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Abstract

Sybil attacks, in which an adversary forges a potentially unbounded number of identities, are a danger to
distributed systems and online social networks. The goal ofsybil defense is to accurately identify sybil identities.

This paper surveys the evolution of sybil defense protocolsthat leverage the structural properties of the social
graph underlying a distributed system to identify sybil identities. We make two main contributions. First, we clarify
the deep connection between sybil defense and the theory of random walks. This leads us to identify a community
detection algorithm that, for the first time, offers provable guarantees in the context of sybil defense. Second, we
advocate a new goal for sybil defense that addresses the morelimited, but practically useful, goal of securely
white-listing a local region of the graph.

I. I NTRODUCTION

The possibility that malicious users may forge an unboundednumber ofsybil identities, indistinguishable
from honest ones, is a fundamental threat to distributed systems that rely on voting [Douceur, 2002]. This
threat is particularly acute in decentralized systems, where it may be impractical or impossible to rely
on a single authority to certify which users are legitimate [Margolin and Levine, 2005]. The goal of
sybil defense is to accurately identify sybil identities1—“ideally, the system should accept all legitimate
identities but no counterfeit entities” [Douceur, 2002]—but simple techniques can be either too brittle
(beating a CAPTCHA [Von Ahn et al., 2003] costs a fraction of a cent) or too blunt (IP filtering penalizes
all users behind a NAT).

Against this background, Yu et al. have put forward a radically different approach [Yu et al., 2006],
[Yu et al., 2008]: protecting a distributed system by leveraging the social network that connects its users.
Intuitively, as long as sybil identities are unable to create too manyattack edgesconnecting them to honest
identities, it may be possible to separate the wheat from thechaff by analyzing the topological structure
of the users’ social graph. This style of sybil defense2 promises not only to be more surgical, but offers
a mathematically precise and elegant way to characterize the robustness of a sybil defense technique in
terms of the number of attack edges it can handle. The vision is to offer universalsybil defense to all
honest nodes in the system: as long as the social graph conforms to certain assumptions, an honest node
will correctly classify almost all honest nodes in the graphwhile rejecting all but a bounded number of
sybil nodes [Yu et al., 2008].

Several protocols that embrace this style of sybil defense have since been proposed [Yu et al., 2006],
[Yu et al., 2008], [Danezis and Mittal, 2009], [Tran et al., 2011], [Wei et al., 2012], [Cao et al., 2012] and
higher-level distributed applications that rely on them are beginning to emerge [Lesniewski-Laas, 2010],
[Lesniewski-Laas and Kaashoek, 2010], [Quercia and Hailes, 2010], [Tran et al., 2009].

1Although this goal may be more accurately characterized as sybildetection[Viswanath et al., 2012a], we use here the term sybildefense
originally proposed by Yu [Yu et al., 2008] and widely adopted in the literature.

2Henceforth, mentions of sybil defense, unless specified otherwise, refer to techniques that leverage the structure of social networks.
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The first goal of this paper is to examine the promise and the fundamental limits of universal sybil
defense. Indeed, as Vishwanath et al. pointed out in their recent analysis of social network-based sybil
defenses [Viswanath et al., 2010] it is not known whether “there are fundamental limits to using only the
structure of social networks to defend against Sybils”.

We offer a first answer to this question by establishing both precise theoretical bounds on the resilience
of several well-known social network properties that have been leveraged in the context of sybil defense
and by evaluating in depth the validity of thesocial defensevision.

As we shall see, at the core of social sybil defense are a set ofassumptions about the structure of a
social graph under sybil attacks that, in essence, amount tomodeling the social graph as consisting of two
sparsely connected regions: one comprised of sybil nodes, and the other of honest nodes, homogeneously
connected with one another. We will discuss several studies, including our own experimental results,
suggesting that this representation of the world lacks essential nuance. Rather, the evidence suggests
that although honest entities in social graphs do organize in tightly-knit overlapping communities, those
communities form together a network that as a whole is more vulnerable than each single community.

Our second goal for this paper is then to advocate a realignment of the focus of sybil defense to
leverage effectively the robustness of communities to sybil infiltration. The intuition that motivates us is
not new. Prior work has suggested casting sybil defense as a community detection problem [Viswanath
et al., 2010] and asked whether it is possible to use off-the-shelf community detection algorithms to
find sybil nodes. On this front, we make two contributions. First, we show that this approach requires
extreme caution, as the choice of the community detection protocol can dramatically affect whether sybil
nodes are accepted as honest. Second, we identify the mathematical foundations on which the connection
between sybil defense and community detection rests: we identify a well-founded theory and point to an
established literature to guide the development of future sybil defense protocols.

Our conclusion is that instead of aiming for universal coverage, sybil defense should settle for a more
limited goal: offering honest nodes the ability to white-list a set of nodes of any given size, ranked
accordingly to their trustworthiness. We believe that thisis a good bargain, and not just because it results
in a goal that, unlike its alternative, is attainable, but because (1) the guarantees it provides are in practice
what nodes that engage in crowd-sourcing [Yuen et al., 2011]or cooperative P2P applications [Pouwelse
et al., 2005], [Cox and Noble, 2003] need, and (2) the computational cost of providing these guarantees
depends only on the size of the desired white-listed set rather than, as in techniques that aim for universal
sybil defense, on the total number of identities in the network.

As a first concrete step towards fulfilling the new goal we propose for sybil defense, we present the first
community detection algorithm that offers provable guarantees in the context of sybil defense. Perhaps
surprisingly, the algorithm is based directly on an application, in a context much different from which it
was originally designed, of the random walk algorithm of Andersen, Chung, and Lang [Andersen et al.,
2007].

Despite these advances, we believe that it is important to acknowledge that, however narrowing, a
non-trivial gap still exists between the assumptions necessary to support the theory behind the current
state of the art in sybil defense and the reality of sybil attacks encountered in the wild.

For example, evidence from the RenRen social network [Yang et al., 2011] shows attacks that differ
from what current sybil defenses anticipate and that, despite their simplicity, can be devastating.

The final goal of this paper is to suggest that a promising way to address this challenge is through
defense in depth, where early defense layers (of which we sketch a few) are designed to catch the simple
sybil subgraphs where defenses based on community detection techniques fail and, as a side effect, to
“nudge” the attacker towards precisely those settings where these techniques can effectively detect sybil
nodes.

A. Roadmap

The paper proceeds as follows. Section 2 examines four structural properties of social graphs (popularity,
small world property, clustering coefficient, and conductance) that have been previously leveraged by
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sybil defense and asks: which can better serve as a foundation for sybil defense? The answer, we find,
is conductance, a property intimately related to the concept of mixing time of a random walk. We then
proceed in Section 3 to discuss protocols that exploit variations in conductance as a basis for decentralized
universal sybil defense [Danezis and Mittal, 2009], [Tran et al., 2011], [Wei et al., 2012], [Yu et al.,
2006], [Yu et al., 2008]. These protocols provide elegant worst-case guarantees when it comes to their
vulnerability to sybil attacks, but these guarantees are critically sensitive to a set of assumptions that
do not appear to hold in actual social networks [Bilge et al., 2009], [Leskovec et al., 2008], [Mohaisen
et al., 2010]. This motivates us to explore, beginning with Section 4, an alternative goal for sybil defense
that leverages two observations: (1) social graphs have an internal structure organized around tightly-knit
communities and (2) the graph properties crucial for sybil defense are significantly more likely to hold
within a community rather than in the entire social graph. Section 5 reviews recent work on the theory of
random walks that provides a solid theoretical foundation to sybil defense based on community detection;
we deepen our investigation of random walks in Section 6, where we show how the well-known concept
of Personalized PageRank (not to be confused with PageRank itself) offers honest nodes a path towards
a realistic target for sybil defense, more limited than universal coverage but nonetheless useful: a way
to white-list trustworthy nodes that proves efficient and robust in both theory and practice. Section 7
greets us with a sobering result: in spite of their sophistication, state-of-the-art sybil defense protocols
seem helpless against very crude real-life sybil attacks. There is reason for hope (and future research),
however: we show that sybil defense protocols based on random walks continue to be effective when used
in combination with very simple checks that leverage structural properties of the social graph other than
conductance. Section 8 offers our conclusions and points todirections for future research.

II. FOUNDATIONS OF SYBIL DEFENSE VIA SOCIAL NETWORKS

Sybil defense via social networks is predicated on the assumption that it is possible to leverage the
structural properties of the social graphG underlying a distributed system to differentiate the subgraph
H comprised only of honest nodes from the sybil subgraphS. In this section, we ask a basic question:
which structural property, if any, holds the greatest promise towards defending against sybil attacks?

We consider (and briefly review below) four well-known structural properties of a social graph: the
popularity distribution among its nodes, the small world property, the graph’s clustering coefficient, and
its conductance [Barabási and Albert, 1999], [Watts and Strogatz, 1998], [Leskovec et al., 2008]. We
focus on these particular properties because of their prominence in social network analysis and because
they have been used to defend against sybil attacks3. The literature on social graphs discusses several
other properties (including assortativity [Newman, 2003], betweenness centrality [Freeman, 1977], and
modularity [Newman and Girvan, 2004]) that we do not consider: we see this paper as a first step towards
a comprehensive characterization of the defensive powers of the structural properties of social graphs.

A. Structural properties of social graphs

Popularity: The node degree distribution of social graphs is heavy-tailed, as in a power-law or lognormal
distribution.

Small world property:The diameter of a social graph—i.e., the longest distance between any two nodes
in the graph—is small.

Clustering coefficient: A measure of how closely-knit social networks are. When we associate the
vertex of a social network with the user that it represents, the clustering coefficient is the ratio between
the actual number of friendships between the friends of a user and the number of all possible friendships
between them.

3More specifically: conductance is at the heart of social network basedsybil defense [Yu et al., 2006]; the clustering coefficient has been
used for sybil defense in a recent work [Yang et al., 2011]; node degrees are used as a feature in a recent defense technique based on
machine learning [Yang et al., 2013]; and the distance between nodes plays a fundamental role in other recent defense schemes [Xu et al.,
2010], [Viswanath et al., 2012b]
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Formally, letfv denote the actual number of edges between neighbors of a vertex v, i.e.

fv := |{xy : x ∈ Nv, y ∈ Nv, xy ∈ E},

whereNv denotes the set of neighbors ofv, and letk be the maximum number of edges between neighbors
of v:

k =

(

deg(v)

2

)

,

wheredeg(v) denotesv’s degree. Then,

cv :=
fv
k

.

The clustering coefficient of a graph is the average clustering coefficient of all its vertices, i.e.

c(G) :=
1

|V |
∑

v∈V (G)

cv.

Conductance:Intuitively, the conductanceφ(C) of a setC of vertices in a given networkG = (V,E)
is the ratio between the number of edges going out fromC and the number of edges insideC. More
precisely, given a set of verticesC, the conductance of the set is defined as

φ(C) :=
| cut(C)|
vol(C)

,

where thevolumeof C, vol(C), is defined as the sum of the degrees of the vertices inC

vol(C) :=
∑

v∈C
deg(v),

and thecut induced byC is the setcut(C) of edges with one endpoint inC and the other endpoint
outside ofC,

cut(C) := {uv ∈ E : u ∈ C, v ∈ V − C}.

Finally, theconductanceof a graphG is defined as

φ(G) := min
vol(C)≤|E|

φ(C).

The conductance of a graph is tightly related to itsmixing time[Sinclair, 1992], a property that is at the
core of many solutions developed to date for sybil defense [Yu et al., 2008], [Yu et al., 2006]. Informally,
the mixing time of a graph measures how fast a random walk approaches the stationary distribution. A
more precise definition relies on a few important notions about random walks, which we now quickly
review.

Given an undirected graphG = (V,E) we define theuniform random walk inG as the random walk
defined by the following transaction probability matrix:

P (u, v) =

{

1
deg(u)

if uv ∈ E,

0 otherwise.

It is a well-known result of the theory of Markov chains (see for instance [Mitzenmacher and Upfal,
2005]) that any connected, non-bipartite graph has a uniquestationary distributionπ that depends only
on the degree of the nodes:

π(v) =
deg(v)

vol(V )
.
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Hence, ifP t(u, v) is the probability of reaching nodev from nodeu after at-step-long random walk, we
have that for allu andv

lim
t→∞

P t(u, v) = π(v).

