* CS395t: Secret Sharing

"

Razvan Surdulescu
surdules@cs.utexas.edu
March 10, 2004

4/12/04 1

* How to Share a Secret

I

Adi Shamir, MIT
Communications of the ACM
November 1979, Vol. 22, Nr. 11

4/12/04 2

* Motivation

= We have a safe that contains a secret

= We wish to give n people access to this
safe

= Access is granted only if k (or more) of
the n people are present (k <= n)

4/12/04 3

* Motivation cont'd

= In general, the secret is some data D
= We wish to divide D into n pieces (D,,
..., Dpy) such that:

= Knowledge of k (or more) D; pieces makes
D easily computable

= Knowledge of k-1 (or fewer) D; pieces
leaves D completely undetermined

= This is a (k, n) threshold scheme

4/12/04 4

4/12/04

* Applications

= Reliability

= Protecting a secret key that resides in a single
location is difficult

= By splitting the key in n=2k-1 pieces, we can re-
construct it even if half the pieces are lost
= Convenience

= Use a (3, n) scheme to share the company’s
digital signature among n executives

= At least 3 executives must be present to sign

4/12/04 5

* Applications cont’d

= Threshold schemes are ideal when
mutually suspicious individuals, with
conflicting interests, must cooperate

= A sufficiently large majority can take
action

= A sufficiently large minority can veto

4/12/04 6

$ Implementation

= Polynomial interpolation

= Given k 2D points (X4, Y1), -, (X4 Vi), With distinct
X;'s, there is only one polynomial q(x) of degree k-
1 such that q(x;) =y, for all i.

= Assume the secret data D can be made into a

number

= Letq(x) =D + a;x + ... + X1, where g, are
randomly chosen

= Let D; = q(i)

= Note that q(0) =D

4/12/04 7

* Implementation cont’d

= Given k (or more) D, values, we can uniquely
determine the coefficients of the polynomial
g(x), and therefore, D

= The computations are performed over a field
[0, p)
= pis a prime number greater than both D and n

= If k-1 (or fewer) D, values are known

= For each D’ in [0, p), we can construct one
polynomial q'(x) of degree k-1 with the required
properties, therefore nothing is revealed about the
real value of D

4/12/04 8

4/12/04

$ Implementation cont’'d

= Efficient interpolation schemes run in O(n
log2n) time
= Even naive O(n?) schemes are generally

sufficiently fast

= Large values of D can be broken down into
shorter pieces that are handled separately

= Individual D; pieces can be deleted without
affecting the other D; pieces

4/12/04 9

$ Implementation cont’'d

= All the D, pieces can be changed at
once without affecting the original D

= The D, pieces can be shared differently
based on their importance
= The CEO gets 3 pieces
= The VPs get 2 pieces
= The middle managers get 1 piece

4/12/04 10

Efficient Dispersal of
Information for Security, Load
q Balancing, and Fault Tolerance

b

Michael O. Rabin, Harvard
Journal of the ACM
April 1989, Vol. 36, Nr. 2

4/12/04 1

i Information Dispersal

= Consider a distributed network
= Nodes are sparsely connected (not every
two nodes are connected by a single edge)

= A user sends a file F from node A to B via
some path 7 consisting of 1 or more edges

= Although the probability of any edge failing is
low, the probability of the path failing can be
high

4/12/04 12

4/12/04

* Information Dispersal cont’'d

= In case of failure
= Re-transmit the file
= Loss of time
= Choose k paths zi; and send the file along each
one simultaneously
= Loss of bandwidth
= IDA disperses the file F into n pieces
= The file can be reconstructed from any m pieces

= Each piece is of size |F|/m, and the total amount
of information sent is (n/m) * |F|

4/12/04 13

* Information Dispersal cont’'d

= Space efficiency

= We can choose n and m such that (n/m)~1,
therefore the overhead is low

= Time efficiency

= The splitting and reconstruction algorithms are
efficient (more later)

= File pieces can be transmitted in parallel,
which better utilizes network resources

4/12/04 14

$ IDA Theory

= Let F=Db,b,...b, be a file, where b; are in
the range [0, B]

= We want to disperse pieces of F with
the assumption that no more than k
pieces will be lost in transmission

= Choose p such that p > B
= If the file consists of bytes, p = 257
= All the following computations are in Z,

4/12/04 15

* IDA Theory cont’d

= Choose n and m

= Choose n vectors a, = (a5, ..., &) IN
Z,™ such that every m different vectors
are linearly independent (with high
probability)

= F is segmented into sequences of
length m
= F=(by, ..., b)) (Oppags oo Do), =54,5,,.

