Consensus and Reliable Broadcast

Broadcast

If a process sends a message m, then every process eventually delivers m.

How can we adapt the spec for an environment where processes can fail? And what does “fail” mean?
A hierarchy of failure models

- Fail-stop
- Crash
- Send Omission
- General Omission
- Receive Omission
- Arbitrary failures with message authentication
- Arbitrary (Byzantine) failures

Reliable Broadcast

Validity: If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m

Agreement: If a correct process delivers a message m, then all correct processes eventually deliver m

Integrity: Every correct process delivers at most one message, and if it delivers m, then some process must have broadcast m

Consensus

Validity: If all processes that propose a value propose v, then all correct processes eventually decide v

Agreement: If a correct process decides v, then all correct processes eventually decide v

Integrity: Every correct process decides at most one value, and if it decides v, then some process must have proposed v

Termination: Every correct process eventually decides some value

Terminating Reliable Broadcast

Validity: If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m

Agreement: If a correct process delivers a message m, then all correct processes eventually deliver m

Integrity: Every correct process delivers at most one message, and if it delivers m, then some process must have broadcast m

Termination: Every correct process eventually delivers some message
Properties of send(m) and receive(m)

Benign failures:

Validity If \(p \) sends \(m \) to \(q \), and \(p, q \), and the link between them are correct, then \(q \) eventually receives \(m \)

Uniform* Integrity For any message \(m \), \(q \) receives \(m \) at most once from \(p \), and only if \(p \) sent \(m \) to \(q \)

* A property is uniform if it applies to both correct and faulty processes

Properties of send(\(m \)) and receive(\(m \))

Arbitrary failures:

Integrity For any message \(m \), if \(p \) and \(q \) are correct then \(q \) receives \(m \) at most once from \(p \), and only if \(p \) sent \(m \) to \(q \)

Questions, Questions...

- Are these problems solvable at all?
- Can they be solved independent of the failure model?
- Does solvability depend on the ratio between faulty and correct processes?
- Does solvability depend on assumptions about the reliability of the network?
- Are the problems solvable in both synchronous and asynchronous systems?
- If a solution exists, how expensive is it?

Plan

Synchronous Systems
- Consensus for synchronous systems with crash failures
- Lower bound on the number of rounds
- Reliable Broadcast for arbitrary failures with message authentication
- Lower bound on the ratio of faulty processes for Consensus with arbitrary failures
- Reliable Broadcast for arbitrary failures

Asynchronous Systems
- Impossibility of Consensus for crash failures
- Failure detectors
- PAXOS
Model

- Synchronous Message Passing
 - Execution is a sequence of rounds
 - In each round every process takes a step
 - sends messages to neighbors
 - receives messages sent in that round
 - changes its state
- Network is fully connected (an n-clique)
- No communication failures

A simple Consensus algorithm

Process p_i:

1. Initially $V = \{v_i\}$
2. To execute $\text{propose}(v_i)$
3. decide(x) occurs as follows:
 1. send $\{v_i\}$ to all
 2. for all j, $0 \leq j \leq n-1$, $j \neq i$ do
 3. receive S_j from p_j
 4. $V := V \cup S_j$
 5. decide $\min(V)$

An execution

- An execution
An execution

Suppose $v_1 = v_3 = v_4$ at the end of round 1
Can p_3 decide?

An execution

Suppose $v_1 = v_3 = v_4$ at the end of round 1
Can p_3 decide?
Suppose $v_1 = v_3 = v_4$ at the end of round 1. Can p_3 decide?

Echoing values

A process that receives a proposal in round 1, relays it to others during round 2.
Echoing values

A process that receives a proposal in round 1, relays it to others during round 2.

Suppose p_3 hasn’t heard from p_2 at the end of round 2. Can p_3 decide?

What is going on

A correct process p^* has not received all proposals by the end of round i. Can p^* decide?

Another process may have received the missing proposal at the end of round i and be ready to relay it in round $i + 1$.

Dangerous Chains

Dangerous chain
The last process in the chain is correct, all others are faulty
Living dangerously

How many rounds can a dangerous chain span?
- f faulty processes
- at most $f+1$ nodes in the chain
- spans at most f rounds

It is safe to decide by the end of round $f+1$!

