
1

CS 395T: Design and Implementation of Trusted Services

Quorum Systems

Navendu Jain

Outline

Motivation

Quorum Systems

Tree Quorums

Probabilistic Quorum Systems

Outline

Motivation

Quorum Systems

Tree Quorums

Probabilistic Quorum Systems

Introduction

Object stored on a single server

Request

Reply

2

Introduction

Object stored on a single server

What if the server fails ?

Request

Reply X

Introduction

Replicate the object

• Availability

• Performance

Request

Reply

Introduction

Replicate the object
• Availability

• Performance

But what about consistency
(failures, msg reordering) ?

Request

Reply

Quorum Systems

Client only needs a quorum of

servers to access the object

Request

Reply

3

Quorum Systems

Client only needs a quorum of

servers to access the object

Example of a Quorum

Request

Reply

Quorum Systems

Client only needs a quorum of

servers to access the object

Another Quorum

Request

Reply

Outline

Motivation

Quorum Systems

Tree Quorums

Probabilistic Quorum Systems

Quorum Systems

Definition

Given a set of servers

A quorum system is a set of subsets of

such that

Each is called a quorum

2121
:, QQQQ I

P
2

},,{ 1 n
PP K=

Q

4

Coterie

Definition

Given a set of servers

A coterie is a quorum system such that

Coteries are quorums of minimal size

2121
:, QQQQ

P
2

},,{ 1 n
PP K=

Example Quorum Systems

Singleton

Majority

 tolerates faulty servers

Weighted Majority

 Every server is assigned votes

}{
2

1
:P

+
==
n

QQ

2

n
t <

},,{ 1 n
PP K=

}}{{ 1P=

}{
2

:P >=
Qq

Pq

q

q

w

wQ

},,{ 1 n
PP K=

s
ws

Example Quorum Systems

Tree Quorum

tolerates (*) faulty
servers

Grid

 A x grid of servers

Quorum size

n

node} leaf a to topfrompath :{ aPQ=

},,{ 1 n
PP K=

nnt log<

… …

… …

n

)(nO

n

+

2

1
log

n
Qn

Voting and Quorums

Weighted Majority

 Every server is assigned votes

Majority Voting

 Let V be the total number of votes

Define, r and w, the quorums required for read and write ops respectively

2w > V

w + r > n

}{
2

:P >=
Qq

Pq

q

q

w

wQ

},,{ 1 n
PP K=

s
ws

},,{ 1 n
PP K=

5

Voting and Quorums

Vote assignments and quorums are not equivalent

Quorum systems are strictly more general than voting

)2(

)2(

2

2

nOassigmentsvoteofNumber

OquorumsofNumber
cn

=

=

Measures on Quorum Systems

Load

 Probability of accessing the busiest server in the best

case (an optimal strategy of accessing the servers)

Resilience

 Maximum number of faulty servers that the quorum
system can tolerate

Failure Probability

 Probability that at least one server of every quorum fails

Load

Access strategy : probability distribution on elements of

The load induced by strategy on a server

The load induced by on

The system load (or load) on a quorum system is

=

Q

w QP 1)(

=

QiQ

ww QPil

 :

)()(

)(max)(ilL
w

Pi
w

=

)(min)(
w

w

LL =

w

w

w

i

Comparison

-Tree

PQS

Grid

Majority

Singleton

2

1

2

1n

2

1)(
<p

n
e

)(
1

n
O

)(
1

n
O

1n

nln

1

1 0)
2

1
(>p

)(L)(R)(pF

1)1log(

2

++n nn log

2

1)(
<p

n
e

6

How do quorums work ?

A quorum system implements a shared

read-write register in an asynchronous

point-to-point network

Linearizability

Each method call on an object should appear to

• “take effect”

• Instantaneously

• Between invocation and response events

Any such concurrent object is linearizable

Two operations that

• Non-Overlap: must be ordered in an order consistent

with their real-time precedence

• Overlap: can be ordered either way

Sequential consistency

Two operations that

• Non-Overlap: must be ordered in that order

(need not be their real-time precedence)

• Overlap: can be ordered either way

Linearizability is stronger

time

Sequentially consistent but not linearizable

q.enq(x)q.enq(x)

q.enq(y)q.enq(y) q.deq(y)q.deq(y)

time

(6)

q.enq(y)q.enq(y) q.deq(y)q.deq(y) q.enq(x)q.enq(x)

7

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizable

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)

Serializability

A transaction is a finite sequence of
method calls to a set of shared objects

Serializable if
• transactions appear to execute serially

Strictly serializable if
• order is compatible with real-time

Used in databases

Linearizability: single method, single object

Strict Serializability even stronger

x.read(0)

y.read(0) x.write(1)

y.write(1)

Non-serializable

Transactions: A, B Shared Objects: x, y

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(0)

read(1)

write(1)

read(0)

8

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2)

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2)

write(3)

read(?)

read(2)

read(3)

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2) read(?)

read(2)

read(3)

read(?)

read(2)

read(3)

read(3)

read(2)

write(3)

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2) read(?)

read(2)

read(3)

read(?)

read(2)

read(3)

read(3)

read(2)

write(3)

9

Shared Read-Write Register

Replicated Variable X

Each server stores (v, ts)

v – local copy of X

ts – timestamp

Operations

• Write (V, _)

• Read (X)

x

Shared Read-Write Register

Writer W: Write (V,)

• Picks a quorum Q to get ts

• > max {({ts} from Q) ,prev }
• Sends (Write, V,) operation to

some quorum Q’

• Each server checks ts < ;sets

X = V; ts =

• W waits for |Q’| acks before

terminating the write

x

Shared Read-Write Register

Writer W: Write (V,)