Assume now to start a random walk at a given nodeu and to performt steps. Thevariation distance
∆u(t) measure how closely the probability distribution of the endpoint approximates the stationary
distribution

∆u(t) =
1

2

∑

v

|P t(u, v)− π(v)|.

We are finally ready to formalize the notion of mixing time.

Definition 1 (Mixing time). The mixing timeT (ǫ) of a random walk, for anyǫ > 0, is given by

T (ǫ) = max
u∈V

min
t
{t : ∆u(t) < ǫ}.

A crucial assumption underlying most of the work in social sybil defense [Mohaisen et al., 2010] is
that social networks arefast mixing, i.e., that their mixing time isT (ǫ) = min(log(n), log(1

ǫ
)), wheren

is the number of vertices. Forǫ = Θ( 1
n
), this implies a mixing timeT (ǫ) = O(log(n)). We defineτ as

T ( 1
n
).

As we have mentioned, the mixing time of a graph is intimatelyrelated to itsconductance. Intuitively,
when conductance is high, mixing time is low. In particular,it is possible to show that a class of networks
is fast mixing (i.e.τ is O(log n)) if and only if its conductance is asymptoticallyconstant[Mitzenmacher
and Upfal, 2005].

B. Preliminaries

Before proceeding with our analysis, we review a few important concentration results.4

Theorem 1 (Markov inequality). For any random variableX with non-negative values and for anyǫ > 0

P (X > ǫ) ≤ E[X]

ǫ
.

Theorem 2 (Chernoff bound). Let X =
∑n

i Xi for X1, · · ·Xn independent random variables in[0, 1].
Then

P (|X − E[X]| > ǫE[X]) ≤ 2 exp

(

−ǫ2

3
E[X]

)

.

Definition 2 (Lipschitz Condition). A function f satisfies theLipschitz conditionwith respect to the
random variablesX1, · · · , Xn with parameterscj, 1 ≤ j ≤ n, if for any 1 ≤ j ≤ n and aj, a

′
j.

|f(X1 = a1, · · · ,Xj−1 = aj−1, Xj = aj, Xj+1 = aj+1, · · · , Xn = an)

− f(X1 = a1, · · · , Xj−1 = aj−1, Xj = a′j, Xj+1 = aj+1, · · · , Xn = an)| ≤ cj.
(1)

Theorem 3 (Bounded differences inequality). Assume thatf satisfies the Lipschitz condition with respect
to the random variablesX1, · · · , Xn with parameterscj, j ∈ [n]. Then

P (|f − E[f ]| > t) ≤ 2 exp

(

− t2

2c

)

,

wherec =
∑n

j=1 c
2
j

Finally, henceforth we say than an eventE occurswith high probability if limn→∞ P (E) = 1, where
n is the number of vertices in the graph.

4For a more comprehensive treatment, see [Mitzenmacher and Upfal, 2005] and [Dubhashi and Panconesi, 2009].
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C. Which property is more resilient?

If an attack can add sybil identities to a social networkG consisting only of honest nodes without
altering a given structural property ofG, then that attack will be undetectable by any sybil defense
technique that leverages that property. To assess the suitability of a property to serve as a basis for sybil
defense, we then compare, under a given adversarial model, the effort required to create an undetectable
attack.

To this end, we assume that a graphH with n honest nodes is given and that the attack induces a
graphS of sybil nodes whose topology is under total control of the adversary (unlikeH, which is fixed).
For each propertyΠ, we characterize the adversary’s effort as the number of edges incident toH that the
adversary needs to add in order to introducen sybil nodes in a way undetectable toΠ.

To establish clear and almost tight bounds on the number of attack edges necessary, we introduce a
simple but powerful attacker that we will use for some of our bounds. To avoid detection, our adversary
starts by buildingS so that, when looked through the filter ofΠ, it looks similar toH. For simplicity
and only for the purpose of deriving the bounds for popularity, clustering coefficient, and diameter, we
assume that the adversary buildsS as a copy ofH.5

The adversary then tries to set upm := |E(H)| potentialattack edgesthat connectH with S. The
probability of a nodev becoming an endpoint of an attack edge is proportional tov’s degree:

degH(v)

2m
, (2)

As we will see, this factor is crucial in leaving unaltered the properties of the social graph and in
particular its degree distribution.

If the attacker is able to create arbitrarily many attack edges, no sybil defense can hope to distinguish
between the two regions of the graph. Therefore, as customary in the sybil defense literature [Yu et al.,
2006], [Yu et al., 2008], we assume that the attacker’s ability to create attack edges is limited; in particular,
we postulate that tentative attack edges are accepted with probability p and rejected with probability1−p.
To account for the outcome of recent social engineering experiments [Bilge et al., 2009], we allowp to
be constant, resulting in an expected number of attack edgesequal topm. It follows easily from large
deviation theory that, ifm is large enough, the number of attack edges is also concentrated aroundpm.
We denote withG the graph that results from joiningH andS through the set of attack edges. We define
R to be the set oftentativeattack edges the attacker attempts to introduce. Similarly, let g be the number
attack edges the attacker succeeds in establishing.

Under this simple attack model, how resilient are then the four structural properties of social graphs
that we are considering?

1) Popularity: The intuitive motivation for popularity as a basis for social defense is that the degree
distribution of nodes may be noticeably altered as a result of an adversary introducing a large number of
attack edges, thereby providing evidence of an attack. Under our attack model, however, we show that
the adversary can ensure thatG’s popularity distribution will be statistically indistinguishable from that
of H even after establishing many attack edges. Intuitively, since the nodes at the endpoints of an attack
edge are chosen with probability proportional to their degree, after the attack only a few nodes will see
their degree change by much: in fact, the degree of a vertex inH will increase, in expectation, by only
degH(v)

2m
p|R|.

This intuition is formalized in the following simple proposition.

Proposition 1. Let H be the input graph,S be the attack graph,R the set of tentative attack edges
betweenS andH and p the probability that each attempt to add an attack edge succeeds. Finally, letG

5While in practice it is neither necessary nor likely, this assumption, without qualitatively altering our conclusions, leads to simple bounds
on the effort required to make attacks undetectable to defenses based on popularity, network diameter, and clustering coefficient. Note that
neither the conductance bound nor the theorems about ACL (see SectionVI) rely on this assumption.
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Figure 1. Degree distribution of the graphs before and after attack. Theattack shifts the distribution up (because it doubles the size of the
graph) and to the right (proportionally to the number of attack edges), but does not change the shape of the curves.

be the resulting (random) graph. Then, for eachv ∈ G,

E[degG(v)] = degH(v)
(

1 + |R| p

2m

)

,

wherem is the number of edges in the honest region. Furthermore, ifdegH(v) > log2 n in H, then with
high probability the final degree of honest nodes is concentrated, i.e.

degH(v)
(

1 + |R| p

2m
− o(1)

)

≤ degG(v) ≤ degH(v)
(

1 + |R| p

2m
+ o(1)

)

.
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Proof: Let v be a node inH (for nodes inS the same analysis applies). Then, because all attack
edges are added with probability proportional to the original degree of the node inH, E[degG(v)] =
degH(v) + |R|degH(v)

2m
= degH(v)

(

1 + |R| p
2m

)

. Furthermore, ifv’s degree is larger thanlog2 n in H, then
by the Chernoff bound (Theorem 2) it follows that:

P (| degG(v)− E[degG(v)]| > 6 log1.5 n) ≤ e−
1

3
6 log n ∈ O(n−2).

Thus, with high probability, the post-attack degree of a node v with degree larger thanlog2 n will be

degH(v)
(

1 + |R| p

2m
− o(1)

)

≤ degG(v) ≤ degH(v)
(

1 + |R| p

2m
+ o(1)

)

.

Our experiments with real-life social networks confirm the above conclusion. Figure 1 shows the degree
distribution of snapshots of several social networks before and after two attacks in which attack edges
are inserted with probabilityp = 0.01 and p = 0.1, respectively: the curves before and after the attacks
have the same shape. We conclude that popularity is ill-suited as a foundation for sybil defense.

2) Small world property:The small world property does not fare much better than popularity, since the
adversary can easily keep the diameter ofG from growing suspiciously. First, it is easy for the adversary
to bound the relative growth of the diameter ofG with respect to that ofH: if S = H and the adversary
succeeds in inserting just one attack edge, the diameter canat most double. Our experimental evaluation
of several real-life social networks shows (see 90% diameter column of Table I) that the 90%-effective
diameter [Leskovec et al., 2005], which measures the maximum distance between 90% of the pairs of
nodes, is indeed barely affected under attack.

3) Clustering coefficient:Leveraging the clustering coefficient appears promising because attack edges
reduce its value. Unfortunately, while the clustering coefficient of social networks is typically high, its value
varies significantly from network to network [Leskovec et al., 2008], from0.79 in the actor collaboration
network of IMDB, down to0.35 for Live Journal and to a mere0.09 for the social network of Yahoo!
Messenger chat exchanges. Thus, if an attack modifies the clustering coefficient by a small multiplicative
factor, the change is hard to detect. This intuition is captured in the following result.

Lemma 1. LetH be the input graph,S be the attack graph obtained by copyingH andp the probability
that a tentative attack edge succeeds in attaching to a node in H. Then, ifc(H) is the clustering coefficient
of H and c(H) ∈ O(1), with high probability,c(G) ≥ α−1c(H), whereα := 14

(

1 + 1
2
p
)2

.

Proof: We show that the insertion of attack edges does not increase,for most nodes, their degree by
much. This implies a lower bound for the final clustering coefficient of the graph under attack.

First, note that, by definition, all nodes of degree 1 inH have a clustering coefficient of 0. So, in
the following we consider only nodes with degree greater than 1. After the attack, the expected degree
of a nodev in G is equal todegH(v)

(

1 + 1
2
p
)

. By the Markov inequality (Theorem 1), it follows that
the final degree ofv is at least3

2
degH(v)

(

1 + 1
2
p
)

with probability less than2
3
. So each nodev has

degG(v) <
3
2
degH(v)

(

1 + 1
2
p
)

with probability at least1
3

and thus

deg2G(v) <
9

4
deg2H(v)

(

1 +
1

2
p

)2

.

degG(v)(degG(v)− 1) <
9

4

(

1 +
1

2
p

)2

degH(v)(degH(v)− 1) +
9

4

(

1 +
1

2
p

)2

degH(v).

As degH(v) > 1 we have

degG(v)(degG(v)− 1) <
9

2

(

1 +
1

2
p

)2

degH(v)(degH(v)− 1).
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It follows that the clustering coefficient of each node decreases by at most a factor of27
2

(

1 + 1
2
p
)2

and that, by linearity of expectation, the clustering coefficient of G decreases by at most a factor of
27
2

(

1 + 1
2
p
)2

.
Consider the sum of the clustering coefficients of the nodes inthe graphH (the same argument applies

also to nodes inS). By assumption, we know that this sum isΘ(|VH |). Now, each nodev ∈ H contributes
to this sum by at most1 and, with probability at least1

3
, by cH(v)

9

2(1+
1

2
p)

2 , wherecH(v) is the initial value of

v’s clustering coefficient.
By linearity of expectation, the expected sum of the clustering coefficients after inserting the attack

edges is also inΘ(|VH |). To prove that the bound promised by the lemma holds with highprobability,
we then apply the Bounded Difference Inequality (Theorem 3) with a Lipschitz-condition coefficient of
cj = 1 for each of the random variables corresponding to the clustering coefficient of the nodes inH.

Note that the constants in the theorem are large only to make the statement hold with high probability.
In practice, one can expect much smaller variations, as shown in Table I.

The implications of this lemma are disappointingly clear: the clustering coefficient is not a sound basis
for sybil defense, since even after the attack its value cannot drop by too much. TheClustering Coeff
column of Table I confirms the theorem’s predictions.

Note that even though the theorem applies to the clustering coefficient of the graph, a similar observation
holds for the clustering coefficient of each single node, as the degrees of almost any node change by a tiny
multiplicative factor. Thus, sybil defense techniques that rely solely on analyzing the clustering coefficient
of each node [Yang et al., 2011] can be easily circumvented bya capable attacker.

4) Conductance:Yu et al. [Yu et al., 2008] proved that ifH belongs to a class of graphs whose
conductance is asymptotically constant, an adversary thatcan introduceO(n) attack edges to build a
graphG whose conductance is indistinguishable from that ofH. In the following, we generalize this
result to graphsH of arbitrary conductance.