The Algorithm

Code for process p_i:

Initially $V = \{ v_i \}$
To execute `propose(v)`

- round $k, 1 \leq k \leq f+1$
 1: send $\{ v \in V : p_i \text{ has not already sent } v \}$ to all
 2: for all $j, 0 \leq j \leq n-1, j \neq i$ do
 3: receive S_j from p_j
 4: $V := V \cup S_j$

$\text{decide}(v)$ occurs as follows:
 5: if $k = f+1$ then
 6: decide $\min(V)$

Termination and Integrity

Termination

Every correct process
- reaches round $f+1$
- decides on $\min(V)$ --- which is well defined
Termination and Integrity

Initially \(V = \{v_i\} \)

To execute propose(\(x \))

1. \(k = f + 1 \)
2. for all \(j, 0 \leq j < n - 1, j \neq i \)
3. receive \(S_j \) from \(p_j \)
4. \(V = V \cup S_j \)

\(\text{decide}(x) \) occurs as follows:
5. if \(k = f + 1 \) then
6. \(\text{decide}(x) \)

Termination

Every correct process

\(\text{reaches round } f + 1 \)

\(\text{Decides on } \min(V) \) --- which is well defined

Integrity

At most one value:

- Only if \(x \) was proposed:
 - To be decided upon, must be in \(V \) at round \(f + 1 \)
 - If \(x = v \) then it is proposed in round \(f + 1 \)
 - Else, suppose received in round \(k \), by induction
 - \(k = f + 1 \)
 - By Uniform Integrity of underlying send and receive
 - Must have been sent in round \(f + 1 \)
 - By protocol and because only crash failures, it must have been proposed
 - Induction Hypothesis: all values received up to round \(k = j \) have been proposed

 \(k = j + 1 \)
 - Sent in round \(j + 1 \) (Uniform Integrity of send and synchronous model)
 - Must have been part of \(V \) of sender at end of round \(j \)
 - By protocol, must have been received by sender by end of round \(j \)
 - By induction hypothesis, must have been proposed

Validity

Initially \(V = \{v_i\} \)

To execute propose(\(x \))

1. \(k = f + 1 \)
2. for all \(j, 0 \leq j < n - 1, j \neq i \)
3. receive \(S_j \) from \(p_j \)
4. \(V = V \cup S_j \)

\(\text{decide}(x) \) occurs as follows:
5. if \(k = f + 1 \) then
6. \(\text{decide}(x) \)

Termination

Every correct process

\(\text{reaches round } f + 1 \)

\(\text{Decides on } \min(V) \) --- which is well defined

Integrity

At most one value:

- Only if it was proposed:
 - One decide, and \(\min(V) \) is unique

Validity

Initially \(V = \{v_i\} \)

To execute propose(\(x \))

1. \(k = f + 1 \)
2. for all \(j, 0 \leq j < n - 1, j \neq i \)
3. receive \(S_j \) from \(p_j \)
4. \(V = V \cup S_j \)

\(\text{decide}(x) \) occurs as follows:
5. if \(k = f + 1 \) then
6. \(\text{decide}(x) \)
Validity

- Suppose every process proposes v^*
- Since only crash model, only v^* can be sent
- By Uniform Integrity of send and receive, only v^* can be received
- By protocol, $V = \{ v^* \}$
- $\min(V) = v^*$
- $\text{decide}(v^*)$

Agreement

Lemma 1

For any $r \geq 1$, if a process p receives a value v in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that $p_r = p$, p_0 is v's proponent, and in each round p_{k-1} sends v and p_k receives it. Furthermore, all processes in the sequence are distinct.

Proof

By induction on the length of the sequence.
Agreement

Proof:

- Show that if a correct process has a value in its local view at the end of round \(f + 1 \), then every correct process has the same value in its local view at the end of round \(f + 1 \).

- Let \(r \) be the earliest round where \(x \) is added to the local view of a correct process \(p \). Let that process be \(p' \).

- If \(r \leq f \), then \(p' \) sends \(x \) in round \(r + 1 \leq f + 1 \); every correct process receives \(x \) and adds it to its local view in round \(r + 1 \).

Initial Conditions:

Initially, \(V = \{ x \} \).

To execute propose(\(x \)) with round \(6 \) \(1 \leq k \leq f + 1 \):

1. Send \(\{ i = k : \) process \(p \) has not already sent \(x \} \) to all processes.
2. For all \(j \), if \(0 \leq j < n - 1 \), do:
 a. Receive \(V \) from process \(p \).
3. Receive \(V \) from process \(p \).
4. \(V = V \cup S \).