• Picks a quorum Q to get ts

• > max {({ts} from Q) ,prev }
• Sends (Write, V,) operation to

some quorum Q’

• Each server checks ts < ;sets

X = V; ts =

• W waits for |Q’| acks before

terminating the write

x

Shared Read-Write Register

Reader W: Read (X)

• Sends (Read, X) to some
quorum Q to get all (v, ts)

• Selects (v, ts) such that

ts = max {({ts} from Q)}

• Writes (v, ts) to some quorum Q’

x

10

Issues

Timestamp ts – break symmetry

• E.g. Node id in lower bits

Writer: > max {(ts) from Q, prev }

• Concurrent writes by single/multiple writers

Concurrent reads and writes

• Regular semantics

• Reader: writes to some quorum after reading

Can we do better ?

Minimize quorum size

Reduce communication cost

Graceful degradation

• more msgs only when failures increase

Outline

Motivation

Quorum Systems

Tree Quorums

Probabilistic Quorum Systems

Tree QuorumsTree Quorums
(trade time + storage for communication)(trade time + storage for communication)

Algorithm
• Impose a d-ary tree

logical structure

• Quorum calls

• GrantsPermission (Site s)

• Agrees to be in quorum

• GetQuorum (Root T)

• Initiate a quorum vote

… …

… …

11

Tree QuorumsTree Quorums

Algorithm
• Key Idea: On a failure, the algorithm substitutes for

that node with d-paths i.e. all it’s ‘d’ children.

X

Proof

T

RL
Quorum:

T U L

T U R

L U R

Tree QuorumsTree Quorums

Algorithm
• Impose a d-ary tree

logical structure

• Quorum calls

• GrantsPermission (Site

s)

• Agrees to be in quorum

• GetQuorum(Root T)

• Initiate a quorum vote

… …

… …

GetQuorum(Root T)

Tree QuorumsTree Quorums

Algorithm
• Impose a d-ary tree

logical structure

• Quorum calls

• GrantsPermission (Site

s)

• Agrees to be in quorum

• GetQuorum(Root T)

• Initiate a quorum vote

… …

… …

GetQuorum(Root T)

X
Failure

12

Tree QuorumsTree Quorums

Algorithm
• Impose a d-ary tree logical

structure

• Quorum calls

• GrantsPermission (Site s)

• Agrees to be in quorum

• GetQuorum(Root T)

• Initiate a quorum vote

• Quorum: Path starting from

 top to a leaf. Size = nlog

… …

… …

GetQuorum(Root T)

X
Failure

Can we do even better ?

Quorum Q only functions when all |Q| nodes work
• No quorum exists (if all |Q| elements of any Q fail)

Implications:
• large quorum sizes : more reliable.

• Small quorum sizes : increase efficiency, reduce communication

Any strict quorum system with optimal load of

 has fault tolerance of only [NW98]

tradeoff between low load and fault tolerance

n

1

)(nO

Outline

Motivation

Quorum Systems

Tree Quorums

Probabilistic Quorum Systems

Probabilistic quorums [MRW97]

Relax Intersection: Quorums may not intersect

Property:

Pairs of quorums chosen according to a
specific access strategy intersect w.h.p.

A probabilistic quorum system is defined
• w.r.t a consistency guarantee

• access strategy to achieve guarantee

1Pr,][2121 QQQQ I

w

w

13

Example construction [MRW97]

eQwQ

nlQPQ

lnl

PP

l

n

2

1

;
| |

1
)(,

 };|:|{

)1(size of sets theall are quorums The

}.,,{

==

==

= K

Probab.

Strict
)(

1

n
O

)(
1

n
O

)(nO

)(n

2

11 >p

)(L)(R)(pF

2

1)(
<p

n
e

References
D. H. Gifford. Weighted voting for replicated data. In Proceedings of
the 7th ACM Symposium on Operating Systems Principles. Pages
150--159, Asilomar Conference Grounds, Pacific Grove, CA USA,
December 10--12, 1979. ACM.

R. H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Transactions on Database
Systems, 4(2):180--209, June 1979.

H. Garcia-Molina and D. Barbara. How to assign votes in a
distributed system. Journal of the ACM, 32(4):841--860, October
1985.

D. Agrawal and A. El Abbadi. An efficient and fault-tolerant solution
for distributed mutual exclusion. ACM Transactions on Computer
Systems, 9(1):1-20, February 1991.

M. Herlihy. A quorum-consensus replication method for abstract
data types. ACM Transactions on Computer Systems, 4(1):32-53,
February 1986.

[MRW97] D. Malkhi, M. Reiter, and R. Wright. Probabilistic quorum
systems. In Proceedings of the Annual ACM Symposium on
Principles of Distributed Computing, pp. 267-273 June 1997.

References

I. Abraham, D. Malkhi. Probabilistic quorum for dynamic systems. In
17th International Symposium on Distributed Computing (DISC 2003),
Sorrento, Italy.

[NW98] M. Naor and A. Wool. The load, capacity, and availability of
quorum systems, SIAM Journal of Comput., Vol. 27, No. 2, 423-447,
April 1998.

M. Maekawa. A (n) algorithm for mutual exclusion in decentralized
systems. ACM Transactions on Computer Systems, 3(2):145-159,
1985.

L. Lamport. On interprocess communications (part ii: algorithms).
Distributed Computing, 1:86-101, 1986.

D. Malkhi. Quorum Systems. In The Encyclopedia of Distributed
Computing. Joseph Urban and Partha Dasgupta Editors, Kluwer
Academic Publishers.

Thanks

