of the protocol with these
additional stipulations. However, we emphasize that, in
practice, it may be desirable to omit Stipulations 5.1 and 5.2
and settle for a protocol whose termination is guaranteed
(with probability one) in the case of benign failures only.
Though in theory the algorithm without these stipulations
could be extended arbitrarily by faulty clients, in practice
this would require substantial control over system schedul-
ing by faulty clients.

Definition 5.7. A process p appends a coin value in round
r� 1 if the value in its initial append in round r� 1 is
accompanied by a view and the (valid) result of a flip

operation. The value is called p's coin value for round r and
the view is called p's view for round r.

Definition 5.8. The coin operation for round r is multivalent if
any two clients have different (justified) views for round r.

Note that if the coin operation is not multivalent in
round r, then any two coin values appended in round r� 1
are the same. In this case, we refer to this unique value as
simply the coin value for round r.

Lemma 5.5. Let p be a client that appends coin values in rounds
r1 � 1 and r2 � 1, r1 < r2, where v is an element of p's view
in round r1. If q appends coin values in rounds r3 � 1 and
r4 � 1, r4 > r3 > r2, then v is an element of q's view in
round r4.

Proof. First, we know that q appends ? twice in round r3,
i.e., appendr3;ÿ2

q �hr3;?i�; appendr3;ÿ1
q �hr3;?i�, and then

a p p e n d s s o m e c o i n v a l u e i n r o u n d r3 � 1,
appendr3�1;1

q �hr3 � 1; �i�. For brevity, we shall denote
these appends in the remainder of the proof without
their arguments, i.e., appendr3;ÿ2

q , and so on. Likewise, q
appends ? twice in round r4 before appending a coin
value in r4 � 1 and p appends ? twice in rounds r1, r2,
respectively, before appending coin values in r1 � 1,
r2 � 1. We shall use the shorthand notation for all of
these events.

Our goal is to show that appendr4�1;1
q definitely reflects

appendr1�1;1
p and, hence, that v must be included in q's

view for round r4. To this end, assume for contradiction
that appendr3�1;1

q � appendr2;ÿ2
p . Hence,

appendr3;ÿ2
q � appendr3;ÿ1

q

� appendr3�1;1
q

� appendr2;ÿ2
p

� appendr2;ÿ1
p

� appendr2�1;1
p ;

and we have that appendr2�1;1
p definitely reflects

appendr3;ÿ2
q , and hence cannot be a coin value, contrary

to the assumption. Therefore, we must have
appendr2;ÿ2

p � appendr3�1;1
q . Since,

appendr1�1;1
p � appendr2;ÿ2

p � appendr3�1;1
q � appendr4�1;1

q

we have that appendr4�1;1
q definitely reflects appendr1�1;1

p .
So, any value in p's view in round r1 must be in q's view
in round r4 or else appendr4�1;1

q is not justified (by
Stipulation 5.2). tu

Lemma 5.6. The total number of rounds with multivalent coin
operations is at most �c� 1�c.

Proof. The proof uses a counting argument based on the
property established in Lemma 5.5. Let v be any process'
initial value. We consider two ªphasesº for v. In v's first
phase, we count rounds where v appears in some
process' view up to (and including) the first round in
which v has been included in the same process' views
twice. In v's second phase, we count rounds where v has
appeared in the same process' views for two (or more)
rounds, but was not included in some process' view for
this round. Suppose that phase one includes k rounds,
where k � 2, i.e., in the kth round that v appears in a
view, it previously appeared in a view of the same
process. Note that the kÿ 1 processes that have included
v in their views up to this point must do so forever.
According to Lemma 5.5, in v's phase two there can be at
most cÿ k� 1 rounds. Thus, the number of rounds in v's
phases one and two are: k� �cÿ k� 1� � c� 1. Since
there are c initial values, this means that the number of
rounds in all initial values' phases is �c� 1�c. Since any
multivalent round is included in some value's phase one
or two, this means that there are at most �c� 1�c
multivalent rounds. tu

Lemma 5.7. Let p be the first client to complete two (justified)
append operations in round r and let p's initial preference in
round r be v. If the coin operation for round r is not
multivalent and has value v, then the only justified initial
preference in round r� 1 is v.

Proof. Suppose, for a contradiction, that q is first to initially
prefer any v0 6� v in round r� 1. Because the coin for
round r is not multivalent and has value v, q's initial
preference of v0 in round r� 1 could be justified only if q
completed round r by executing appendrq�hr; v0i� twice in
LeadersAgree. Because p is the first client to complete
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two justified append operations in round r, we know
that appendr;2p �hr; �i� � Lastr;2q and, so,

appendr;2p �hr; �i� � Lastr;2q

� appendr;ÿ1
q �hr; v0i�

So, appendr;2p �hr; �i� � appendr;ÿ1
q �hr; v0i�. Moreover, be-

c a u s e appendr;1p �hr; vi� � appendr;2p �hr; �i� a n d
appendr;ÿ1

q �hr; v0i� � appendr�1;1
q �hr� 1; v0i�, i t follows

t h a t appendr�1;1
q �hr� 1; v0i� d e f i n i t e l y r e f l e c t s

appendr;1p �hr; vi� and thus is not justified. tu

Lemma 5.8. Each correct client completes the protocol in an
expected O�c2� rounds.