Decision:

- If \(k = f + 1 \) then:
 1. Decide \(x \).

Lemma 2:

In every execution, at the end of round \(f + 1 \), the local view \(V \) of every correct process \(p \), and \(p' \) is the same.

Agreement follows from Lemma 2, since \(\text{min} \) is a deterministic function.

Terminating Reliable Broadcast

Validity

If the sender is correct and broadcasts a message \(m \), then all correct processes eventually deliver \(m \).

Agreement

If a correct process delivers a message \(m \), then all correct processes eventually deliver \(m \).

Integrity

Every correct process delivers at most one message, and if it delivers \(m \neq SF \), then some process must have broadcast \(m \).

Termination

Every correct process eventually delivers some message.
TRB for benign failures

Terminates in $f+1$ rounds

How can we do better?

Find a protocol whose round complexity is proportional to t – the number of failures that actually occurred – rather than to f – the max number of failures that may occur.

Early stopping:

The idea

Suppose processes can detect the set of processes that have failed by the end of round i

Call that set $\text{faulty}(p, i)$

If $|\text{faulty}(p, i)| < i$ there can be no active dangerous chains, and p can safely deliver SF

Early Stopping:

The Protocol

Let $\text{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$.

1. if p is sender then value := m else value := \oplus

Process p in round k, $1 \leq k \leq f+1$

2. send value to all

3. if delivered in round $k-1$ then halt

4. receive round k values from all

5. $\text{faulty}(p, k) := \text{faulty}(p, k-1) \cup \{q | p \text{ received no value from } q \text{ in round } k\}$

6. if received value v, $v \neq ?$ then

7. value := v

8. deliver value

9. if p is sender then value := \oplus

10. else if $k = f+1$ or $|\text{faulty}(p, k)| < k$ then

11. value := SF

12. deliver value

13. if $k = f+1$ then halt

Termination

Let $\text{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$.

1. if p is sender then value := m else value := \oplus

Process p in round k, $1 \leq k \leq f+1$

2. send value to all

3. if delivered in round $k-1$ then halt

4. receive round k values from all

5. $\text{faulty}(p, k) := \text{faulty}(p, k-1) \cup \{q | p \text{ received no value from } q \text{ in round } k\}$

6. if received value v, $v \neq ?$ then

7. value := v

8. deliver value

9. if p is sender then value := \oplus

10. else if $k = f+1$ or $|\text{faulty}(p, k)| < k$ then

11. value := SF

12. deliver value

13. if $k = f+1$ then halt
Termination

Let $\text{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$.

If in any round a process receives a value, then it delivers the value in that round.

If a process has received only "?" for $f+1$ rounds, then it delivers SF in round $f+1$.

Validity

Let $\text{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$.

If p sender then value $= m$, else value $= ?$.

Validity

If the sender is correct then it sends m to all in round 1.

By Validity of the underlying send and receive, every correct process will receive m by the end of round 1.

By the protocol, every correct process will deliver m by the end of round 1.

Agreement – 1

For any $r \geq 1$, if a process p delivers $m = \text{SF}$ in round r, then there exists a sequence of processes $p_0, p_1, \ldots, p_{r-1}$ and in each round k, $1 \leq k \leq r$, p_{k-1} sent p_k and p_k received it. Furthermore, all processes in the sequence are distinct, unless $r = 1$ and $p_0 = p_1$ is sender.

Lemma 2:

For any $r \geq 1$, if a process p sets value to SF in round r, then there exists some $j < r$ and a sequence of distinct processes $q_0, q_1, \ldots, q_{r-1}$ such that q_j only receives "?" in rounds 1 to j, $|\text{faulty}(q_j, k)| < j$, and in each round k, $j+1 \leq k \leq r$, q_{k-1} sends SF to q_k and q_k receives SF.
Let $\text{fault}(p, k)$ be the set of processes that have failed to send a message to p in any round $1 \ldots k$.

1. If $p = \text{sender}$ then value $= m$, else value $= ?$.

Process p in round k, $1 \leq k \leq f+1$.

