r 4

Outline

Motivation
Quorum Systems Quorum Systems
Tree Quorums

Navendu Jain Probabilistic Quorum Systems

-

CS 395T: Design and Implementation of Trusted Services

4 N 4

Outline Introduction

Object stored on a single server
Quorum Systems

Tree Quorums Request N

B <

Probabilistic Quorum Systems OE—J Reply

- / -

-

Introduction

-

Object stored on a single server

< 2

6 Reply

What if the server fails ?

Request
> V{

-

Introduction

-

Replicate the object
Availability
Performance \/

Request

v

8 <

O Reply

= Cm
cm I W

| —

-

Introduction

~

Replicate the object
Availability .,/
Performance \/

Request

8 <

o Reply

0l
1

But what about con3|stency
(failures, msg reordering) ?

il
10
il

-

Quorum Systems

Client only needs a
servers to access the object

Request

of

)<

o Reply

= Cm
cm I W

| —

-

Quorum Systems

~

\

Client only needs a of
servers to access the object

Request

)<

v, Reply

Example of a Quorum

T
Bag
L

-

Quorum Systems

~

Client only needs a of
servers to access the object

Request o ’
< >
= <
Reply

K Another Quorum

T}

-

Outline

\

Motivation

Tree Quorums

Probabilistic Quorum Systems

Quorum Systems

Given a set of servers P={F,...,P}

A QC2’
such that

is a set of subsets of P

VQ15Q2€Q 0N, =¢

Each 9€Q is called a

\

/

-

Coterie

-

Given a set of servers p=(p,...,P}
A QC2" s a quorum system such that
V0.0,€0Q:0,¢0,

are quorums of minimal size

J

-

Example Quorum Systems

-

Q=18
P=ih....0}
Q-{ecrid-[1]s

tolerates ¢ <§ faulty servers

P={A,...B}

Every server S is assigned w, votes

S,

Q ={QCP:%WL’>"ET}

-

~

Example Quorum Systems

P={A....H}

= {0 C P:a path from top to a leaf node} é E
n+1
ot PogﬂS\Q\S{?l e \ é
olerates _ aulty
servers t=n |‘logn'|
i | |
A 1/; X 1/; grid of j Servers ‘ B
Quorum size 0(\/5 |

-

Voting and Quorums

-

P={P....P.
Every server g is assigned votes

s

2"
4

Q={QCP:;W/’> 3 }

,,,,,

P={R,. ., F}
Let V be the total number of votes
Define, rand w, the quorums required for read and write ops respectively

2w >V
w+r>n

J

-

Voting and Quorums

~

\

Vote assignments and quorums are not equivalent

Number of quorums = O(2%")

Number of vote assigments = 0(2”2)

-

Measures on Quorum Systems

~

system can tolerate

Probability of accessing the busiest server in the best
case (an optimal strategy of accessing the servers)

Maximum number of faulty servers that the quorum

K Probability that at least one server of every quorum faiIS/

-

Load

Access strategy w : probability distribution on elements of Q

S P©) =1
0eQ
The load induced by strategy w on a server ;

L= ER‘.(Q)
0= Qg0
The load induced by won Q

L,1Q) =max [,(7)
The system load (or load) on a quorum system Q is

L(Q) =min L (Q)

-

~

Comparison

Q L(Q) R(Q) F(Q)

Singleton 1 I

e

0)
Majority 1 n-1 -Q(n)
2 2 | [t

Tree 2 :
m n-=i0g 7
Grid O(F) J;_] ~1
s o o
\ i U] wotde (20

4 N

How do quorums work ?

A quorum system implements a shared
read-write register in an asynchronous
point-to-point network

- /

-

~

Linearizability

-

Each method call on an object should appear to
“take effect”
Instantaneously
Between invocation and response events

Any such concurrent object is linearizable

Two operations that

Non-Overlap: must be ordered in an order consistent
with their real-time precedence

Overlap: can be ordered either way

/

4 N

Sequential consistency

Two operations that

Non-Overlap: must be ordered in that order
(need not be their real-time precedence)

Overlap: can be ordered either way

-

~

Linearizability is stronger

|Sequen‘rially consistent but not linearizable

D & e

-

~

Example

olelo] |linearizable

-

Serializability

-

A transaction is a finite sequence of
method calls to a set of shared objects

Serializable if

transactions appear to execute serially
Strictly serializable if

order is compatible with real-time
Used in databases

Linearizability: single method, single object

~

Strict Serializability even stronger

Transactions: A, B Shared Objects: x, y

& &
& am

Non-serializable %

-

Semantics

~

-

A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

write(0 wri e 1
e o

/

-

Semantics

\

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

ez

-

~

Semantics

\

A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

Camp =D
read(2)
read(3) /

-

Semantics

~

\

A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

e D)

read(2) read(2) read(3)
read(3) read(3) read(2)

-

~

Semantics

\

A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

e G)

read(2) read(2) read(3)
read(3) read(3) vead(2)—

-

Shared Read-Write Register

~

-

Replicated Variable
Each server stores

— local copy of

— timestamp O O
Operations o o O o

Write (V, _) 0

Read (X)