We begin with two preliminary observations. First, because, by definition, the conductance of a graph
is the minimum ofφ(C) on any subsetC of the graph’s vertices, an adversary can always enforce
φ(G) ∈ O(φ(H)) by introducing a suitable cut in the sybil region, whose topology is under his complete
control.

Second, an adversary who wants to introducen sybil nodes needs to add at leastnΩ(φ(H)) edges,
lest the cut between the sybil and honest part ofG become too sparse, making it easy to use changes in
conductance to detect the attack.

We now show that, by adding just a few more edges, an adversary, as defined earlier, can ensure that
φ(G) ∈ Ω(φ(H)).

Theorem 4. LetH denote a network ofn honest nodes with conductanceφ such thatφ vol(H) ∈ Ω(log n)
andφ ≤ e−1, and letS be a copy ofH. Suppose that the adversary is able to establish betweenS andH
φ log(φ−1) vol(H) attack edges, whose endpoints are selected with probability proportional to the degrees
of the nodes. LetG be the resulting graph. Then, with high probability,φ(G) ∈ Ω(φ).

Theorem 4 is actually a direct consequence of the following,more general result.

Theorem 5. Let H = (V,E) be a connected simple graph such thatφ(H) vol(V ) ∈ Ω (log n), φ(H) ≤ 1
e

and letS = (V ′, E ′) be another connected simple graph withφ(S) ≥ φ(H). Suppose further that

φ(H) vol(V ) ≤ vol(V ′) ≤ vol(V ).

Let GF = (VF , EF ) be the union ofS with H and letg be the number of random attack edges between
H and S, whose endpoints are selected with probability proportionalto the degrees of the nodes. Then,
if

log φ(H)−1 · φ(H) · vol(V ) ≤ g ≤ vol(V ′)

we have that, with high probability,φ(GF ) ∈ Ω (φ(H)).
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Graph Nodes Edges Attack Edges Diameter 90% Diameter Clust. Coeff Est. Conductance
AstroPh 17903 196972 0 14 4.99 0.67 0.010

... p = 0.01% 35806 395924.2(±22.2) 1980.2(±22.2) 14.1 (±0.2) 5.63 (±0.006) 0.66 (±0.0001) 0.005(±0.0001)
... p = 0.1% 35806 413663.3(±54.4) 19719.3(±54.4) 11.8 (±0.4) 4.90 (±0.004) 0.61 (±0.0003) 0.036(±0.0039)

DBLP 718115 2786906 0 20 7.43 0.73 0.016
... p = 0.01% 1436230 5601647.3(±85.7) 27835.3(±85.7) 19.4 (±0.4) 7.95 (±0.004) 0.72 (±0.0000) 0.004(±0.0003)
... p = 0.1% 1436230 5852543.5(±224.4) 278731.5(±224.4) 17.0 (±0.3) 7.01 (±0.010) 0.67 (±0.0001) 0.013(±0.0012)

Enron 33696 180811 0 12 4.83 0.70 0.005
... p = 0.01% 67392 363426.6(±24.6) 1804.6(±24.6) 12.4 (±0.3) 5.12 (±0.013) 0.70 (±0.0001) 0.005(±0.0002)
... p = 0.1% 67392 379691.2(±71.8) 18069.2(±71.8) 10.9 (±0.3) 4.67 (±0.004) 0.64 (±0.0004) 0.022(±0.0015)

Epinions 26588 100120 0 16 5.98 0.23 0.020
... p = 0.01% 53176 201240.1(±20.0) 1000.1(±20.0) 16.4 (±0.2) 6.73 (±0.009) 0.23 (±0.0001) 0.005(±0.0001)
... p = 0.1% 53176 210213.5(±36.3) 9973.5(±36.3) 14.6 (±0.3) 5.97 (±0.005) 0.21 (±0.0002) 0.030(±0.0026)

EuAll 32430 54397 0 9 4.57 0.52 0.031
... p = 0.01% 64860 109337.5(±13.8) 543.5(±13.8) 9.9 (±0.1) 5.06 (±0.024) 0.51 (±0.0004) 0.005(±0.0001)
... p = 0.1% 64860 114245.0(±33.2) 5451.0(±33.2) 8.6 (±0.2) 4.70 (±0.002) 0.42 (±0.0008) 0.051(±0.0057)

Facebook 63392 816886 0 12 5.15 0.25 0.020
... p = 0.01% 126784 1641941.2(±46.1) 8169.2(±46.1) 14.2 (±0.2) 5.79 (±0.002) 0.25 (±0.0000) 0.005(±0.0000)
... p = 0.1% 126784 1715443.9(±121.8) 81671.9(±121.8) 13.2 (±0.2) 5.24 (±0.005) 0.23 (±0.0001) 0.031(±0.0042)

RenRen 33294 705248 0 11 4.29 0.23 0.032
... p = 0.01% 66588 1417543.1(±48.4) 7047.1(±48.4) 12.9 (±0.1) 4.82 (±0.002) 0.23 (±0.0000) 0.005(±0.0000)
... p = 0.1% 66588 1481107.0(±68.3) 70611.0(±68.3) 11.6 (±0.2) 4.44 (±0.002) 0.21 (±0.0001) 0.060(±0.0040)

Slashdot 70999 365572 0 11 4.84 0.10 0.023
... p = 0.01% 141998 734795.4(±26.5) 3651.4(±26.5) 12.0 (±0.0) 5.49 (±0.005) 0.10 (±0.0000) 0.005(±0.0000)
... p = 0.1% 141998 767694.4(±85.1) 36550.4(±85.1) 11.1 (±0.1) 4.92 (±0.002) 0.09 (±0.0001) 0.036(±0.0042)

WikiTalk 92117 360767 0 9 4.63 0.14 0.047
... p = 0.01% 184234 725141.2(±26.0) 3607.2(±26.0) 10.1 (±0.1) 5.01 (±0.005) 0.13 (±0.0000) 0.005(±0.0000)
... p = 0.1% 184234 757628.1(±79.5) 36094.1(±79.5) 10.0 (±0.0) 4.76 (±0.001) 0.12 (±0.0001) 0.048(±0.0007)

Table I
Statistical properties of the largest connected component in a collection ofreal world data sets. The values reported reflect the properties
of the data set before and after the attack specified in Section II-C. The results for sybil graphs are averaged over20 attack instances and
the 95% confidence intervals, obtained by the t-student distribution [Walpole et al.,1993], are reported between parenthesis. In directed
graphs, we removed edge direction to obtain an undirected network. TheAstroPh [Leskovec et al., 2007] is a co-authorship graph from

2003; the DBLP [dbl, 2011] graph is a snapshot of the DBLP co-authorgraph from 2011; the Enron [Klimt and Yang, 2004], [Leskovec
et al., 2009] graph is an email communication network from 2009; the Epinions [Richardson et al., 2003] graph is a dataset from the

Epinions product review site obtained in 2003; the EuAll [Leskovec et al., 2007] graph is an email communication network of a European
research institution from 2005; the HE Physics [Leskovec et al., 2005] graph is a citation network of high energy physics from 2003; the
Facebook [Viswanath et al., 2009] graph is a crawl of the Facebook-New Orleans community in 2007; the RenRen [Jiang et al., 2010]
graph is snapshot of the RenRen social network from 2009; the Slashdot [Leskovec et al., 2009] graph is a crawl of the website social

network from 2008; the WikiTalk [Leskovec et al., 2010] graph is derived from the Wikipedia page edit history as of January 2008.

Note that the assumption thatφ(H) ≤ 1
e

that restricts somewhat the generality of the result holds in
real networks.

In order to avoid disrupting the flow of the paper, we defer to the Appendix the rather long proof of
Theorem 5. Its fundamental implication however is clear: ifthe adversary is able to introduce at least
φ(H) vol(V ) log 1

φ(H)
attack edges (orO(vol(V )) when the mixing time isO(log n)), then the conductance

of the graph will remain, with high probability, very nearlythe same as that ofH. This in turn implies
that the mixing time of the network does not change after the attack, and so it is hard to detect such an
attack using this property.

Theorem 5 then allows to draw mixed conclusions about the suitability of conductance for sybil defense.
On the one hand, it proves that detection techniques based onchanges in global conductance can in
principle be circumvented; on the other, it shows that the effort required to do so is much higher for
conductance than for any of the other properties we have considered.

Table I confirms the theorem’s message. As expected, conductance drops significantly under a weak
attack (p = 0.01), providing leverage for sybil detection. Under a strong attack (p = 0.1), however,
conductance may actuallyincreasebecause, by adding random attack edges, the adversary enlarges every
cut with some probability, including the cut with minimum conductance that defines the conductance of
the entire final graph.6

6Note that any hope of using an increase in conductance as an indication ofa possible attack is futile, as the adversary can always insure
that conductance is below a threshold by creating a sparse cut inS.
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Property Number of edges to circumvent it
Degree distribution g ≥ 0

Diameter g ≥ 1
Clustering coefficient 0 ≤ g ≤ m

Conductance φ(G)m log φ(G)−1 ≤ g ≤ m

Table II
The numberg of attack edges needed to circumvent the four properties.

Note that computing a graph’s conductance is NP-hard. The conductance values that we report are
computed by a widely-used technique proposed in recent social network literature [Leskovec et al., 2008].

D. Discussion

None of the structural properties of social graphs that we have considered provides an impregnable
defense against sybil attacks in general, or even against the specific attack we have assumed. However,
as Table II shows, when a graph under attack is observed through the lens of conductance, the adversary
has to work much harder to look inconspicuous. These resultsboth motivate and justify the insight of
Yu and his collaborators to rely on conductance in the work that jump-started sybil defense via social
networks [Yu et al., 2006]. We review their approach, its successes, and what we believe to be ultimately
its fundamental limitations in the next section.

III. L EVERAGING CONDUCTANCE TOWARDS UNIVERSAL SYBIL DEFENSE

The vision behind the seminal work of Yu and his collaborators was to develop a decentralized approach
to universal sybil defense, with the goal of allowing honest users to correctly assess with high probability
the honesty of every other user in the system. False positiveand false negatives would still be possible,
but they would be few and, further, their number would be bound within a rigorous theoretical framework.
This compelling vision, first articulated in the SybilGuardprotocol [Yu et al., 2006], was further refined
in their later work on the SybilLimit protocol [Yu et al., 2008] and has inspired several other efforts in
sybil defense [Danezis and Mittal, 2009], [Tran et al., 2011], [Wei et al., 2012], [Cao et al., 2012].

We begin this section by discussing the main intuition underlying these techniques and the guarantees
that they provide; we then proceed to discuss the crucial role that a set of key assumptions play in ensuring
those guarantees, and present evidence suggesting that theassumptions do not appear to hold in actual
social graphs.

A. Picking whom to trust

The verification process that an honest nodeu uses in the above protocols to determine whether it can
trust another nodev is based, at its core, on the following idea: use a random walkto sample some portion
of the graph uniformly at random and identify which nodes to trust on the basis of that sample. Different
protocols apply this sampling strategy in different ways and to different parts of the graph. SybilLimit [Yu
et al., 2008] samples edges; SybilGuard [Yu et al., 2006] andGatekeeper [Tran et al., 2011] sample nodes
in the graph; SybilInfer [Danezis and Mittal, 2009] uses therandom walks to build a Bayesian model for
the likelihood that a traceT was initiated by an honest node. In the remainder, we providean overview
of how SybilLimit [Yu et al., 2008] applies the random sampling of edges to identify honest users. While
the details of the discussion are specific to SybilLimit, theintuition for how the structural properties of
the graph make random sampling effective is common to this entire family of protocols.

Let us consider a particularly simple version of the sybil detection problem. We are given two disjoint
graphsH andS—the graph of honest and, respectively, sybil nodes; an honest vertexu—the seed; and
a vertexv. Our task is to determine whetherv belongs toH or to S. Suppose that both nodes select an
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edge at random, subject to the constraint that they must pickan edge from the graph they belong to:u
acceptsv if they pick the same edge.