2. send value to all
3. if delivered in round $k-1$ then halt
4. receive round k values from all
5. $\text{fault}(p, k) = \text{fault}(p, k-1) \cup \{p\}$
6. if received value $= ?$ then
7. value $= m$
8. deliver value
9. if $p = \text{sender}$ then value $= m$
10. else if $k-1/f+1$ or $|\text{fault}(p, k)| < k$ then
11. value $= \text{SF}$
12. deliver value
13. if $k = f+1$ then halt

Lemma 3: It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively.

Agreement - 2

Let $\text{fault}(p, k)$ be the set of processes that have failed to send a message to p in any round $1 \ldots k$.

1. If $p = \text{sender}$ then value $= m$, else value $= ?$.

Process p in round k, $1 \leq k \leq f+1$.

2. send value to all
3. if delivered in round $k-1$ then halt
4. receive round k values from all
5. $\text{fault}(p, k) = \text{fault}(p, k-1) \cup \{p\}$
6. if received value $= ?$ then
7. value $= m$
8. deliver value
9. if $p = \text{sender}$ then value $= m$
10. else if $k-1/f+1$ or $|\text{fault}(p, k)| < k$ then
11. value $= \text{SF}$
12. deliver value
13. if $k = f+1$ then halt

Proof

By contradiction

Suppose p sets value $= m$ and q sets value $= \text{SF}$.

By Lemmas 1 and 2 there exist p_0, \ldots, p_f, q_0, \ldots, q_f with the appropriate characteristics.

Since q_j did not receive m from process p_{j-1}, $1 \leq j \leq f+1$ in round k, q_j must conclude that p_0, \ldots, p_f are all faulty processes.

But then, $|\text{fault}(q_j, k)| \geq j$

CONTRACTION

Agreement - 3

Let $\text{fault}(p, k)$ be the set of processes that have failed to send a message to p in any round $1 \ldots k$.

1. If $p = \text{sender}$ then value $= m$, else value $= ?$.

Process p in round k, $1 \leq k \leq f+1$.

2. send value to all
3. if delivered in round $k-1$ then halt
4. receive round k values from all
5. $\text{fault}(p, k) = \text{fault}(p, k-1) \cup \{p\}$
6. if received value $= ?$ then
7. value $= m$
8. deliver value
9. if $p = \text{sender}$ then value $= m$
10. else if $k-1/f+1$ or $|\text{fault}(p, k)| < k$ then
11. value $= \text{SF}$
12. deliver value
13. if $k = f+1$ then halt

Proof

If no correct process ever receives m, then every correct process delivers SF in round $f+1$.
Integrity

Let $\text{fault}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, f$.

1. If p is the sender then value := m, else value := ∞.

Process p in round k, $1 \leq k \leq f+1$:

2. send value to all
3. if delivered in round $k-1$ then halt
4. receive round k values from all
5. $\text{fault}(p, k) = \text{fault}(p, k-1) \cup \{p\}$, received no value from p in round k.
6. if received value $\neq \infty$ then
7. value := m
8. deliver value
9. if p is the sender then value := ∞.
10. else if $k = f+1$ or $|\text{fault}(p, k)| < k$ then
11. value := SF
12. deliver value
13. if $k = f+1$ then halt

At most one m

- Failures are benign, and a process executes at most one deliver event before halting

If $m \neq \text{SF}$, only if m was broadcast

From Lemma 1 in the proof of Agreement

A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in fewer than $f+1$ rounds in the presence of f crash failures, if $n \geq f+2$

We consider a special case ($f = 1$) to study the proof technique

Views

Let α be an execution. The view of process p_i in α, denoted by $\alpha[p_i]$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α.

\[p_1 \xrightarrow{m} p_2 \xrightarrow{m} \ldots p_4 \]
Views

Let α be an execution. The view of process p_i in α, denoted by $\alpha|p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α.

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2. α_1 is similar to α_2 with respect to p_i, denoted $\alpha_1 \sim_{p_i} \alpha_2$ if

$$\alpha_1|p_i = \alpha_2|p_i$$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions.