4/12/04 16

4/12/04

* IDA Theory cont’d

= Let F=a;S,,a;S,,...,8S\;m=Ci1,Cizs---+Cinym
= |Rl = |FI/m
= Say we have m pieces of F (F,,...,F,)
= Let A be the m * m matrix whose ith
row is a;
bl Cll bl cll

A , therefore| : | =4~

4/12/04 17

* IDA Theory cont'd

= The matrix Al can be computed once
= For sufficiently large F, the cost of this
computation is majorized by the cost of
reconstructing F, even if we use an O(m3)
inversion algorithm
= Each character of F requires 2m mod p-
operations
= The split and reconstruction involve just inner
products that are readily optimized in hardware

4/12/04 18

$ IDA Theory cont'd

= In order for the matrix A to be invertible, it is
necessary that the vectors a; be linearly
independent
= Select a randomly from Z,™!
= It can be shown that A is nonsingular (invertible)
with probability nearly 1 — (1/p)
= The randomness of the a; vectors further prevents

eavesdroppers from reconstructing some of F by
intercepting some of the F; pieces

4/12/04 19

* IDA Theory cont’d

= The vector a; can be included as the
header of the piece F;

= The matrix A can be constructed when all
m pieces F; are received

= It is obviously essential that all Fj's be
encrypted in this case, to prevent against
eavesdropping

4/12/04 20

4/12/04

* Securing Replicated Data

= Two major issues in distributed systems
data security:
= Secrecy: cannot observe confidential data
= Integrity: cannot corrupt or modify data

= Distributed data across multiple
computers compounds the risk of data
theft/corruption and availability

4/12/04 21

* Routing for Parallel Computers

= PC, = parallel computer with N=2" nodes
= Each node x contains a processor Cx and memory
Mx
= A node is of the form {0, 1}
« Eg.{0,1,0, 1}
= The notation x//i means that we flip bit i
= {0, 1,0, 1}//2={0, 0, 0, 1}
= Each node x is connected by two-way links to
each of the nodes x//i, where 1<=i<=n

4/12/04 22

$ RPC con'g’d

= Seminal paper by L. Valiant

= Each node x has a packet of information Px that
has to be sent to a destination node n(x) («t:C,-
>C, is a permutation over the nodes of C,)

v Two phase approach:

+ 1. Route packets from x to a random node R(x)
+ 2. Route packets from R(x) to mt(x)

+ With probability 1-N* each packet reaches its
destination in time ¢ log,(N) and the queues at
each node are shorter than d log,(N)

+ kis a function of c and d

4/12/04 23

* RPC using IDA

= The packets Px are large

= Break them into pieces Pxi, such that
m=|5n/6 | pieces suffice to reconstruct Px

v Each piece Pxi has a ticket Txi and is
routed independently
« The ticket is a vector of integers from 0 to n of
length 2(n+1)
. Txi specifies the route from the source node (x)

to the destination node (y)
Pxi — x // Txi[0] — x // Txi[0] // Txi[1]] — ... =¥

4/12/04 24

4/12/04

* RPC using IDA cont'd

= At any time 1 <=t <= 2(n+1), there
are pairs (P, T) at any node Cy
s Forl<=j<=n,ifT[t] =], send P to to
y/lj
= By time t+1, this completes for all nodes
and all links from y to its neighbors
= Assume each node has a buffer large
enough to hold 6 packets

4/12/04 25

*, RPC using IDA cont'd

= Simultaneously for all x in Cn
= Split Px into Px1, ..., Pxn
= Randomly choose n pairwise different nodes R,(x),
o Ry(X)
= Select pairwise vertex-disjoint paths D,(x), ...,
D, (x) from x to R;(X), ..., R,(X), each of length at
most n+1

= Select vertex-disjoint paths E;(x), ..., E,(X) Ry(X),
., Ry(x), to n(x), each of length at most n+1

= Attach appropriate ticket Txi to Pxi for routing
from x to n(x) along D;(x), then E;(x)