If the vertices belong to different graphs, the test is perfect: the probability thatu acceptsv is 0.
Otherwise, the probability of collision is very low,1

m
, but it can be boosted thanks to the classic birthday

paradox. Vertexu picks a setSu of, say,
√
m distinct edges, whilev picks a setSv of

√
m edges

independently at random: nowu acceptsv if there is a collision (i.e.Su ∩ Sv 6= ∅). This probability is

1− Pr(no collision) = 1−
(

1− 1√
m

)

√
m

∼ 1− 1

e
, (3)

a good probability of success. Note now that the setSu can itself be picked at random. Since|Su| =√
m ≪ m, almost all edges will be distinct. This simple protocol succeeds with good probability: each

vertex picks a set of
√
m edges independently and uniformly at random. If the two setsintersect, thenu

acceptsv, otherwise it does not. The protocol is symmetric and can be used by bothu andv to determine
whether to trust one another. This basic idea can be further refined to obtain a test that succeeds with
overwhelming probability with small-sized edge sets.

With this protocol, the probability that an honest seed accepts a sybil node remains 0, while the
probability of accepting another honest node can be pushed to 1 at an acceptable computational cost. But
how can we implement the test in a distributed fashion? It is here thatmixing time, and hence conductance,
enter the picture. A simple approach is to take a random walk in the graph—which, in the interest of
efficiency, should be very short—and pick the last edge on thewalk. This is a correct implementation
of the previous protocol provided that the graph is fast mixing. Indeed, as we saw in section II-B, if a
graph is fast mixing, the probability that a random walk of lengthO(log(n)) ends inu is approximately
deg(u)
2m

. If we pick a random edgee = (u, v) incident to the final vertex of the walk, the edge is picked
with probability approximately equal to

deg(u)

2m

1

deg(u)
+

deg(v)

2m

1

deg(v)
=

1

m
,

which means that each edge is picked uniformly at random.
In reality, however,H andS are connected through the attack edges that nodes inS have convinced

nodes inH to accept: it is then possible that a random walk starting from v ∈ S will traverse an attack
edge, enterH, and pick one of the edges selected byu ∈ H. The intuition is that, as long as the cut
betweenH and S is sparse, such situations are sufficiently unlikely that the mechanism continues to
function with good probability. Indeed, as we already mentioned, recent work has proved that as long
as the number of attack edges is bound byo( n

logn
), then this approach can reliably distinguish between

honest and sybil nodes [Yu et al., 2006].

B. Limitation of the model

There are then two fundamental assumptions that underly this elegant approach towards decentralized
universal sybil defense. The first is that the cut between thesybil and honest region—the set of attack
edges—is suitably sparse. The second is that the mixing timeof the honest region isO(log(n)). The
combination of these two assumptions ensures that random walks of Θ(log n) steps will end in a random
edge in the honest region with high probability.

Recent literature has cast doubts on whether these assumptions hold in practice. Social graphs do not
seem to be fast mixing after all [Mohaisen et al., 2010], and fake identities are accepted as friends with
much higher probability than anticipated [Bilge et al., 2009], [Yang et al., 2011], implying that the set
of attack edges is not as sparse as assumed. We then ask: to what degree are SybilLimit-like protocols
sensitive to their assumptions about sparse cuts and mixingtime?

To answer this question, using SybilLimit [Yu et al., 2008] as representative (we find that the behavior
of other SybilLimit-like protocols is similar), we produce, as in the recent work of Viswanath et al., a
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Figure 2. The ROC of SybilLimit on each of the social networks we consider when the graphs are attacked with attack strengthp = 0.01.
Other SybilLimit-like protocols show qualitatively similar results.

Graph Nodes Edges Diameter 90% Diameter Clustering Coeff Est. Conductance
AstroPh 17903 196972 14 4.99 0.67 0.010
... preprocessed 12118 162232 10 4.46 0.58 0.017
DBLP 718115 2786906 20 7.43 0.73 0.016
... preprocessed 191172 1438509 15 5.97 0.60 0.020
Enron 33696 180811 12 4.83 0.70 0.005
... preprocessed 9357 86656 10 4.90 0.47 0.005
Epinions 26588 100120 16 5.98 0.23 0.020
... preprocessed 5624 57341 7 3.89 0.18 0.040
EuAll 32430 54397 9 4.57 0.52 0.031
... preprocessed 1106 8569 5 3.49 0.18 0.222
Facebook 63392 816886 12 5.15 0.25 0.020
... preprocessed 40757 632597 7 4.43 0.23 0.023
Renren 33294 705248 11 4.29 0.23 0.032
... preprocessed 22032 473443 7 3.77 0.21 0.031
Slashdot 70999 365572 11 4.84 0.10 0.023
... preprocessed 17993 183406 8 3.82 0.03 0.027
Wiki-Talk 92117 360767 9 4.63 0.14 0.047
... preprocessed 13069 133343 5 3.78 0.06 0.333

Table III
Statistical properties of the graphs before and after pre-procesing. Pre-processing drastically reduces the graphs’ size and significantly

alters their structural properties.
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Figure 3. Precision vs Recall of SybilLimit for different values ofp (ranging from0.01 to 0.10). The number of attack edges ispm. The
theoretical guarantee of SybilLimit-like holds only forp = 0.01. The results are shown for the Facebook network. As the number of attack
edges goes beyond the prescribed limit there is a significant drop in performance. The same test made with other graphs shows similar
results.

ranking of nodes with respect to a givenverifier nodeu, in decreasing order of trust: the first node in
the ranking is the node thatu trusts the most [Viswanath et al., 2010]. We then measure thedefensive
efficacy of SybilLimit by using three metrics, well known in the field of information retrieval, that appear
very natural in this context:precision, recall, andROC. In particular, we define the precision at position
k as the fraction of honest nodes among thek nodes that the protocol ranks the highest. Similarly, we
define the recall at positionk as the ratio between the number of honest nodes among the topk positions
in the ranking and the total number of honest nodes in the network.

Another well-known accuracy measure, employed in our analysis, is the ROC index, which measures
the probability that a randomly-chosen honest node be considered more trustworthy than a randomly-
chosen sybil one. A probability of1 corresponds to the ideal case in which every honest node is ranked
higher than any sybil one; a probability of0 indicates the reverse case; a random ranking corresponds to
0.5 probability.
Sensitivity to mixing time. SybilLimit-like protocols do not operate on raw social networks: they are
to be used only on networks that have been preprocessed by iteratively removing all nodes with degree
lower than five [Yu et al., 2006]. Table III shows the statistical properties of the graphs we use in our
experiments.

Mohaisen et al. are the first to observe that this step, while boosting the mixing time of social graphs
to the level required by SybilLimit to be effective, can alsoreduce the size of the graph [Mohaisen et al.,
2010]. Table III confirms this observation: in the case of Wiki-Talk, the preprocessing step removes over
85% of the nodes. Removed nodes are effectively considered sybils by the protocol, and while those nodes
may still be able in some circumstances to enlist other nodesin the network as proxies [Yu et al., 2008],
it is unclear in general how removed nodes can safely take advantage of honest nodes’ resources and vice
versa [Mohaisen et al., 2010].

Figure 2 shows the impact of the preprocessing step on the performance of SybilLimit. Preprocessing
increases the performances of SybilLimit in most networks,with the notable exception of the Enron
network, where preprocessingdecreasesSybilLimit’s performance: in this small and incomplete network
(email between contacts outside of the company is not available) eliminating low-degree nodes ends up
disrupting severely the connectivity of the honest region.
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Sensitivity to sparse cuts.Figure 3 plots SybilLimit’s precision versus recall for thepreprocessed
Facebook data set—a similar behaviour is observed with all other networks in our data set. SybilLimit
proves very effective when the number of attack edges is within the theoretical bound (which corresponds
to p = 0.01). Once the bound is exceeded, however, the performance of SybilLimit falls rather quickly:
the algorithm can no longer ensure that at mostlog(n) sybil nodes per attack edge are admitted, leading
to a sudden drop in the precision observed in our experiments.

C. Discussion

The goal of universal decentralized sybil defense with strong theoretical guarantees, which has driven
early research on sybil defense via social networks, rests on assumptions (short mixing time and cut
sparseness) whose validity is at best dubious. What to do? In arecent survey [Yu, 2011], Yu suggests a
couple of ways forward: one could offer sybil defense only tothe nodes in the core of the social graph, in
effect institutionalizing the removal of nodes that are notwell connected, or one could simply renounce
the elegant theoretical worst-case claims of the current framework and rely instead on “weaker but less
clean assumptions” [Yu, 2011]. In the next section, we explore a third alternative that offers every honest
node a useful degree of sybil protection without compromising on elegance and rigor.

IV. COMMUNITIES

The theoretical guarantees offered by the protocols discussed so far hold only as long as honest nodes
are closely connected to one another everywhere in the social graph and the cut between honest and sybil
nodes is sparse. Empirical evidence suggests a different reality: social graphs consist of communities, each
a tightly knit sub-network. Indeed, it is quite conceivablethat the cut between two tightly-knit communities
of honest nodesA andB be as sparse as the cut betweenA and the sybil region: to an honest node inA
using a protocol in the style of SybilLimit, a sybil node would then be indistinguishable from an honest
node inB [Viswanath et al., 2010], [Viswanath et al., 2012a].

While these considerations argue against universal sybil defense, they suggest an alternative goal: to
provide each honest nodeu with the ability to white-list a trustworthy set of nodes—namely those in the
community to whichu belongs. This new goal can be more precisely stated as follows:

Problem 1. Letu be an honest user andC be a subset of honest vertices in the social graph such that: (a)
u ∈ C, (b) the graph induced byC has mixing timeτ and (c) there are at mosto(|C|τ−1) edges between
C and the rest of the social graph. We want an algorithm (ideally, amenable to an efficient distributed
implementation) that. givenu and the social graph, can distinguish almost perfectly between the nodes
in C and the nodes outside ofC.

We make two observations. First, the problem of universal sybil defense is a special case of Problem 1
in which τ = O(log n) andC is the entire honest region. Second, sybil defense appears,informally, to
reduce to the task of detecting the “community”C of the honest seedu.

The fundamental affinity between community detection and sybil defense has been first observed by
Viswanath et al [Viswanath et al., 2010]. After pointing outthat, from the perspective of an honest node,
SybilLimit-like protocols separate the social graph in twocommunities—honest nodes and sybils—they
go on to ask a natural follow-up question: can off-the-shelfcommunity detection algorithms be used to
detect sybils? Their answer is mixed: on the one hand, they show that a generic community detection
algorithm due to Mislove [Mislove et al., 2010] (also a co-author in [Viswanath et al., 2010]) achieves
results comparable to those of SybilLimit-like protocols on both a synthetic topology and a real-life
Facebook social graph; on the other, they observe that attackers wise to the community substructure of
the honest portion of the social graph can manage, as we discussed above, to make the sybil region appear
indistinguishable from a sub-network of honest nodes.

We believe that a first step towards a more conclusive answer is to recognize that casting the problem
simply in terms of generic community detection leaves it underspecified. While intuitively compelling, the
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Figure 4. Two edge attack.

notion of community is ambiguous, as the many community detection algorithms found in the literature,
each aiming for a subtly different notion of community, clearly indicate [Fortunato, 2009]. But what
should be the basis of a notion of community that can be used effectively for sybil defense?

A. The minimum conductance cut

A somewhat obvious candidate to serve in this role is conductance. Conductance is hard to tamper with
(see Section II) and it is intimately related to mixing time,a critical property to leverage against sybil
attacks (see Section III).

It is tempting to define the problem of sybil defense in terms of the minimum conductance cut problem
found in the community detection literature:

Problem 2. Let G = (V,E) be an undirected graph. Find a setC ⊂ V whose conductanceφ(C) is as
close as possible toφ(G), the minimum conductance of the graph.

If we believe that the honest region is fast mixing and that itis connected to the sybil region via a
sparse cut, then the setC should be very close to capturing precisely the entire honest region. This view
is of course too simplistic and can lead to community detection algorithms that can be circumvented
by an adversary using far fewer attack edges than needed to dupe SybilLimit-like protocols. Mislove’s
algorithm [Mislove et al., 2010], a community detection algorithm that has been used in the context of
sybil defense [Viswanath et al., 2010], provides an interesting example.

Mislove’s algorithm is a heuristic algorithm that finds small conductance cuts—which is, in essence,
analogous to finding an approximate solution to Problem 2. Note that finding an approximate cut is
the best one can hope for, unlessP = NP . The setC is built greedily. Starting from a vertexu, the
algorithm growsC by incorporating the vertexv connected toC that results in a setC∪{v} with minimal
conductance. If no neighboring vertex decreases the conductance, then the algorithm adds the vertex that
increases it the least.7

7The original proposal for Mislove’s algorithm [Mislove et al., 2010] relies on a normalized conductance metric, but in the context of sybil
defense the protocol is evaluated using just conductance [Viswanath etal., 2010]. For consistency, we follow the approach of the second
paper.