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$.
Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2. α_1 is similar to α_2 with respect to p_i, denoted $\alpha_1 \sim_{p_i} \alpha_2$, if

$$\alpha_1 | p_i = \alpha_2 | p_i$$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$

Single-Failure Case

There is no algorithm that solves consensus in fewer than two rounds in the presence of one crash failure, if $n \geq 3$

The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that

$$\alpha_1 = \beta_1 \sim_{p_1} \beta_2 \sim_{p_2} \ldots \sim_{p_k} \beta_{k+1} = \alpha_2$$

Note If $\alpha_1 \approx \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \approx \alpha_2$ and p_i is correct, then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$

The transitive closure of $\alpha_1 \approx \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that

$$\alpha_1 = \beta_1 \sim_{p_1} \beta_2 \sim_{p_2} \ldots \sim_{p_k} \beta_{k+1} = \alpha_2$$

Note If $\alpha_1 \approx \alpha_2$ then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$

The Idea

By contradiction

- Consider a one-round execution in which each process proposes 0. What is the decision value?
- Consider another one-round execution in which each process proposes 1. What is the decision value?
- Show that there is a chain of similar executions that relate the two executions.

So what?
Adjacent α^i's are similar!

Starting from α^i, we build a set of executions α^j where $0 \leq j \leq n-1$ as follows:

α^j is obtained from α^i after removing the messages that p_i sends to the j-th highest numbered processors (excluding itself).

The executions

Indistinguishability
Indistinguishability
Indistinguishability

\[p_0 p_i \approx p_{i+1} \approx p_n \]

\[\alpha_i \approx \beta_{n-2} \]

\[\alpha_{n-1} \approx \beta_{n-3} \]

\[\alpha^i \approx \beta^i \]

\[\alpha_{n-1} \approx \beta_{n-1} \]

\[\alpha_i \approx \beta^i_{i+1} \]

\[\alpha_{n-1} \approx \beta_{n-1}^i \]
Indistinguishability

$$\alpha^i \approx \alpha^{i+1}$$

Valid messages

A valid message m has the following form:

- in round 1:
 $$m : s_{id}$$ (is signed by the sender)
- in round $r > 1$, if received by p from q:
 $$m : p_1 : p_2 : \ldots : p_r$$ where
 - $p_1 = \text{sender}; p_r = q$
 - p_1, \ldots, p_r are distinct from each other and from p
 - message has not been tampered with

AFMA: The Idea

- A correct process p discards all non-valid messages it receives
- If a message is valid,
 - p “extracts” the value from the message
 - p relays the message, with its own signature appended
- At round $f+1$:
 - if it extracted exactly one message, p delivers it
 - otherwise, p delivers SF

Arbitrary failures with message authentication

- Fail-stop
- Crash
- Send Omission
- Receive Omission
- General Omission
- Arbitrary failures with message authentication
- Arbitrary (Byzantine) failures
AFMA: The Protocol

Initialization for process p:
- if p = sender and p wishes to broadcast m then
 extracted := relay := \{m\}

Process p in round $k, 1 \leq k \leq f+1$
- for each $s \in relay$
 send s := p to all
- receive round k messages from all processes
 relay := \$
- for each valid message received $s = m : p_1 : p_2 : \ldots : p_k$
 if $m \notin$ extracted then
 extracted := extracted $\cup \{m\}$
 relay := relay $\cup \{s\}$

At the end of round $f+1$
- if $\exists m$ such that extracted $\notin \{m\}$ then
 deliver m
- else deliver SF

Proof
Let r be the earliest round in which some correct process extracts m. Let that process be p.
- p has received in round r a message $m : p_1 : p_2 : \ldots : p_k$
- if $r \leq f$, p will send a valid message $m : p_1 : p_2 : \ldots : p_k$ in round $r+1$ and every correct process will extract it in round $r+1$
- if $r = f+1$ then
 - Choose p_1, p_2, \ldots, p_k are all faulty
 - True for $p_k = x$
 - Suppose $p_j, 1 < j \leq f+1$, were correct
 - p_j signed and relayed message in round j
 - p_j extracted message in round $j-1 < f+1$
 - $f+1$ was supposed to be earliest round where a correct process extracted m. CONTRADICTION

Validation

Termination

In round $f+1$, every correct process delivers either m or SF and then halts
TRB for arbitrary failures

- Fail-stop
- Crash
- Send Omission
- Receive Omission
- General Omission
- Arbitrary failures with message authentication
- Arbitrary (Byzantine) failures

Srikanth, T.K., Toueg S.
Simulating Authenticated Broadcasts to Derive Simple Fault-Tolerant Algorithms
Distributed Computing 2 (2), 80-94

AF: The Idea

- Identify the essential properties of message authentication that made AFMA work
- Implement these properties without using message authentication

