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But what about con3|stency
(failures, msg reordering) ?
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Quorum Systems

Given a set of servers P={F,...,P}

A QC2’
such that

is a set of subsets of P

VQ15Q2€Q 0N, =¢

Each 9€Q is called a
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Given a set of servers p=(p,...,P}
A QC2" s a quorum system such that
V0.0,€0Q:0,¢0,

are quorums of minimal size
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Example Quorum Systems
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Q=18
P=ih....0}
Q-{ecrid-[1]s

tolerates ¢ <§ faulty servers

P={A,...B}

Every server S is assigned w, votes

S,

Q ={QCP:%WL’>"ET}
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Example Quorum Systems

P={A....H}

= {0 C P:a path from top to a leaf node} é E
n+1
ot PogﬂS\Q\S{?l e \ é
olerates _ aulty
servers t=n |‘logn'|
i | |
A 1/; X 1/; grid of j Servers ‘ B
Quorum size 0(\/5 |
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Voting and Quorums
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P={P....P.
Every server g is assigned votes

s

2"
4

Q={QCP:;W/’> 3 }

,,,,,

P={R,. ., F}
Let V be the total number of votes
Define, rand w, the quorums required for read and write ops respectively

2w >V
w+r>n
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Voting and Quorums
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Vote assignments and quorums are not equivalent

Number of quorums = O(2%")

Number of vote assigments = 0(2”2)
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Measures on Quorum Systems

~

system can tolerate

Probability of accessing the busiest server in the best
case (an optimal strategy of accessing the servers)

Maximum number of faulty servers that the quorum

K Probability that at least one server of every quorum faiIS/
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Load

Access strategy w : probability distribution on elements of Q

S P©) =1
0eQ
The load induced by strategy w on a server ;

L= ER‘.(Q)
0= Qg0
The load induced by won Q

L,1Q) =max [,(7)
The system load (or load) on a quorum system Q is

L(Q) =min L (Q)
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Comparison

Q L(Q) R(Q) F(Q)

Singleton 1 I

e

0 )
Majority 1 n-1 -Q(n)
2 2 | [t

Tree 2 :
m n-=i0g 7
Grid O( F) J;_] ~1
s o o
\ i U] wotde (20
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How do quorums work ?

A quorum system implements a shared
read-write register in an asynchronous
point-to-point network
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Linearizability

-

Each method call on an object should appear to
“take effect”
Instantaneously
Between invocation and response events

Any such concurrent object is linearizable

Two operations that

Non-Overlap: must be ordered in an order consistent
with their real-time precedence

Overlap: can be ordered either way

/
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Sequential consistency

Two operations that

Non-Overlap: must be ordered in that order
(need not be their real-time precedence)

Overlap: can be ordered either way
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Linearizability is stronger

|Sequen‘rially consistent but not linearizable
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Example

olelo] |linearizable
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Serializability

-

A transaction is a finite sequence of
method calls to a set of shared objects

Serializable if

transactions appear to execute serially
Strictly serializable if

order is compatible with real-time
Used in databases

Linearizability: single method, single object

~

Strict Serializability even stronger

Transactions: A, B Shared Objects: x, y
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Non-serializable %
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Semantics
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A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

write(0 wri e 1
e o
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Semantics
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Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order
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Semantics

\

A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

Camp =D
read(2)
read(3) /
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Semantics
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A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

e D )

read(2) read(2) read(3)
read(3) read(3) read(2)
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Semantics

\

A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:
Safe + reads and writes behave as if they occur in some definite order

e G )

read(2) read(2) read(3)
read(3) read(3) vead(2)—
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Shared Read-Write Register
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Replicated Variable
Each server stores

— local copy of

— timestamp O O
Operations o o O o

Write (V, _) 0

Read (X)

-

Shared Read-Write Register

~

\_

Writer W: Write (V,T)
Picks a quorum Q to get ts

T> max {({ts} from Q) ,prev"E}

x|

Sends (Write, V,T’) operation to O O
some quorum Q’ o O o
Each server checks ts <T;sets

T O

W waits for |Q’| acks before
terminating the write

-

Shared Read-Write Register

Writer W: Write (V,T)
Picks a quorum Q to get ts

T> max {({ts} from Q) ,prev"E}

Sends (Write, V,T’) operation to

¢ \o
some quorum Q’

\ ® @ o o
Each server checks ts <T;sets \\ /O
T —

W waits for |Q’| acks before
terminating the write
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Shared Read-Write Register

Reader W: Read (X)

Sends (Read, X) to some
quorum Q to get

Selects such that
ts = max {({ts} from Q)}

L x
s

Writes to some quorum Q’

J
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Issues

Timestamp ts — break symmetry
E.g. Node id in lower bits
Writer: T > max {(ts) from Q, prev T}
Concurrent writes by single/multiple writers
Concurrent reads and writes
Regular semantics
Reader: writes to some quorum after reading

\
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Can we do better ?

Minimize quorum size
Reduce communication cost

Graceful degradation
more msgs only when failures increase

\_ /
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Tree Quorums
(trade time + storage for communication)

Algorithm C
Impose a d-ary tree /
logical structure = ;
Quorum calls / /
® GrantsPermission (Site s) O O O @)
® Agrees to be in quorum // - // -
® GetQuorum (Root T) /. \ /. \
® Initiate a quorum vote (f \) \f ()

10



Tree Quorums

Proof
Algorithm

On a failure, the algorithm substitutes for T
that node with d-paths i.e. all it’s ‘d’ children.

Quorum:
TUL
TUR
LUR

-

N 4 N
Tree Quorums

Tree Quorums

GetQuorum(R ) GetQuorum(RO )
Algorithm - Algorithm —
Impose a d-ary tree ; Impose a d-ary tree
logical structure / / \ logical structure
Quorum calls O BN Quorum calls
® GrantsPermission (Site / ~

/ ® GrantsPermission (Site
s) /. /. s)
® Agrees to be in quorum Ia e
. d \) N

Faylre /
¢ Agrees to be in quorum A~ A 6
. d NN/
\ ' / \_ '
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Tree Quorums

\

Algorithm
Impose a d-ary tree logical
structure
Quorum calls
® GrantsPermission (Site s)
® Agrees to be in quorum
® GetQuorum(Root T)
® Initiate a quorum vote
Quorum: Path starting from
top to a leaf. Size = []ogn]
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Can we do even better ?

\

Quorum Q only functions when all |Q| nodes work
No quorum exists (if all |Q| elements of any Q fail)

Implications:
large quorum sizes : more reliable.
Small quorum sizes : increase efficiency, reduce communication

Any strict quorum system with optimal load of €

has fault tolerance of only 0(&) [NW98] Jn

/
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Probabilistic quorums [MRW97]

: Quorums may not intersect

Pairs of quorums chosen according to a
specific access strategy w intersect w.h.p.

VQ1=QZEQPr[ legz] zl-¢

A probabilistic quorum system is defined
w.r.t a consistency guarantee &

access strategy to achieve guarantee w /

12



-

Example construction [MRW97]
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P={R,...,P}.
The quorums are all the sets of size / n (I=1)
QO C P|Ql=n};

VOEQ W(Q) = L e =
2l

2

Q L(Q) R(Q) F,(Q)

Strict 0( %) O(&) ~1 p%

Probab.

o) ew [0
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