17

Although this simple heuristic appears to capture the intuition behind Problem 2, it fails against the
following simple attack. Letv be an honest node, that has no neighbor of degree smaller than3. We
create the sybil region with nodess0, s1, . . . , sn as follows:

• s0 ands1 are connected tov.
• for every i ≤ n − 2, si is connected with the next two sybil nodes in the sequence,si+1 and si+2,

and also with the previous two,si−1 andsi−2.
Figure 4 illustrates the attack, involving only the two attack edges connectingv to s0 ands1, that results
in Mislove’s algorithm deterministically admitting everynode of the sybil region.8

At the beginning, the best choice for the algorithm is to add the lowest-degree nodes0: the value of
the ratio that defines the conductance of the new set decreases, as its numerator is increased by only two
edges (those froms0 to s1 ands2), while its denominator is incremented by three. After thisfatal mistake,
the best node to add becomess1, which raises the numerator again by two and the denominatorby four.
Proceeding in a similar way leads to admitting the entire sequences2, . . . sn.

B. Discussion

Reframing sybil defense to leverage the community sub-structure that exists in social graphs requires a
deep understanding of the relationship between sybil defense and conductance—in essence, understanding
when a solution to Problem 2 is also a solution to Problem 1. The key to the approach we explore in
subsequent sections relies, at a local scale, on a techniquecentral to the efforts towards universal sybil
defense discussed in Section III: random walks.

V. FAST MIXING COMMUNITIES

Because of its tight connection with the theory of random walks, the minimum conductance cut problem,
which we have used to formalize the intuitive relationship between sybil defense and community detection,
has been studied in depth. Indeed, as we will see, a recently proposed sybil-defense algorithm [Cao
et al., 2012] is based on a well-known random walk algorithm previously developed to answer certain
foundational issues in the theory of algorithms [Spielman and Teng, 2004].

Problem 2, as we have called it, is NP-hard [Garey and Johnson, 1979] and from the point of view of
approximation, a series of results have established various non-trivial approximation guarantees [Sinclair
and Jerrum, 1989], [Leighton and Rao, 1999], [Arora et al., 2009]. In our context, however, these
sophisticated algorithms do not appear to be directly applicable. They are not obviously parallelizable, an
essential scalability requirement given the huge size of real-life social networks. A second, more subtle,
drawback is that their running time is polynomial in the sizeof the entire graph. In contrast, there exist
methods whose time complexity depends only on the size of theset of trustworthy nodes that we are
trying to determine, which we expect to be significantly smaller than the size of the entire network.

Spielman and Teng developed the first such “local” algorithm[Spielman and Teng, 2004]. Very roughly,
their idea is to associate a weight with each node and to identify as part of the community all nodes
whose weight exceeds a certain threshold. To determine the weight of a node, they effectively run many
truncated random walks of the same lengtht ∈ Õ

(

1
φ

)

, all originating from the same node (theseed): a
node’s weight is given by the frequency with which it is visited divided by its degree. The potential of this
algorithm for sybil detection becomes evident once one interprets the weight of a nodev as a measure of
the trust that the seed node puts inv. Indeed, the recent sybil detection protocol SybilRank [Cao et al.,

8Furthermore this attack can be modified to withstand also the preprocessingdefined in section III-B. For instance, to avoid a preprocessing
of nodes with degree< 5, the attacker can add in the sybil region a seriess0, s1, . . . , sn of sybil nodes as before. Each sybil nodesi is
connected to the previous four sybil nodessi−1, . . . , si−4 (if they exist) and the four consecutive sybil nodessi+1, . . . , si+4 (if they exist).
Furthermores0, s1, andsn are connected tov. In this setting it is possible to see that if initiallyv picks s0, it will then pick all the nodes
in the sybil region in sequence. If nodev has no honest neighbor of degree5 (after preprocessing), then the entire sequence of sybil nodes
is admitted before any of his honest neighbors.
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2012] is essentially an implementation of the algorithm of Spielman and Teng, run using multiple seed
nodes.

Since the work of Spielman and Teng, however, the use of truncated random walks for computing low
conductance cuts has been further refined. In particular, Andersen, Chung and Lang [Andersen et al.,
2007] originate many random walks from the honest seed, as inthe previous algorithm [Spielman and
Teng, 2004], but the length of their random walks, instead ofbeing fixed, is determined by means of
a (geometrically distributed) random variable. This algorithm has a property that is extremely useful in
our context: it identifies a region around the honest seed whose conductance is smaller than what is
computable with the approach used in SybilRank.

Andersen and Perez [Reid Andersen, 2009] and, very recently,Gharan and Trevisan [Oveis Gharan
and Trevisan, 2012] have proposed further improvements. Itis not immediately obvious, to us at least, if
these algorithms can be used by an honest seed to rank other nodes according to its trust in them. For this
reason, we will focus henceforth on the method proposed by Andersen, Chung and Lang, which naturally
computes such a ranking [Andersen et al., 2007].

A. Discussion

Formalizing community detection in terms of Problem 2 allows us to draw from the rich literature on
algorithms based on random-walks. Among them, the algorithm of Andersen, Chung and Lang stands out
for the combination of its features: it supports node ranking; the cut it computes has smaller conductance
than most of its peers; its running time depends on the size ofthe community, not that of the graph;
and it is easy to parallelize. In the next section we will see that this algorithm solves Problems 1 and 2
simultaneously, i.e., it is able to identify a community of honest nodes containing the honest seed, without
being lured into the sybil region. Further, we will prove thefirst theoretical guarantees concerning the
performance of a community detection algorithm in the context of sybil defense and show experimentally
that the algorithm is quite competitive with the state of theart.

VI. PERSONALIZED PAGERANK AND LOCAL DEFENSE

In this section we analyze the “variable length” random walkmethod of Andersen, Chung and Lang [Andersen
et al., 2007], ACL henceforth, and show that it provides both formal and experimental guarantees for our
localized vision of social sybil defense: white listing of the community to which our honest node belongs.

ACL is based on the Personalized PageRank (PPR) random walk, whose definition we now review.
Starting from an initial seed vertexv, at each step in the walk a pebble returns to nodev with probability
α and moves to a uniformly random neighbor of its current location with probability 1 − α. This
random walk has a unique stationary distribution [Andersenet al., 2007] that we denote aspprα,v :=
(pprα,v(v1), . . . , pprα,v(vn)). Clearly, this distribution depends on the starting nodev and thejumpback
parameterα. We will drop these subscripts when they are clear from the context.

Intuitively, it is as if, starting from the honest seed, we performed many random walks whose length
is determined by means of a geometric random variable: a random walk has lengthk with probability
α(1−α)k−1. The expected length of each walk isα−1, meaning that long walks are rare and short walks
in the neighborhood of the seed are common. In this fashion, the nodes in the “community” to which the
seed belongs should be visited most frequently. Nodes are assigned a score proportional to the number
of times they are visited.

ACL introduces an additional step to the PPR computation: thescore assigned to the vertices is given
by

scoreα,v(u) :=
pprα,v(u)

deg(u)
, (4)

for all verticesu. This step, also used in the algorithm of Spielman and Teng [Spielman and Teng, 2004],
ensures that the score acquired byu is not inflated by its unusually high degree.
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In the following we will prove theoretical guarantees for the ACL score. It is interesting to note that
they hold only for the ACL score and not for the PPR score (for which several nodes of high volume
may be included in the first positions of the ranking). The ACL algorithm proceeds by sorting the nodes
in V in descending order ofscoreα,v. While ACL is originally motivated by finding a low conductance
cut, the properties enjoyed by such ranking can be exploitedin the context of sybil defense as well, as
the rest of the section shows.

Intuitively, the ranking computed using a honest nodev as the seed defines, from the point of view of
v, an ordering of the nodes inV , from the most trustworthy to the least.

This ranking is significantly more robust than that obtainedby methods based on PageRank (see for
example EigenTrust [Sepandar D. Kamvar, 2003] and TrustRank[Zoltán Gyongyi, 2004]): because a
random walk can reset only to the seed node, this ranking is immune to all attacks to PageRank based
on exploiting random walks that jump back to a spam node [Chengand Friedman, 2006]. Notably, in the
context of sybil defense, ACL solves Problem 1: it computes a low-conductance cut containing the honest
seed and almost no sybil nodes. The next subsection is devoted to proving the following theorem which
formalizes this result.

Theorem 6. Let C be a set of vertices such that the graph it induces is connected and has mixing time
τ and with | cut(C)| ∈ o(vol(C)τ−1). Let 1/2 > ǫ > 0 be a constant and letα := (10τ)−1. Given a seed
v, define

Sv := {u : scoreα,v(u) > (2 vol(C)e1/10)−1}
(this is the set of nodes that obtain high enough ACL score). Then, there exists a subsetC ′ ⊂ C such
that vol(C ′) ≥ (1 − ǫ) vol(C) and such that, ifv ∈ C ′, then vol(Sv ∩ C) ≥ (1 − o(1)) vol(C) and
vol(Sv \ C) = o(vol(C)).

Notice that here, and in the rest of the section, when referring to the mixing time of the graph induced
by the setC we write τ in place ofτ(ǫ) whereǫ ∈ O( 1

n
) (see Definition 1).

Some comments are in order. Theorem 6 provides mathematicalguarantees on the security of the ACL
ranking in the context of sybil defense. If we let the setC of the statement be any connected subset of
the honest region, and denote withτ its mixing time, the theorem says that the ACL score computed
using most of the nodes inC as seeds recoversC almost perfectly in the first positions of the ranking,
essentially achieving the goal envisioned by Problem 1.

Notice that the guarantees of Theorem 6 are expressed in terms of volume and not, as has been the
custom in prior papers on sybil defense (see for instance [Yuet al., 2006], [Yu et al., 2008], and [Tran
et al., 2011]) in terms of number of nodes. However, if we assume thatvol(C) ∈ O(|C|), then the
guarantees given in terms of volume translate into the familiar ones expressed in terms of number of
nodes. Since social graphs consists mostly of low-degree nodes, we expect this condition to be roughly
satisfied in practice, as our experiments on the performances of ACL confirms. More formally, it can also
be shown for instance that if the graph follows a power-law distribution [Albert and Barab́asi, 2002] with
exponent greater than two, then this condition holds.

A. Security guarantees of ACL

In this section we prove Theorem 6. Our results are heavily based on previous work [Andersen et al.,
2007], [Zhu et al., 2013]: for completeness, we present herethe full proof of all the statements and discuss
the security implications in detail.

Referring to the statement of Theorem 6, we use the following notation.C is a subset of nodes that
induces a connected component, denoted asG[C], with mixing time τ and cutcut(C) ∈ o

(

vol(C)
τ

)

.
Intuitively, C is the community of the honest seed, connected to the rest of the social graph by means of
a somewhat sparse cut. The rankings PPR and ACL will be computed with respect toα := (10τ)−1.

To prove the theorem, we first lower bound the ACL score for all nodes insideSv and then we upper
bound the aggregate PPR score of the nodes outsideC. More specifically, we first prove the following
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lemma, which shows that the total score that can be absorbed by the complement of the communityC
containing the honest seed is negligible.

Lemma 2 (Boundedness Lemma). Let C be a set of vertices such that the graph it induces is connected,
has mixing timeτ , and its cut is such that| cut(C)| ∈ o(vol(C)τ−1); and let α := (10τ)−1. Then, for
any positive constant0 < c1 <

1
2
, there exists a subsetC ′ of C, such thatvol(C ′) ≥ (1− c1) vol(C) and

such that
∑

u∈V \C
pprα,v(u) = o(1)

wherev is any (seed) node inC ′ (the o(1) term goes to zero asC grows).

Proof: Let b(i, t) be the random variable describing the following event: a random walk of lengtht,
starting on nodei, crosses an edge incut(C) during the walk. To upper boundP [b(i, t)], we will use a
technique inspired by [Yu et al., 2006].

Suppose that the walk starts from the stationary distribution restricted to the subgraphC (considering
also the edges that leaveC): then, the probability of crossing any edge in the cut in a given step is equal
to cut(C)

vol(C)
. So, by the union bound, the probability of crossing the cut in one of thet steps is smaller than

or equal tot·cut(C)
vol(C)

.
Let pi be the probability that we visit vertexi in the stationary distribution. Sincepi = deg(i)/ vol(C),

we have:
∑

i∈C
P [b(i, t)]

deg(i)

vol(C)
=
∑

i∈C
P [b(i, t)] pi ≤ t

| cut(C)|
vol(C)

.