AF: The Approach

- Introduce two primitives
 - broadcast\((p, m, i)\) (executed by \(p\) in round \(i\))
 - accept\((p, m, i)\) (executed by \(q\) in round \(j \geq i\))
- Give axiomatic definitions of broadcast and accept
- Derive an algorithm that solves TRB for AF using these primitives
- Show an implementation of these primitives that does not use message authentication

Properties of broadcast and accept

- Correctness If a correct process \(p\) executes broadcast\((p, m, i)\) in round \(i\), then all correct processes will execute accept\((p, m, i)\) in round \(i\)
- Unforgeability If a correct process \(q\) executes accept\((p, m, i)\) in round \(j \geq i\), and \(p\) is correct, then \(p\) did in fact execute broadcast\((p, m, i)\) in round \(i\)
- Relay If a correct process \(q\) executes accept\((p, m, i)\) in round \(j \geq i\), then all correct processes will execute accept\((p, m, i)\) by round \(j+1\)
AF: The Protocol - 1

sender \(s \) in round 0:
0. extract \(m \)
1. broadcast \((s, m, 1)\)
2. if \(p \) extracted \(m \) in round \(k - 1 \) and \(p \neq \) sender then
 4. broadcast \((p, m, k)\)
3. if \(p \) has executed at least \(k \) accepts \((q, m, j)\) \(1 \leq j \leq k \) in rounds 1 through \(k \):
 - (where \(i \) is distinct from each other and from \(j \)) one \(q \) is \(s \) and
 - (ii) \(1 \leq j \leq k \) and \(p \) has not previously extracted \(m \) then
 6. extract \(m \)
 7. if \(k = f + 1 \) then
 8. if in the entire execution \(p \) has extracted exactly one \(m \) then
 9. deliver \(m \)
10. else deliver SF
11. halt

Termination

In round \(f + 1 \), every correct process delivers either \(m \) or SF and then halts

Agreement - 1

sender \(s \) in round 0:
0. extract \(m \)
1. sender \(s \) in round 1:
 1. broadcast \((s, m, 1)\)
 2. if \(p \) extracted \(m \) in round \(k - 1 \) and \(p \neq \) sender then
 4. broadcast \((p, m, k)\)
 5. if \(p \) has executed at least \(k \) accepts \((q, m, j)\) \(1 \leq j \leq k \) in rounds 1 through \(k \):
 - (where \(i \) is distinct from each other and from \(j \)) one \(q \) is \(s \) and
 - (ii) \(1 \leq j \leq k \) and \(p \) has not previously extracted \(m \) then
 6. extract \(m \)
 7. if \(k = f + 1 \) then
 8. if in the entire execution \(p \) has extracted exactly one \(m \) then
 9. deliver \(m \)
 10. else deliver SF
 11. halt

Agreement - 1

Lemma

If a correct process extracts \(m \), then every correct process eventually extracts \(m \)

Proof

Let \(r \) be the earliest round in which some correct process extracts \(m \), let that process be \(p \).

- If \(r = 0 \) then \(p = s \) and \(p \) will execute broadcast \((s, m, 1)\) in round 1. By correctness, all correct processes will execute accept \((s, m, 1)\) in round 1 and extract \(m \).
Lemma 11:
If a correct process extracts \(m \), then every correct process eventually extracts \(m \).

Proof:
Let \(r \) be the earliest round in which some correct process extracts \(m \). Let that process be \(p \).

\(\exists r \geq 0 \) such that \(p \) will extract broadcast\((m, r+1)\) in round \(r+1 \). By CORRECTNESS, all correct processes will execute broadcast\((m, r+1)\) in round \(r+1 \) and extract \(m \).

If \(r = 0 \), then \(p \) and \(p \) will execute broadcast\((m, 0)\) in round \(0 \). By CORRECTNESS, all correct processes will execute broadcast\((m, 0)\) in round \(0 \) and extract \(m \).

If \(r > 0 \), the sender is faulty. Since \(p \) has extracted \(m \), \(r \) has executed at least \(r \) triples with properties (i), (ii), and (iii) but not previously extracted \(m \).

\(\exists \in \mathbb{R} \) such that \(p \) will extract broadcast\((m, r+1)\) in round \(r+1 \).

By CORRECTNESS, any correct process other than \(p \) will have accepted \(r+1 \) triples \((q, m, j), 1 \leq j \leq r+1\) by round \(r+1 \).

Lemma 12:
If a correct process extracts \(m \), then every correct process eventually extracts \(m \).