Proof. Consider any round r > 1. If the coin operation for
round rÿ 1 is not multivalent and (if executed any-
where) has a value equal to the initial preference of the
first process to complete two appends in round rÿ 1,
then, by Lemma 5.7, all the clients initially prefer the
same value in round r and, by Lemma 5.2, all clients
decide by the end of round r� 1. By Lemma 5.6, at most
�c� 1�c rounds are multivalent. For any nonmultivalent
round r, since the value of the coin for round r is
revealed only after some client, say p, has completed its
second justified append for round rÿ 1 (by Stipulation
5.1), the probability of the coin value for that round
returning p's initial preference for that round is 1=c.
Therefore, all correct clients decide in an expected O�c2�
rounds. tu

For the next lemma, we need to introduce some
additional terminology. Consider the sequence of
invocations of Last at a correct client. Let a v-sequence be
a sequence of consecutive Last invocations that each
assigns leaderVals � fvg. Similarly, let a ?-sequence be a
sequence of consecutive invocations that each assigns
leaderVals to be a set of size two or more or a set
containing ?. Sequences are maximal, i.e., a sequence of one
type is never directly followed by a sequence of the same
type. Let the length of a v sequence or a ? sequence be the
number of invocations in the sequence and let the round of
the sequence be the value of leaderRound immediately
following the last invocation in the sequence.

Lemma 5.9. Let s1, s2, and s3 be consecutive sequences at a
correct client, where s2 is a v-sequence. Then, the round of s3 is
larger than the round of s1.

Proof. Let p be the correct client at which s1, s2, and s3 are
executed. Let r be the round of s1 and let r0 be the value
of leaderRound immediately following the first in-
vocation of Last in s2. If r0 > r, then we are done.
Otherwise (i.e., r0 � r), this implies that some client has
executed a justifiable append in round r� 1 (causing
clients in round r to prefer its value as the leaders' value)
and in p's next invocation of Last, it will observe this
append, i.e., leaderRound will equal some r00 > r.
Therefore, s2 (and, transitively, s3) or s3 (if s2 is of length
one) has a higher round than s1. tu

Theorem 5.9. Each correct client decides in expected O�nc4�
array operations.

Proof. We first argue that each correct client completes each

round in an expected O�c4� append and Last opera-

tions. Let p be a correct client executing in round r. First

note that a sequence (of any type) of length four causes p

to decide or move to round r� 1. So, in the worst case,

the values returned by Last at p in round r consist of

alternating v-sequences (for some v) and ?-sequences,

where each sequence is of length three or less. By Lemma

5.9, however, the rounds of every fourth such sequence

are monotonically increasing. Since by Lemma 5.8 there

is an expected O�c2� number of rounds in the protocol,

there is an expected O�c2� number of (constant-length)

sequences in each clients round and, hence, every client

completes the protocol in an expected O�c4� number of

append and Last operations.
To complete the proof, we are left with analyzing the

complexity of the Last operations. By the previous
argument, each array grows to an expected O�c4� length.
Therefore, over the course of an entire protocol run, all
Last operations executed by each client require an
expected O�nc4� read operations, presuming that a
Last operation does not reread array elements observed
in a previous Last operation by the same client. This
yields a total expected number of read and append

operations of O�nc4�. tu
5.6 From Binary Consensus to Multivalued

Consensus

The consensus object implementation described and

analyzed in this section allows a client to propose any

value to the object and, thus, is called multivalued in

distributed computing parlance. A commonly studied

variation on the multivalued consensus problem is the

binary consensus problem, in which each client is allowed to

propose only a single bit (i.e., 0 or 1) to the object. In the case

that the consensus protocol of Fig. 5 is used for binary

consensus, it is not difficult to verify that there are no

multivalent coin operations. This yields an expected

running time of only O�n� TAOA operations for binary

consensus.
Binary consensus is interesting also because it can be

used to construct a multivalued consensus object in our

environment. Assume that the initial value of any client is at

most ` bits in length. We can use a different binary

consensus object to agree on each bit vi of the final decision

value v, for a total of ` binary consensus objects o1; . . . ; o`.

The algorithm is shown in Fig. 7. In this figure, oi�0� denotes

the proposal of 0 to the ith binary consensus object (and

similarly for oi�1�), which returns the ith consensus value. A

precise specification of this algorithm requires us to restrict

the initial append by each process in the ith instance of

binary consensus to be consistent with the ith bit of some

client's initial ` bit value that is not already precluded by

v1 . . . viÿ1; otherwise, the append is not justified.
The total expected running time for the multivalued

consensus protocol of Fig. 7 is O�`n�. Thus, this protocol

may be advantageous to using that of Fig. 5 for multivalued

consensus when c4 is expected to exceed `.
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6 CONCLUSION

In this paper, we proposed an architecture for the
construction of survivable and scalable data repositories
and gave an overview of its implementation in the Fleet
system. The distinguishing features of Fleet are its
implementation of strong data abstractions in a scalable
way using untrusted servers and clients. The applications
for which we are targeting Fleet include critical components
of large scale public-key infrastructures, publishing and
dissemination services, and national election systems. We
also argued for the scalability of Fleet based on the
efficiency of data access protocols and the novel use of
quorum systems at the core of Fleet.

A central contribution of this paper is our description of
a survivable and scalable consensus object which, in many
ways, is the most powerful abstraction that we have
designed for the Fleet architecture thus far. Our consensus
object is a powerful abstraction, allowing individual clients
to obtain a consensus value without waiting for other clients
to invoke the object. Several of the enabling mechanisms we
have developed in our protocol are of general value in
themselves: The TAOAs can be used in other protocols to
support nonmalleable communication among clients when
Byzantine failures are a concern and the distributed coin-
flipping technique of Section 5.4 can be useful in other
randomized protocols.
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