So,
∑

i∈C
P [b(i, t)] deg(i) ≤ t| cut(C)|.

Now, this inequality implies that there is a setC ′ ⊆ C of nodes of volume at least(1− c1) vol(C), with
constant0 < c1 <

1
2
, such that for anyi ∈ C ′ we haveP [b(i, t)] ≤ t cut(C)

(1−c1) vol(C)
. Otherwise, we would get

a contradiction because
∑

i∈C′ P [b(i, t)] deg(i) > t| cut(C)|.
For 1 ≤ i ≤ n, let xi be the indicator vector for nodevi (i.e. a vector whose components are all set to

0 except for thei-th one, which is set to1). With abuse of notation we writexv for the indicator vector
of the nodev. We can now describe the PPR calculation in matrix form as in [Andersen et al., 2007]:

pprα,v = α
∞
∑

t=0

(1− α)txvW
t. (5)

pprα,v defines the Personalized PageRank vector with jump-back probability α and seed nodev. W is
the standard random walk transfer matrix.9 Wij is the probability of reaching nodej, in a single step of
the walk, starting from nodei.

Let B =
∑

vi∈V \C xi, we have that:

pprα,v(B) = α
∞
∑

t=0

(1− α)txvW
t(B). (6)

9The ACL algorithm [Andersen et al., 2007] is actually defined in terms of alazy version of the walk, in which at every step there is a
probability of 1/2 of remaining in the same node. For the purpose of this paper the two definitions are equivalent up to a simple change in
α so for simplicity here we use the standard random walk.
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Now suppose thatv ∈ C ′. Note that the probability of landing in a node inV \ C at stept starting
from v is upper-bounded by the probability of crossing the cut during a walk of lengtht. Hence,

pprα,v(B) ≤ α

∞
∑

t=0

(1− α)tt
cut(C)

(1− c1) vol(C)

≤ α
cut(C)

(1− c1) vol(C)

∞
∑

t=0

(1− α)tt

≤ α

log2(1− α)

cut(C)

(1− c1) vol(C)

≤ 1

α

cut(C)

(1− c1) vol(C)
.

By choosingα = 1
10τ

,

≤ 10τ
1

c1 vol(C)
o

(

vol(C)

τ

)

= o(1) .

Note that since the score of each node is obtained by dividingtheppr probability by the degree (whose
value, by the completeness hypothesis, is at least equal to1), the previous lemma provides also a bound
on the total score of nodes inV \ C.

We have showed that the overall score assigned to nodes inV \C is proportional to the size of the cut
and strictly bounded byo(1). We now prove that most of the nodes inC receive a constant fraction of
the overall score.

As in the statement of Theorem 6, letSv denote the set of nodes that receive a high ACL score with
respect to a seedv that is,Sv := {u : scoreα,v(u) > (2 vol(C)e1/10)−1}.
Lemma 3 (Coverage Lemma). Let C be a set of vertices such that the graph it induces is connected, has
mixing timeτ , and its cut is such that| cut(C)| ∈ o(vol(C)τ−1); and let α := (10τ)−1. Then, for any
positive constant0 < c1 < 1

2
, there is a setC ′ ⊆ C such thatvol(C ′) ≥ (1 − c1) vol(C) and such that

vol(Sv ∩ C) ≥ (1− o(1)) vol(C), for v ∈ C ′.

Proof: Observe that, by settingα = 1
10τ

, a sizable fraction of the Personalized PageRank random
walks will be longer thanτ , the mixing time ofG[C]. More precisely, letl(t) be the probability of a
Personalized PageRank random walk that ist steps long. Since the lengths of the random walks follow
a geometric distribution, we have thatl(t) = α(1− α)t and consequently,

∞
∑

t=τ

l(t) = (1− α)τ .

Consider the setC ′ ⊆ C for which we showed in the previous lemma that, for anyv ∈ C ′, the
probability of crossing the cut for at-step long walk starting in a node inC ′ is bounded byt cut(C)

c1| vol(C)| .
Fix a nodev ∈ C ′ and letvi 6= v be any other node inC. We want to determine a lower bound on the

score assigned to nodevi by PPR if we compute it usingv as seed.
As already mentioned, we have

pprα,v(vi) = α

∞
∑

t=0

(1− α)txvW
txi,
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whereW is the standard random walk transfer matrix. If we restrict our attention to random walks longer
than the mixing time, we obtain the lower bound

pprα,v(vi) ≥ α
∞
∑

t=τ

(1− α)txvW
txi.

So, in order to find a good lower bound topprα,v(vi), we would like to know the probability that a
random walk of lengtht, for t > τ , ends invi. Note that this would be easy in the graph induced byC,
because we know that its mixing time isτ , while it is not immediately obvious when we consider the
edges going out ofC (whether attack or non-attack edges). But from the previous lemma we know that
the total PPR score leaking fromC is o(1). This implies that very few random walks “leak” probability
outside ofC. Let us suppose that no random walk leavesC and denote byppr′ the ppr score in this
setting. Then, since the mixing time ofG[C] is τ , we can computeppr′:

ppr′α,v(vi) ≥ α
∞
∑

t=τ

(1− α)t
(deg(vi)

vol(C)
− 1

ǫ

)

≥ α
∞
∑

t=τ

(1− α)t
( deg(vi)

(1 + δ) vol(C)

)

.

For any positiveδ > 0 it follows that,

ppr′α,v(vi) ≥ deg(vi)

(1 + δ) vol(C)

(

α
∞
∑

t=τ

(1− α)t
)

≥ deg(vi)

(1 + δ) vol(C)

(

1− 1

10τ

)τ

≥ deg(vi)

(1 + δ) vol(C)
e−1/10.

We know from Lemma 2 that the total score distributed by walksthat cross the edges in the boundary
of C is at mosto (1). From the previous chain of inequalities, each node inC hasppr′ ∈ Ω( 1

vol(C)
).

So, even if we remove the score distributed by walks that cross the cut, there exists a setC ′′ ⊆ C with
vol(C ′′) ≥ (1 − o(1)) vol(C) for which each nodevi in C ′′ has PPR score greater thandeg(vi)

2 vol(C)

(

e−1/10
)

and ACL score larger than 1
2 vol(C)

(

e−1/10
)

Note that these lemmata imply the existence of a gap between the score of the nodes inside and those
outside ofC. We leverage this gap to prove Theorem 6.

Theorem 6: From Lemma 2, we have that the nodes inV \ C have aggregate PPR score ino(1);
furthermore, all nodes inC ′′ have score at least 1

2 vol(C)

(

e−1/10
)

. The PPR score of a node of degreed

in V \ C, computed using as seed nodev ∈ C ′, must be larger than d
2 vol(C)

(

e−1/10
)

to be in the setSv:
thus, the total volume of nodes inSv \ C is o(vol(C)). Hence the claim follows.10

Comparison with the state-of-the-art.
In the theoretical framework that underpins SybilLimit andits ilk, the honest regionH ⊂ V is assumed

to be fast mixing, i.e.τ = O(log(|H|)). Let g be the number of attack edges connecting honest and sybil
nodes.

By settingα = 1
10 log(|H|) and choosingC = H, we havecut(C) = g. Suppose to haveg = o

(

|H|
log(n)

)

,

as in the assumption of SybilLimit [Yu et al., 2008]. As|H| = O(vol(H)), in a connected graph ACL is
able to accept a slightly larger number of attack edges than SybilLimit: O( vol(H)

log(|H|)) vs O( |H|
log(|H|)). Note

however that ACL guarantees are expressed in terms of the volume of H rather than the number of its
nodes.

10Note that the theorem would not hold if we used the PPR score directly.
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Moreover, with the additional assumption thatvol(C) = O(|C|) discussed in the previous section,
Theorem 6 guarantees that for any positive constant0 < c1 <

1
2
, the ranking given byscoreα,v(u), for a

fraction 1 − o(1) of nodesu ∈ V , contains in the first|V | positions all but a1 − o(1) fraction of good
nodes, essentially matching both the number of attack edgesand the guarantees of SybilLimit.

The consequences of our theoretical results can be summarized as follows.
• Under the hypotheses of SybilLimit-like protocols, the performance of ACL is comparable with the

state of the art.
• In the more general setting where only a subset of the honest region is assumed to be well-connected,

ACL can guarantee that a subset of honest nodes is trusted morethan sybil nodes.
• In harder settings, there is an explicit tradeoff between the mixing time of the honest region and the

number of attack edges that the network can handle.

B. Computing the ranking

Algorithm 1 ApproxACL(v, α, ǫ)

ppr(u) = 0 ∀u ∈ V
r(v) = 1
r(u) = 0 ∀u ∈ V \ {v}
Q = {v}
while |Q| 6= 0 do

Extractu from Q.
while r(u) ≥ ǫ deg(u) do
ppr, r = Pushu(ppr, r)
Insert inQ all the nodesw in the neighborhood ofu such thatr(w) ≥ ǫ deg(w).

end while
end while
scoreα,v(u) =

ppr(u)
deg(u)

∀u ∈ V
return scoreα,v

The PPR distribution can be expressed as the solution of a system of linear equations, and it can be
computed or approximated very efficiently in parallel (see,for instance, [Fogaras et al., 2005] and [Bahmani
et al., 2011]). Here we present the push-flow algorithm of Andersen el al., which computes an approxi-
mation of the ACL score and possesses many desirable properties [Andersen et al., 2007]. The algorithm,
which we name ApproxACL, for Approximated ACL score, has threeinput parameters: the starting
honest vertexv, the jump back probabilityα, and the error parameterǫ. ApproxACL computes a vector
qǫα,v := (q1, . . . , qn) that is an approximation of the ACL score vectorscoreα,v. ApproxACL first computes
an approximation of theppr stationary distribution as follows. The algorithm starts with an amount of
“residual PPR score” equal to1 from the starting nodev. This residual score flows from the source node
to the rest of the network with a series of “trickle” operations. Each push-flow operation simulates one
step of the PPR random walk by transferring a small amount of residual score from a vertexu to its
neighborw in proportion to the probability that the random walk moves from u to w in one step. For
each nodev, ApproxACL keeps track of two quantities: appr(v) value and a residual valuer(v). The
former is the current approximation of the PPR of the nodev, while the latter is the amount of total
residual amount of “score” that the node is allowed to distribute to itself and to its neighbors. Once the
approximated PPR distribution is computed, the algorithm divides the stationary distribution probability
of each node by the degree to compute the approximated ACL score.

The algorithm is described as Algorithm 1 (for a full discussion see [Andersen et al., 2007]).
How does the behavior of ApproxACL change as a function of the parametersα and ǫ? Theorem 6

tells us how we should set the value ofα. The dependence onǫ is also reasonably straightforward. The
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Algorithm 2 Pushv(ppr, r)

Ensure: The new updated vectorspprnew and rnew are such thatpprnew = ppr and r = r′ with the
following exceptions:
pprnew(v) = ppr(v) + αr(v)
rnew(v) =

1−α
2
r(v)

for all u ∈ V : (u, v) ∈ E do
rnew(u) = r(u) + 1−α

2 deg(v)
r(v)

end for
return pprnew e rnew
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(c) WikiTalk p = 0.01
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Figure 5. Impact of varyingα. Precision vs Recall graph with Facebook-New Orleans data set under(a) a weak attack (edge density
p = 0.01) and (b) a strong attack (edge densityp = 0.1). Figures (c) and (d) refer to a weak and a strong attack, respectively, in the
WikiTalk graph.

parameterǫ measures how far we are from the actual ACL score. Clearly, smaller values ofǫ imply longer
running times. The good news is that this dependence on precision is linear: it is possible to show that
the running time of the algorithm isO( 1

αǫ
) and therefore, for a givenα, the running time isO(1

ǫ
).