Proof:
Let \(r \) be the earliest round in which some correct process extracts \(m \). Let that process be \(p \).

\(\exists r \geq 0 \) such that \(p \) will extract broadcast\((m, r+1)\) in round \(r+1 \). By CORRECTNESS, all correct processes will execute broadcast\((m, r+1)\) in round \(r+1 \) and extract \(m \).

If \(r = 0 \), then \(p \) and \(p \) will execute broadcast\((m, 0)\) in round \(0 \). By CORRECTNESS, all correct processes will execute broadcast\((m, 0)\) in round \(0 \) and extract \(m \).

If \(r > 0 \), the sender is faulty. Since \(p \) has extracted \(m \), \(r \) has executed at least \(r \) triples with properties (i), (ii), and (iii) but round \(r \).

\(\exists \in \mathbb{R} \) such that \(p \) will extract broadcast\((m, r+1)\) in round \(r+1 \).

By CORRECTNESS, any correct process other than \(p \) will have accepted \(r+1 \) triples \((q, m, j), 1 \leq j \leq r+1\) by round \(r+1 \).
Agreement - 2

Claim: q_1, q_2, \ldots, q_l are all faulty.

Suppose m were correct.

By UNFORGEABILITY, q_1 executed broadcast (s, m, j_1) in round $j_1 < r$

\Rightarrow $\exists q_2, \ldots, q_l$ extracted m in round $j_{2, \ldots, l} < r$

CONTRADICTION

Case 2: $r = f+1$

Since there are at most f faulty processes, some process q_1 in $(q_1, q_2, \ldots, q_{f+1})$ is correct.

By UNFORGEABILITY, q_1 executed broadcast (s, m, j_1) in round $j_1 < r$

\Rightarrow m has extracted m in round $j_{2, \ldots, l} < f+1$

CONTRADICTION

Implementing broadcast and accept

- A process that wants to broadcast m, does so through a series of witnesses.
 - Sends m to all.
 - Each correct process becomes a witness by relaying m to all.
 - If a process receives enough witness confirmations, it accepts m.

Validity

- A correct sender executes broadcast$(s, m, 1)$ in round 1.
- By CORRECTNESS, all correct processes execute accept$(s, m, 1)$ in round 1 and extract m.
- In order to extract a different message m', a process must execute accept$(s, m', 1)$ in some round $i \leq f + 1$.
- By UNFORGEABILITY, and because s is correct, no correct process can extract $m' \neq m$.
- All correct processes will deliver m.

Can we rely on witnesses?

- Only if not too many faulty processes!
- Otherwise, a set of faulty processes could fool a correct process by acting as witnesses of a message that was never broadcast.
- How large can be f with respect to n?
Byzantine Generals

- One General G, a set of Lieutenants L_i
- General can order Attack (A) or Retreat (R)
- General may be a traitor; so may be some of the Lieutenants

I. If G is trustworthy, every trustworthy L_i must follow G's orders
II. Every trustworthy L_i must follow same battleplan

The plot thickens...

- One traitor

A Lower Bound

Theorem

There is no algorithm that solves TRB for Byzantine failures if $n \leq 3f$
(Lamport, Shostak, and Pease. The Byzantine Generals Problem, ACM TOPLAS, 4 (3), 382-401, 1982)

Back to the protocol...

- To broadcast a message in round r, p sends $\text{init}(p, m, r)$ to all
- A confirmation has the form $\text{echo}(p, m, r)$
- A witness sends $\text{echo}(p, m, r)$ if either:
 - it receives $\text{init}(p, m, r)$ from p directly
 - or it receives confirmations for (p, m, r) from at least $f + 1$ processes (at least one correct witness)
- A process accepts (p, m, r) if it has received $n - f$ confirmations (as many as possible...)
- Protocol proceeds in rounds. Each round has 2 phases
Implementation of broadcast and accept

Phase 2\(r-1\)
1: \(p\) sends \((\text{init}, p, m, r)\) to all
Phase 2\(r\)
2: if \(q\) received \((\text{init}, p, m, r)\) in phase 2\(r-1\) then
3: \(q\) sends \((\text{echo}, p, m, r)\) to all /* \(q\) becomes a witness */
4: if \(q\) receives \((\text{echo}, p, m, r)\) from at least \(n-f\) distinct processes in phase 2\(r\) then
5: \(q\) accepts \((p, m, r)\)
Phase \(f > 2r\)
6: if \(q\) has received \((\text{echo}, p, m, r)\) from at least \(f+1\) distinct processes in phases \(2r, 2r+1, \ldots, f-1\) then
7: \(q\) sends \((\text{echo}, p, m, r)\) to all processes /* \(q\) becomes a witness */
8: if \(q\) has received \((\text{echo}, p, m, r)\) from at least \(n-f\) processes in phases \(2r, 2r+1, \ldots, f\) then
9: \(q\) accepts \((p, m, r)\)

Is termination a problem?

