Runs and Consistent Runs

A run is a total ordering of the events in H that is consistent with the local histories of the processors.

- Ex: h_1, h_2, \ldots, h_n is a run.

A run is consistent if the total order imposed in the run is an extension of the partial order induced by \rightarrow.

A single distributed computation may correspond to several consistent runs!

Cuts

A cut C is a subset of the global history of H:

$$C = h^{c_1}_1 \cup h^{c_2}_2 \cup \ldots \cup h^{c_n}_n$$

The frontier of C is the set of events:

$$\{e^{c_1}_1, e^{c_2}_2, \ldots, e^{c_n}_n\}$$

Global states and cuts

- The global state of a distributed computation is an n-tuple of local states:

$$\Sigma = (\sigma_1, \ldots, \sigma_n)$$

- To each cut $(c_1 \ldots c_n)$ corresponds a global state $(\sigma^{c_1}_1, \ldots, \sigma^{c_n}_n)$.
Consistent cuts and consistent global states

A cut is consistent if
\[\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C \]

A consistent global state is one corresponding to a consistent cut

What \(p_0 \) sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by \(p_3 \) but not the corresponding send event

Our task

- Develop a protocol by which a processor can build a consistent global state
- Informally, we want to be able to take a snapshot of the computation
- Not obvious in an asynchronous system...
Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each message timestamped with $T(send(m))$

Snapshot I

i. p_0 selects t_{ss}
ii. p_0 sends "take a snapshot at t_{ss}" to all processes
iii. when clock of p_i reads t_{ss} then p
 a. records its local state σ_i
 b. starts recording messages received on each of incoming channels
 c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Theorem

Snapshot I produces a consistent cut

Proof

Need to prove $e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

1. $e_j \in C$ \hspace{1cm} \[< Assumption > \]
2. $e_i \rightarrow e_j$ \hspace{1cm} \[< 2 and 4 > \]
3. $T(e_j) < t_{ss}$ \hspace{1cm} \[< 1 > \]
4. $e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$ \hspace{1cm} \[< Property of real time > \]
5. $T(e_i) < T(e_j)$ \hspace{1cm} \[< 5 and 3 > \]
6. $T(e_i) < t_{ss}$ \hspace{1cm} \[< Definition > \]
Clock Condition

Can the Clock Condition be implemented some other way?

Lamport Clocks

Each process maintains a local variable \(LC \)

\[LC(e) \equiv \text{value of } LC \text{ for event } e \]

\[LC(e_p^{i+1}) < LC(e_q) \]

Increment Rules

\[LC(e_p^{i+1}) = LC(e_p^i) + 1 \]

\[LC(e_q^i) = \max(LC(e_q^{i-1}), LC(e_p^i)) + 1 \]

Timestamp \(m \) with \(TS(m) = LC(\text{send}(m)) \)
A subtle problem

When $LC = t$ do S

- doesn’t make sense for Lamport clocks!
- there is no guarantee that LC will ever be t
- S is anyway executed after $LC = t$

Fixes:

- if e is internal/send and $LC = t - 2$
 - execute e and then S
- if $e = \text{receive}(m) \land (TS(m) \geq t) \land (LC \leq t - 1)$
 - put message back in channel
 - re-enable e; set $LC = t - 1$; execute S

An obvious problem

No t_{ss}!

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

An obvious problem

No t_{ss}!

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmhhhh...

An obvious problem

No t_{ss}!

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmhhhh...

Doing so assumes

- upper bound on message delivery time
- upper bound relative process speeds

We better relax it...
Snapshot II

- Processor p_0 selects Ω
- p_0 sends “take a snapshot at Ω” to all processes; it waits for all of them to reply and then sets its logical clock to Ω
- When clock of p_i reads Ω then p_i
 - Records its local state σ_i
 - Sends an empty message along its outgoing channels
 - Starts recording messages received on each incoming channel
 - Stops recording a channel when receives first message with timestamp greater than or equal to Ω

Relaxing synchrony

Use empty message to announce snapshot!

Snapshot III

- Processor p_0 sends itself “take a snapshot”
- When p_i receives “take a snapshot” for the first time from p_j:
 - Records its local state σ_i
 - Sends “take a snapshot” along its outgoing channels
 - Sets channel from p_j to empty
 - Starts recording messages received over each of its other incoming channels
- When p_i receives “take a snapshot” beyond the first time from p_k:
 - Stops recording channel from p_k
- When p_i has received “take a snapshot” on all channels, it sends collected state to p_0 and stops.

Snapshots: a perspective

- The global state Σ saved by the snapshot protocol is a consistent global state
Snapshots: a perspective

- The global state Σ^* saved by the snapshot protocol is a consistent global state.
- But did it ever occur during the computation?
 - a distributed computation provides only a partial order of events
 - many total orders (runs) are compatible with that partial order
 - all we know is that Σ^* could have occurred.

An Execution and its Lattice

\[
\begin{array}{cccccc}
 p_1 & e_1^1 & e_2^1 & e_3^1 & e_4^1 & e_5^1 & e_6^1 \\
 p_2 & e_1^2 & e_2^2 & e_3^2 & e_4^2 & e_5^2 & e_6^2 \\
\end{array}
\]
An Execution and its Lattice
An Execution and its Lattice

\[
\begin{align*}
\Sigma_{00} & \quad \Sigma_{01} & \quad \Sigma_{02} \\
\Sigma_{10} & \quad \Sigma_{11} & \quad \Sigma_{12}
\end{align*}
\]
Reachability

Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{ij} to Σ^{kl} in the lattice

$\Sigma^{ij} \rightarrow \Sigma^{kl}$
So, why do we care about Σ^s again?

- Deadlock is a stable property
 - $\text{Deadlock} \Rightarrow \square \text{Deadlock}$
 - If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \rightsquigarrow_R \Sigma^f$

- Deadlock in Σ^s implies deadlock in Σ^f
- No deadlock in Σ^s implies no deadlock in Σ^f

So, why do we care about Σ^s again?

- Deadlock is a stable property
 - $\text{Deadlock} \Rightarrow \square \text{Deadlock}$
 - If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \rightsquigarrow_R \Sigma^f$

- Deadlock in Σ^s implies deadlock in Σ^f

Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation.
 (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.
Observations:
a few observations

An observation puts no constraint on the order in which the monitor receives notifications.

To obtain a run, messages must be delivered to the monitor in FIFO order.
Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications.

To obtain a run, messages must be delivered to the monitor in FIFO order.
What about consistent runs?

Causal delivery

FIFO delivery guarantees:
\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:
\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:
send_i(m) → send_i(m') ⇒ deliver_j(m) → deliver_j(m')

Causal delivery generalizes FIFO:
send_i(m) → send_k(m') ⇒ deliver_j(m) → deliver_j(m')

Causal delivery

FIFO delivery guarantees:
send_i(m) → send_i(m') ⇒ deliver_j(m) → deliver_j(m')

Causal delivery generalizes FIFO:
send_i(m) → send_k(m') ⇒ deliver_j(m) → deliver_j(m')

Causal delivery

FIFO delivery guarantees:
send_i(m) → send_i(m') ⇒ deliver_j(m) → deliver_j(m')

Causal delivery generalizes FIFO:
send_i(m) → send_k(m') ⇒ deliver_j(m) → deliver_j(m')