4/12/04 26

* RPC using IDA cont'd

= Observations

= m pieces of Px1, ..., Pxn suffice to
reconstruct Px

= A separate proof will be given to show that
such paths as D;(x) can be constructed

= If length(D;(x)) = k < n+1, pad with zeros;
same for length(E;(x))

= If buffers overflow, packets are rejected
and lost

4/12/04 27

* RPC using IDA cont'd

= Theorem 1: for any given permutation r,
the probability that all packets reach
their destination is 1-(1/N%)

= Let Y(y,x,t) = random variable showing
number of pieces Pxi arriving at node y at
time t
= Trivial that Y(y,x,t) can only be 0 or 1

= Let p(y,x,t) be probability that Y(y,x,t) =1

4/12/04 28

4/12/04

i RPC using IDA cont'd

= If for some y, = Y(y,x,t) >= 5n for all x
v There are 5n |Pxi] = 5n |Px] / m = 5n |Px]
/ (5n / 6) = 6 |Px| packets at node vy,
which means overflow at node y
= We want to know the probability of the
condition above being true

= At t = 1, we have n pieces Pxi at each
node, so X p(y,x,t) = n for all x

4/12/04 29

$ RPC using IDA cont'd

= The random variables Y(y,x,t) are
pairwise independent

= Use Raghavan-Spencer theorem

= If Y1, ..., Yn are independent Bernoulli
trials with expected sum n, then for 6>0:

eé
PI'(EYI = (1+(S)I’l) = (W)

4/12/04 30

n

* RPC using IDA cont'd

= The probability of the buffer overflow
event (2 Y(y,x,t) >= 5n) is bounded by
=4

= Using Spencer-Raghavan, the theorem
claim is immediate (for n >= 4)

= The probability that all packets reach their
destination (enough IDA pieces reach the
destination to allow for reconstruction of
the original packet) is 1-(1/N4)

4/12/04 31

* RPC using IDA cont'd

= Theorem 2:

= Assume that within a transmission round,
fewer than N/n links fail

= We break Px into n pieces such that
m=|n/2] pieces suffice for reconstruction

v Allow for large enough buffers to make
buffer overflow very unlikely

v Then the probability of all packets reaching
their destination is 1 — 2N(4e/n)"/4

4/12/04 32

4/12/04

* RPC using IDA cont'd

= Lemma:
« Let C, = {0, 1}", S = {y,, ..., ¥} subset of
C, xinC,-S.

= There exist paths D,, ..., D, fromxto y,, ...,
Yn S0 that for i = j, D; and D; only have
node x in common and length(D;) <= n+1
forl<=i<=n

4/12/04 33

How to Make Replicated Data
* Secure

Maurice P. Herlihy, J. D. Tygar
August 1987
CMU-CS-87-143

4/12/04 34

i Replication

= Store long-lived data in multiple places
(repositories)
= This provides fault-tolerance

= Start with a threshold value t

= An adversary cannot determine or corrupt the
original data by inspecting fewer than t
repositories

= Analyze costs of
= Replication for availability (tolerate t failures)

= Replication for security (tolerate t compromised
sites)
4/12/04 35

i Costs of replication

= Secrecy is cheap
= Private and public key encryption schemes

= Key distribution is of particular interest,
since storing the key in a volatile medium
exposes it to compromise

= Distribute the key directly in the replication
protocol

= Integrity is expensive
= Communicate with additional sites

4/12/04 36

4/12/04

* Terminology

= Bit security

= No processor with randomized polynomial
resources can derive information about any bit in
the ciphertext with certainty greater than _ + ¢,
forany e >0

v This assumes some generally accepted limits of
complexity theory (e.g. taking k" roots modulo pq
cannot be done in randomized polynomial time)

= Perfect security

= No processor with unlimited resources can derive
a probability distribution of the corresponding
cleartext other than a uniform distribution
4/12/04 37

* Quorum Consensus Repl.

= Repository
= Long term storage for object state
= Quorum

= A set of repositories whose cooperation
suffices for an operation

= Assignment

= Associate an operation with a set of
qguorums

4/12/04 38

* Quorum Consensus Repl.