The implementation is correct

Theorem

If \(n > 3f\), the given implementation of broadcast\((p, m, r)\) and accept\((p, m, r)\) satisfies Unforgeability, Correctness, and Relay

Assumption
Channels are authenticated

Correctness

If a correct process \(p\) executes broadcast\((p, m, r)\) in round \(r\), then all correct processes will execute accept\((p, m, r)\) in round \(r\)

If a correct process \(p\) executes broadcast\((p, m, r)\) in round \(r\), then all correct processes will execute accept\((p, m, r)\) in round \(r\)

Unforgeability - 1

If a correct process \(q \) executes accept\((p, m, r)\) in round \(j \geq r \), and \(p \) is correct, then \(p \) did in fact execute broadcast\((p, m, r)\) in round \(r \).

1. Suppose \(q \) executes accept\((p, m, r)\) in round \(j \).
2. \(q \) received \((\text{echo}, p, m, r)\) from at least \(n - f \) distinct processes by phase \(k \), where \(k = 2j - 1 \) or \(k = 2j \).
3. Let \(k' \) be the earliest phase in which some correct process \(q' \) becomes a witness to \((p, m, r)\).

Unforgeability - 2

1. For \(q \) to accept, some correct process must become witness.
2. Earliest correct witness \(q' \) becomes so in phase \(2r - 1 \), and only if \(p \) did indeed execute broadcast\((p, m, r)\).
3. Any correct process that becomes a witness later can only do so if a correct process is already a witness.
4. For any correct process to become a witness, \(p \) must have executed broadcast\((p, m, r)\).

Relay

If a correct process \(q \) executes accept\((p, m, r)\) in round \(j \geq r \), and \(p \) is correct, then \(p \) did in fact execute broadcast\((p, m, r)\) in round \(r \).

Case 1: \(k' = 2r - 1 \)

1. \(q' \) received \((\text{init}, p, m, r)\) from \(p \).
2. Since \(p \) is correct, it follows that \(p \) did indeed execute broadcast\((p, m, r)\) in round \(r \).

Case 2: \(k' > 2r - 1 \)

1. \(q' \) has become a witness by receiving \((\text{echo}, p, m, r)\) from \(f + 1 \) distinct processes.
2. At most \(f \) are faulty; one is correct.
3. This process was a witness to \((p, m, r)\) before phase \(k' \).

Contradiction

The first correct process receives \((\text{init}, p, m, r)\) from \(p \)!
Relay

If a correct process \(q \) executes \(\text{accept}(p, m, r) \) in round \(j \geq r \), then all correct processes will execute \(\text{accept}(p, m, r) \) by round \(j + 1 \).

1. Suppose correct \(q \) executes \(\text{accept}(p, m, r) \) in round \(j \) (phase \(k = 2j - 1 \) or \(k = 2j \)).
2. \(q \) received at least \(n - f \) (\(\text{echo}, p, m, r \)) from distinct processes by phase \(k \).
3. At least \(n - 2f \) of them are correct.
4. All correct processes received (\(\text{echo}, p, m, r \)) from at least \(n - 2f \) correct processes by phase \(k \).
5. From \(n > 3f \), it follows that \(n - 2f \geq f + 1 \). Then, all correct processes become witnesses by phase \(k \).
6. All correct processes send (\(\text{echo}, p, m, r \)) by phase \(k + 1 \).
7. Since there are at least \(n - f \) correct processes, all correct processes will accept (\(p, m, r \)) by phase \(k + 1 \) (round \(2j \) or \(2j + 1 \)).

Taking a step back...

Specified Consensus and TRB

In the synchronous model:
- solved Consensus and TRB for General Omission failures
- proved lower bound on rounds required by TRB
- solved TRB for AFMA
- proved lower bound on replication for solving TRB with AF
- solved TRB with AF