A second consequence of the choice ofǫ comes from the way the push-flow algorithm works. It can
be shown that all verticesw whose probabilityppr(w) in the stationary distribution is smaller thanǫ
receive a score of0 from ApproxACL. When ApproxACL stops, nodes with a non-zeroppr value define
a connected component around the source, while the score of all outside vertices is0. It is interesting
to see what happens when ApproxACL is run with two valuesǫ < δ. If we produce the ACL ranking
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❍
❍

❍
❍
❍

ǫ

δ
= 10−4 = 10−5 = 10−6 = 10−7

= 10−3 0.84 0.83 0.82 0.82
= 10−4 0.81 0.79 0.79
= 10−5 0.73 0.73
= 10−6 0.99

Table IV
KENDALL -TAU DISTANCE CORRELATION BETWEEN ANǫ-RANKING AND A δ-RANKING FOR THE FACEBOOK SNAPSHOT. THE INDEX IS A

REAL NUMBER BETWEEN+1 (PERFECT CONCORDANCE) AND −1 (REVERSE ORDER). A VALUE OF 0 INDICATES THAT ONE RANKING IS

A RANDOM PERMUTATION OF THE OTHER. SIMILAR HIGH CORRELATION WAS OBSERVED FOR DIFFERENT SNAPSHOTS OF SOCIAL

NETWORKS.

in the two cases, then the non-zero portion of theǫ-ranking is longer than the corresponding prefix of
the δ-ranking. The surprising finding is that these rankings are very stable, in the following sense. Let
uǫ
1, . . . , u

ǫ
n anduδ

1, . . . , u
δ
n be the two rankings. Then these two rankings are almost the same. This can

be measured for instance with the Kendall-Tau distance, as reported in Table IV. This is a very useful
property in the context of sybil defense. It says that if we want to identify quickly a set of trusted nodes,
we can do so simply by using a larger value ofǫ. Because the running time of the protocol is dependent
on the values ofα andǫ and not on the size of the graph, this allows ApproxACL to effectively scale in
situations where partial node rankings suffice.

C. Comparative Evaluation

Our key question in evaluating ACL is to determine whether it succeeds in expanding the guarantees
offered by today’s social defense systems in two directions: (1) withstanding denser attacks, and (2)
providing high-quality sybil defense without relying on the assumption that the entire graph is fast mixing.

a) Method and environment:Viswanath et al. observe that, despite their peculiarities, sybil defense
schemes are based on the same fundamental principle—community detection—and produce highly corre-
lated results [Viswanath et al., 2010]. Hence, for the sake of clarity, the experiments we report compare
ACL only against SybilLimit, which we use as the SybilLimit-like champion. Although SybilLimit
performed better than its peers, our experiments with SybilGuard, SybilInfer and Gatekeeper returned
qualitatively similar results.

The graphs we use to compare their performance are generatedby subjecting social networks that
we assume to include only honest nodes to the attack described in Section II-C. We then run ACL and
SybilLimit on the resulting graphs, rank the nodes using thesame methodology discussed in Section III,
and measure precision (the percentage of nodes in the prefix of the ranking that are honest) and recall (the
percentage of honest nodes that are in the ranking’s prefix) from the perspective of 10 randomly chosen
seeds. We report the average of the values we obtain.

We configure SybilLimit to have1.5
√
m random walks of length1.5 log(n), wherem is the number

of edges in the final graph. ACL is configured withα = 10−3 andǫ sufficiently small to label every node
in the attacked graph with non-zero weight. For DBLPǫ = 10−7; for all other graphsǫ = 10−6 suffices.
In section VI-D(d), where we report the results of the other algorithms as well, we set the length of the
random walks in SybilGuard as1.5 log(n) and the number of ticket sources in Gatekeeper as400.

b) ACL tolerates denser attacks:Figure 6 shows the degree to which ACL and SybilLimit succeed
in defending the Facebook and WikiTalk graphs when the attack strength, measured as the percentagep
of attack edges in the graph, varies fromp = 0.01 to p = 0.1. Note that, to respect the “operating range”
of each protocol, the results we report for ACL are obtained onthe original Facebook graph, while the
results from SybilLimit apply to thepreprocessedFacebook graph.

We observe that the ability of ACL to correctly classify nodesdegrades gracefully as the attack increases
in strength, remaining relatively high even whenp = 0.1. Indeed, for the Facebook graph, the selectivity
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(d) SybilLimit on WikiTalk

Figure 6. The impact of varying the attack strength, respectively, on Facebook (a,b) and WikiTalk graph (c,d). Results for SybilLimit are
reported on preprocessed graphs while for ACL we use raw graphs.

of ACL under an attack of strengthp = 0.05 is comparable to SybilLimit’s with an attack ofp = 0.01. The
performance of SybilLimit, on the other hand, decreases rather rapidly as the attack strength increases.

c) ACL does not need preprocessing:Figure 7 shows the protection offered by ACL and SybilLimit
to the DBLP, Epinions, Facebook, Slahdot, RenRen, and WikiTalkgraphs for an attack wherep = 0.01.
For ACL, we report only results from the raw graph. For SybilLimit we report results from both the raw
and preprocessed graphs.

Without preprocessing, ACL achieves high precision at high recall. SybilLimit’s performance, on the
other hand, is mixed. For most graphs, SybilLimit provides excellent protection as long as the graphs are
preprocessed. When the graphs are not preprocessed, the offered coverage degrades to varying extents.
The degradation in coverage for Facebook and RenRen is negligible; for Epinions the degradation is minor
but noticeable.

SybilLimit performs poorly on DBLP with or without preprocessing, though preprocessing the graph
does provide a significant boost. We speculate that this poorperformance is the side effect of the relatively
high mixing time observed by recent work [Mohaisen et al., 2010].

d) A second attack model:In this section we compare the algorithms using an attack model widely
used in the literature [Danezis and Mittal, 2009], [Wei et al., 2012]. The number of attack edgesg is
fixed, and random honest nodes are declared to be sybil until we achieveg attack edges. Then, more sybil
nodes are created from scratch until a total ofγ sybils is reached. Theseγ sybils are then connected to
one another via a scale-free topology: similar to other recent sybil defense literature [Wei et al., 2012],
our attack uses the scale-free topology of Barabási-Albert. We run each experiment ten times, and report
the average values of precision and recall.
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Figure 7. The precision-recall tradeoffs for ACL and SybilLimit on DBLP, Epinions, Facebook, Slahdot, RenRen and WikiTalk, with
p = 0.01. Results for ACL are reported for the raw graphs. Results for SybilLimitare reported for both raw and preprocessed graphs.

Figure 8 shows the results for our Facebook and WikiTalk graph andg = 50,000 andγ = 10,000. In the
Facebook graph, ACL and Mislove are essentially perfect, outperforming all other algorithms (Gatekeeper,
SybiLimit and SybilGuard). In the WikiTalk graph, Mislove is outperformed by the other algorithms. The
large performance difference between the two graphs confirms the sensitivity of Mislove ’s algorithm to
the graphs’ topology (see Section IV) and supports similar observations made in the recent literature [Cao
et al., 2012]. We also ran experiments with other graphs obtaining similar results.
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Figure 8. The precision of ACL and the other algorithms on the Facebook and WikiTalk graphs with the attack model described in section
VI-D(d) with g = 50000 andγ = 10000. Results are shown for the average of10 random trials.

D. Local vs Global detection

We have shown that ACL is very effective in practice to addressProblem 1. Building a universal sybil
defense system for community-structured networks, however, remains an open problem.

In a recently published paper, Cao et al. suggested to expand defensive coverage by relying on multiple
trusted seed nodes instead of a single one [Cao et al., 2012]. More precisely, suppose there are several
trusted seeds evenly distributed among communities of honest nodes; it is then possible to merge the local
ranking of the nodes to get a unified global ranking of the nodes in the network.

While effective in practice, the use of multiple seeds does not immediately lead to strong theoretical
guarantees, even assuming that all seeds are honest nodes. For example, suppose we can prove, as it
is typical for ACL, that a1 − o(1) fraction of the honest seeds will assign a negligible fraction of the
overall score to sybil nodes and distribute the rest evenly across the honest region. There is always,
however, a fraction of unlucky honest seeds for which such guarantees are impossible—e.g., seeds at the
boundary between the honest and sybil regions. Unfortunately, because of the arbitrary nature of the sybil
region, walks originating from these nodes might produce anunconstrained (and adversarial) probability
distribution among the sybil nodes.

This is not only true for the ACL algorithm, but virtually for any sybil defense algorithm that relies on
random walks and mixing time (see for instance [Yu et al., 2008], [Yu et al., 2006], [Cao et al., 2012]).

Unfortunately, it is not clear how such unlucky choice of seeds will affect the overall ranking. In fact,
notice that while thecorrect seeds will distribute evenly the score among honest nodes, the wrong ones
might concentrate the score to a smaller, but still significant, subregion of the sybil graph, thus letting
such nodes overtake the first positions of the ranking.

Nevertheless, we think that the use of multiple seeds is a promising research direction, and recent
literature [Cao et al., 2012] has empirically verified the effectiveness of this approach in real-world
scenarios.

E. Discussion

We have shown experimentally that ACL can identify quite accurately the community of a given honest
seed and that it provides formal guarantees for the rankingsit produces. While it is effective at solving
Problem 1, as we are about to see in the next section ACL is stillvulnerable to some simple, primitive
sybil attacks that are encountered in deployed social networks—a stark reminder of the gap that, while
narrowing, still exists between the theoretical assumptions that underpin the theory behind the current
state of the art in sybil defense, and the reality of sybil attacks encountered in the wild. The existence
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of this gap does not, in our view, belittle the importance of the current theoretical tools, as it is only by
understanding their strengths and limitations that one canobtain a firmer grasp of the problem of social
sybil defense. It does, however, point to a concrete challenge, and the next section outlines an approach
that we believe can prove fruitful in addressing it.

VII. SOCIAL SYBIL DEFENSE AGAINST REAL WORLD ATTACKS

Our appraisal in Section II of the resilience of different structural properties of social graphs indicated
that leveraging the complementary notions of mixing time and conductance is the most promising line
of defense against sybil attacks; furthermore, techniquesbased on this approach can provide impressive
end-to-end guarantees. Yet one key question remains: how effective are these techniques against actual
sybil attacks?

While data on sybil attacks in deployed social networks is notreadily available, two recent papers have
included experience reports that shed light on the types of attacks that occur in the wild.

Cao et al. report to have successfully used SybilRank to identify sybil users in the Tuenti social
network [Cao et al., 2012]. They observe large clusters of sybil users in regular topologies (star, mesh,
tree, etc.) that are connected to the honest communities through a limited number of attack edges. They
also report that an unspecified fraction of the remaining accounts are sybil, but to preserve confidentiality
they are unable to report on the number or characteristics ofthose accounts.

Yang et al.’s experience in analyzing the RenRen social network is significantly different [Yang et al.,
2011]: they did not observe any large clusters of well-connected sybil nodes connected in turn to the honest
sub-graph through a small set of attack edges, as would be expected by the sybil defense techniques we
have surveyed; instead, they find isolated sybil nodes each connected to the honest sub-graph through a
large number of attack edges.

The simple attack observed in the RenRen social network is problematic for conductance-based proto-
cols. We simulated the attack on our Facebook graph by introducings isolated sybil nodes and by allowing
the attacker to attempt to establishm potential attack edges by selecting both the honest and the sybil
endpoint uniformly at random (m andn denote the number of edges and of vertices, respectively, inthe
Facebook graph). As usual, each potential attack edge is accepted with probabilityp. In the experiment
we sets = pn so that the order of magnitude of the average degree of sybil and honest nodes is the same.
To assess the results we used the well-known ROC index, defined in Section III-B. The results show that,
even for a very small number of attack edges (p = 0.01), every protocol performs poorly: the ROC is0.45
for SybilLimit, 0.44 for SybilGuard,0.34 for Mislove, 0.49 for Gatekeeper, and0.37 for ACL. Notice
that a0.50 ROC is consistent with a random ranking.

These results are not coincidental, as the vulnerability ofconductance-based techniques to an attack
where each sybil node can create more than one attack edge is fundamental: indeed, Yu et al. proved a
lower bound ofΘ(1) to the number of attack edges per sybil node that any mixing time based algorithm
might tolerate [Yu et al., 2008].

These experiences indicate that while today’s socially-based sybil defenses are designed to provide the
theoretically-best defense posture, they may be also easily circumvented.