-

Shared Read-Write Register

~

_

Writer W: Write (V,T)
Picks a quorum Q to get ts

T> max {({ts} from Q) ,prev"E}

x|

Sends (Write, V,T’) operation to O O
some quorum Q’ o O o
Each server checks ts <T;sets

T O

W waits for |Q’| acks before
terminating the write

-

Shared Read-Write Register

Writer W: Write (V,T)
Picks a quorum Q to get ts

T> max {({ts} from Q) ,prev"E}

Sends (Write, V,T’) operation to

¢ \o
some quorum Q’

\ ® @ o o
Each server checks ts <T;sets \\ /O
T —

W waits for |Q’| acks before
terminating the write

-

Shared Read-Write Register

Reader W: Read (X)

Sends (Read, X) to some
quorum Q to get

Selects such that
ts = max {({ts} from Q)}

L x
s

Writes to some quorum Q’

J

-

Issues

Timestamp ts — break symmetry
E.g. Node id in lower bits
Writer: T > max {(ts) from Q, prev T}
Concurrent writes by single/multiple writers
Concurrent reads and writes
Regular semantics
Reader: writes to some quorum after reading

\

4 N

Can we do better ?

Minimize quorum size
Reduce communication cost

Graceful degradation
more msgs only when failures increase

_ /

-

Outline

Motivation

Quorum Systems

Probabilistic Quorum Systems

\

4 N

Tree Quorums
(trade time + storage for communication)

Algorithm C
Impose a d-ary tree /
logical structure = ;
Quorum calls / /
® GrantsPermission (Site s) O O O @)
® Agrees to be in quorum // - // -
® GetQuorum (Root T) /. \ /. \
® Initiate a quorum vote (f \) \f ()

10

Tree Quorums

Proof
Algorithm

On a failure, the algorithm substitutes for T
that node with d-paths i.e. all it’s ‘d’ children.

Quorum:
TUL
TUR
LUR

-

N 4 N
Tree Quorums

Tree Quorums

GetQuorum(R) GetQuorum(RO)
Algorithm - Algorithm —
Impose a d-ary tree ; Impose a d-ary tree
logical structure / / \ logical structure
Quorum calls O BN Quorum calls
® GrantsPermission (Site / ~

/ ® GrantsPermission (Site
s) /. /. s)
® Agrees to be in quorum Ia e
. d \) N

Faylre /
¢ Agrees to be in quorum A~ A 6
. d NN/
\ ' / _ '

-

Tree Quorums

\

Algorithm
Impose a d-ary tree logical
structure
Quorum calls
® GrantsPermission (Site s)
® Agrees to be in quorum
® GetQuorum(Root T)
® Initiate a quorum vote
Quorum: Path starting from
top to a leaf. Size = []ogn]

-

Can we do even better ?

\

Quorum Q only functions when all |Q| nodes work
No quorum exists (if all |Q| elements of any Q fail)

Implications:
large quorum sizes : more reliable.
Small quorum sizes : increase efficiency, reduce communication

Any strict quorum system with optimal load of €

has fault tolerance of only 0(&) [NW98] Jn

/

-

Outline

Motivation
Quorum Systems

Tree Quorums

-

~

Probabilistic quorums [MRW97]

: Quorums may not intersect

Pairs of quorums chosen according to a
specific access strategy w intersect w.h.p.

VQ1=QZEQPr[legz] zl-¢

A probabilistic quorum system is defined
w.r.t a consistency guarantee &

access strategy to achieve guarantee w /

12

-

Example construction [MRW97]

~

\

P={R,...,P}.
The quorums are all the sets of size / n (I=1)
QO C P|Ql=n};

VOEQ W(Q) = L e =
2l

2

Q L(Q) R(Q) F,(Q)

Strict 0(%) O(&) ~1 p%

Probab.

o) ew [0

-

References

~

D. H. Gifford. In Proceedings of
the 7th ACM Symposium on Operating Systems Principles. Paé;es
150--159, Asilomar Conference Grounds, Pacific Grove, CA USA
December 10--12, 1979. ACM.
R. H. Thomas.
. ACM Transactions on Database

Systems, 4(2):180--209, June 1979.
H. Garcia-Molina and D. Barbara.

. Journal of the ACM, 32(4):841--860, October
1985.

D. Agrawal and A. El Abbadi.
. ACM Transactions on Computer

Systems, 9(1):1-20, February 1991.
M. Herlihy.

. ACM Transactions on Computer Systems, 4(1):32-53,
February 1986.
[MRW97] D. Malkhi, M. Reiter, and R. Wright. Probabilistic quorum
systems. In Proceedings of the Annual ACM Symposium on
Principles of Distributed Computing, pp. 267-273 June 1997.

/

-

References

~

|. Abraham, D. Malkhi. .In
17th International Symposium on Distributed Computing (DISC 2003),
Sorrento, ltaly.
[NW98] M. Naor and A. Wool.

, SIAM Journal of Comput., Vol. 27, No. 2, 423-447,
April 1998.
M. Maekawa.

ACM Transactions on Computer Systems, 3(2):145-159,

1985.
L. Lamport.
Distributed Computing, 1:86-101, 1986.
D. Malkhi. In The Encyclopedia of Distributed
Computing. Joseph Urban and Partha Dasgupta Editors, Kluwer
Academic Publishers.

/

~

Thanks

13