= Replicated file
= A collection of timestamped versions
= To read: take latest version from read quorum
= To write: generate new time-stamp, record new

version at write quorum

= An assignment is correct iff each read
guorum has a non-empty intersection with
each write quorum

4/12/04 39

Private Key Secure Quorum
* Consensus (SQC)

= Protect secrecy against an adversary who can
observe < t repositories
= Depends on a bit-secure, probabilistic private key
encryption scheme
= Implementation
= Front-ends: clients, volatile store
= Repositories: connected, long-term store

= Dealer: communicate with repositories, has a
source of random bits, volatile store

4/12/04 40

4/12/04

10

* Private Key SQC cont’d

= Phases

= Object initialization: dealer chooses random key K,
uses (t, n) secret sharing to send it to each
repository; all data stored in each repository is
encrypted by K first

= Front-end initialization: create K by reading t out
of n secret shares, store K in volatile cache

= Operation execution: read data, decrypt, perform
the operation, encrypt, store data

4/12/04 41

* Private Key SQC cont’d

= An adversary can still glean data

= For example, if the log timestamp entries
are not encrypted, they can provide hints

= The frequency of read/write operations can
also provide hints
= If the threshold is set to the smallest
quorum, there is no availability penalty

4/12/04 42

$ Examples

= Example #1

= Read and write operations are equally important

= Read and write quorums, as well as the share
threshold require a majority of [(n+1)/2]
repositories

v Registration does not incur an additional penalty,
since it can be done at the first quorum

= Up to [(n+1)/2] may fail or be compromised by an
adversary

4/12/04 43

* Examples cont’d

= Example #2
= Read is more important than Write

= Read quorums to have size 1, write
guorums have size n

= Clearly, a threshold of size 1 is not prudent
since it can be spoofed, so the read
threshold is really somewhere between 2
and n

= Registration incurs additional penalty

4/12/04 44

4/12/04

11

* Public Key SQC

= Instead of a single key K, use an encryption
key K¢, and a decryption key K

= Similarly, use an encryption threshold t., and
a decryption threshold t; to divide each key
into pieces

= This provides more flexibility in terms of
performance, availability, and security trade-
offs
= E.g. If integrity is not a concern, set t; =1

4/12/04 45

* On-the-Fly Reencryption

= Used when there is reasonable doubt
that the encryption key has been
compromised
= A file is replicated among n repositories,
with r read quorums, w write quorums,
and threshold t

= A front-end that knows K, can reencrypt
with K' if it has access to max(r, w, n-t+1)
repositories

4/12/04 46

$ Preserving Integrity

= So far, we've been concerned with
preserving secrecy from snoopers

= We now want to preserve integrity
against an active adversary
= Detect modifications
= Treat the repository as if it had crashed

4/12/04 47

* Preserving Integrity cont’d

= Encrypt cleartext along with internal
redundancy check
= Rabin and Karp checksum
= Define an integrity threshold t;
= t; <=t (for private SQC) or t; (for public SQC)
= Require quorum intersections to have cardinality
at least t;

= Ensures that each read quorum includes at least
one uncompromised repository with the file's
current data

4/12/04 48

4/12/04

12

* Preserving Integrity cont'd

= The adversary may take a snapshot of the
data and replace it at a later time
= This means that old timestamps will also be
replaced, so the latest timestamp is correct
= The protocol is optimal within the constraints
of the problem

= May seem expensive due to larger minimum
intersection of read and write quorums

= Anything weaker is subject to spoofing

4/12/04 49

* Preserving Integrity cont'd

= Compromise scenario
= File replicated at n repositories
= Read quorums of size r, write quorums of
size w, read intersect write at X
repositories: r+w-x=n
= R, W, X are disjoint sets of repositories of
sizes r-x, w-x, and x

= The repositories in X are controlled by an
adversary

4/12/04 50

* Preserving Integrity cont'd

= Compromise scenario cont’d
= Client A writes the value a at some write quorum
= Adversary snapshots X
= Client B writes the value b at W union X
= Adversary overwrites X with previous

= Client C reads the (obsolete) value a from R union
X

= Since B intersect C = X, C can be spoofed

4/12/04 51

S

4/12/04 52

4/12/04

13

4/12/04

i RPC using IDA cont’d

= Lemma follows from following claim
= Let U, be the set of unit vectors in C,
(vectors e; where g;[j] = ;)
v Let U subset of U, H subset C,,, |H| = |U]
= k, H intersect U = empty set
v There exist k vertex disjoint paths F,, ..., F,

connecting the nodes in U to the nodes in
H

4/12/04 53

14