A. Defense in depth

To overcome this impasse, we believe that effective sybil-defense mechanisms should embrace a strategy
inspired by the notion of defense in depth [Stytz, 2004]: rather than relying solely on techniques based on
conductance, they should include a portfolio of complementary detection techniques. For example, Yang
et al. observe that it is possible to spot sybil nodes by tracking their clustering coefficient (see Section II)
and the rate at which their requests of friendship are accepted: both of these measures in the RenRen
graph are significantly higher for honest nodes than for sybils (in the case of the clustering coefficient,
this is because a single sybil node that randomly issues friendship requests is unlikely to have many
friends who are themselves friends with each other) [Yang etal., 2011]. As a rule of thumb, Yang et al.
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suggested to report as sybil those users whose friendship-request acceptance rate is less than50% and
whose clustering coefficient is below1/100. They report that this is sufficient to correctly identify more
than 98% of the sybil nodes, with a false positive rate of less than0.5%. Note that, while these results
sound impressive, they are not cause for unconditional celebration, as it is quite easy for a slightly more
sophisticated adversary to circumvent both checks by issuing friendship requests to other sybil nodes
under his control. But, at the very least, checks like these make the life of the attacker more difficult and
prevent more sophisticated defenses from being trivially sidestepped. Indeed, they may even nudge the
attacker, whether he likes it or not, towards the kind of attacks where conductance-based method can start
to be effective. For instance, simply adding a defense layerthat monitors the rate of friendship acceptance
introduces a bound (albeit loose) on the conductance of the cut between honest users and sybil nodes.

In particular, assume that honest users accept sybil request with probability p and that the threshold of
accepted requests below which a node is flagged as sybil isT . Then, in our attack model, the following
simple result holds:

Proposition 2. Suppose that honest nodes accept friendship from a sybil node with probabilityp. Then,
to have average acceptance ratio larger thanT and avoid detection, a sybil node must createT−p

1−T
edges

to fellow sybil nodes for every tentative attack edge aimed at an honest node.

Proof: For a given sybil node, letδ be the ratio between the numberEs of edges connecting to other
sybil nodes andEh, the number of attack edges that a sybil attempts to create with honest node, i.e.δ =
Es

Eh

.
Note that in expectation the total number of edges that the sybil node will successfully create isEs+pEh,

so its average acceptance rate isEs+pEh

Es+Eh

= δEh+pEh

δEh+Eh

= δ+p
δ+1

. So to have the average acceptance ratio larger
thanT , we have thatδ+p

δ+1
> T and henceδ > T−p

1−T
.

For example, if honest users accept friendship requests with probability p = 10% and T = 50% (as
in [Yang et al., 2011]), then each sybil node should have eight links to sybil nodes for every attack edge
to avoid detection.

Proposition 2 bounds the conductance of the cut between honest and sybil nodes, in the sense that
whenever the sybil region has fewer edges than the honest region, the conductance of the cut is at most
2p1−T

T−p
.

While this bound on conductance is loose, it is encouraging that such limitation to the attacker can be
obtained based on a fairly primitive measure such as the rateof friendship acceptance. We speculate that
in the near future new defense layers based on advanced machine-learning and profiling techniques [Stein
et al., 2011] will force a sybil attacker who wants to escape detection to generate sybil regions that ever
more accurately resemble honest regions, connected through a sparse cut of attack edges to the honest
portion of the graph: in other words, exactly the scenario suitable for conductance-based sybil defense.

VIII. C ONCLUSIONS

This work has traced the evolution of social sybil defenses from the seminal work of Yu et al [Yu et al.,
2006] to the developments of the last several years [Yu et al., 2008], [Danezis and Mittal, 2009], [Tran
et al., 2011], [Cao et al., 2012] to recent reports [Yang et al., 2011], [Cao et al., 2012] that detail their
usage in practice.

We have identified two main trends in the literature. The firstis based on random walk methods whose
goal is to identify fast-mixing (sub)regions that contain the honest seed. The implicit assumption is that
social networks under sybil attacks must exhibit a simple structure—a fast-mixing region of honest nodes
connected via a sparse cut to the sybil region. We have seen how this initial simplified picture of the
world has progressively become more nuanced, leading to methods based on random walks that are able
to cope with a more complex world consisting of a constellation of tightly-knit, fast-mixing communities
loosely connected among themselves and to the sybil region.

The other trend that we have discussed considers sybil defense as an instance of community detection.
While we have revealed the limitation of this approach, we have been able to enucleate its core validity.
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As we have shown with our discussion on Personalized PageRank, the two approaches can go hand
in hand to yield more robust sybil defense protocols that arecompetitive with the state of the art. The
discussion has highlighted the importance of the body of literature that studies foundational issues on
random walks. As we have shown, both algorithms and useful conceptual tools can be distilled from it
and successfully deployed in the context of sybil defense.

We also compare our solutions with real world attacks. We believe that the defense-in-depth approach
that we have advocated as a response to this challenge can be facilitated by moving from the original
vision of offering individual honest users decentralized and universal sybil defense [Yu et al., 2006], [Yu
et al., 2008] towards defense techniques that assume that the defender has complete knowledge of the
social graph topology [Cao et al., 2012], [Yang et al., 2011] and can deploy the kind of parallelizable
implementations suitable for handling the large graphs of on-line social networks. In particular, social
network operators are in a position to use machine learning techniques, user profiling, and monitoring
of user activity to gain additional knowledge that can help them filter sybil attacks not well-suited for
detection using techniques based on random walks, community detection, and their combination. Still,
as attackers increase in sophistication, claims of a silverbullet should be met with healthy skepticism.
As the arms race between attackers and defenders continues,it will be increasingly important that new
defense mechanisms clearly state the kind of attack they aimto withstand, a landscape that too often is
blurred.
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APPENDIX

A. Proof of Theorem 5

We prove Theorem 5, whose statement we now recall.

Theorem 5. Let H = (V,E) be a connected simple graph such thatφ(H) vol(V ) ∈ Ω (log n), φ(H) ≤ 1
e

and let S = (V ′, E ′) be another connected simple graph withφ(S) ≥ φ(H). Suppose further that
φ(H) vol(V ) ≤ vol(V ′) ≤ vol(V ).
Let GF = (VF , EF ) be the union ofS, H and let g be the number of random attack edges betweenH
and S, whose endpoints are selected with probability proportionalto the degrees of the nodes. Then if
log
(

1
φ(V )

)

· φ(V ) · vol(V ) ≤ g ≤ vol(V ′) we have that, with high probability,

φ(GF ) ∈ Ω (φ(V )).

To prove the theorem we need to show that the probability thatall sets of volume smaller than1
2
vol(VF )

have conductance inΩ(φ(H)) is 1− o(1).
We start by defining some useful notation.

Definition 3. For any disjoint subsetsA,B of VF , let CF (A,B) be the number of edges with one endpoint
in A and one inB in the final graphGF . More formally:

CF (A,B) := |(x, y) ∈ EF : x ∈ A, y ∈ B|.
Similarly letCH(A,B) andCS(A,B) be the analogous for graphH and S, respectively.

Definition 4. For anyK ⊆ VF , let CH(K) be the number of edges with one endpoint inK ∩ V and the
other in V \K. More formally:

CH(K) := CH(K ∩ V, V \K).

Similarly for the graphS, let CS(K) betCS(K) = CS(K ∩ V ′, V ′ \K).

In the rest of the section, unless otherwise specifiedvol(K), φ(K), cut(K) without subscript refer to
the volume, conductance and cut ofK ⊆ VF , respectively, in the graphGF . On the other hand,volH(K),
φH(K), cutH(K) refer to the volume, conductance and cut of the subsetK∩V , respectively, in the graph
H, and a similar convention is adopted for the graphS.

Definition 5. Let K be the family of subsets ofVF such that for anyKF ∈ K, vol(KF ) ≤ 1
2
vol(VF ) and

G [KF ] is connected.

We use the following proof strategy. First, we show that we can restrict our attention to only the subsets
of VF in K. Then, we partition these subsets and derive a probabilistic bound on their cut inGF . Using
these bounds, we show that the probability that any subsetKF of VF with vol(KF ) ≤ 1

2
vol(VF ) has

conductanceφ(KF ) ∈ Ω(φ(H)) is 1− o(1).
We begin by showing that we can restrict our attention to the family of setsK such that for any

KF ∈ K the induced graphGF [KF ] is connected, thus motivating the definition ofK.

Lemma 4. Let GF [KF ] be the subgraph induced byKF and letKF1
, KF2

, · · · , KFR
, with R > 1, be the

connected components ofGF [KF ]. If φ(KFi
) ≥ α for all i with 1 ≤ i ≤ R thenφ(KF ) ≥ α.

Proof:

φ(KF ) =
| cut(KF )|
vol(KF )

=

∑

i | cut(KFi
)|

∑

i vol(KFi
)

=

∑

i φ(KFi
) vol(KFi

)
∑

i vol(KFi
)

≥
∑

i α vol(KFi
)

∑

i vol(KFi
)

= α.

We proceed by defining a useful partitioning ofK.
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Definition 6. Let Kk,k′ ⊆ K be the family of subsets ofVF such thatKF ∈ Kk,k′ if and only if
CH(KF ) = k andCS(KF ) = k′.

Definition 7. For any subsetKF ⊆ VF let YKF
be the number of attack edges with two endpoints in

KF , let XV ∩KF
be the number of attack edges with one

endpoint inV ∩ KF and the other one inVF \ KF , and finally letXV ′∩KF
be defined in a specular

way.

Given the previous definitions, we can now proceed with stating a few lemmas, whose proof we postpone
to the last subsection of this appendix.

Lemma 5. Let C be a constant larger than12000, volS(V ′) ≤ volH(V )
12

and let φ(H) < 1
e

. For any
0 ≤ k, k′ ≤ 1

C
⌈φ(H) · vol(V ′)⌉ we have

|Kk,k′ | ≤ exp
( 1

384
log

(

1

φ(H)

)

· φ(H) · volS(V ′)
)

.

Lemma 6. Under the assumptions of Theorem 5, letKF ∈ K.
YKF

has expected value

E[YKF
] = g

volH(KF )

volH(V )

volS(KF )

volS(V ′)
.

Moreover
P (YKF

> 3 vol(KF ) + E[YKF
]) ≤ exp (−3 volH(V )) .

Based on these lemmas, we can now prove the main result.

Proof of Theorem 5:We want to prove that, for allKF ⊆ VF suchvol(KF ) ≤ 1
2
vol(VF ) we have

φ(VF ) ∈ Ω(φ(H)) with probability 1 − o(1). We begin by splittingK in 4 families of sets. Then we
consider each family separately and we prove that the probability that for any setKF ∈ K the probability
thatφ(KF ) /∈ Ω(φ(H)) is asymptotically smaller than the size of the family to which it belongs. This, in
turn, will imply the result.

From Lemma 4 we know that we can restrict our attention to setsKF ⊆ VF whose induced subgraph
GF [KF ] consists of single connected components. The lemma shows infact that if we can prove a lower
bound on the conductance of all such connected components ofG[KF ], then the bound applies also to
φ(KF ).

We now proceed to prove that for anyk, k′ all subsetsKF ⊆ VF in Kk,k′ have conductanceΩ(φ(H))
with probability 1− o(1).

We start with an easy example to warm-up, notice that in this simple case the result holds with
probability 1:

a) K0,0: Let us consider the elementsKF ∈ K0,0. If CH(KF ) is 0, sinceH is connected, we have
thatKF ∩ V is either equal toV or to the empty set. Similarly, we can see thatKF ∩ V ′ is either equal
to V ′ or to the empty set. Recall thatK0,0 ⊆ K contains only setsKF such thatvol(KF ) ≤ 1

2
vol(VF )

and that, by assumption,volH(V ) ≥ volS(V
′). Then, the only two possible elements ofK0,0 areV and

V ′.
If V ∈ K0,0 we havevolH(V ) = volS(V

′). Otherwisevol(V ) = volH(V )+g > volS(V
′)+g = vol(V ′),

but sincevol(VF ) = vol(V )+vol(V ′) < 2 vol(V ) thenvol(V ) > 1
2
vol(VF ), which contradicts the definition

of K.
As volH(V ) = volS(V

′) we haveφ(V ) = g
vol(V )

= g
vol(V ′)

≥ log
(

1
φ(H)

)

φ(H).

Similarly, if V ′ ∈ K0,0 we haveφ(V ′) = g
vol(V ′)

≥ log
(

1
φ(H)

)

φ(H).
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b) General case:We now consider the general case in whichk ≥ 0 andk′ ≥ 0, recallk = CH(KF )
andk′ = CS(KF ). Recall the definitions ofYKF

,XV ∩KF
andXV ′∩KF

, given in Definition 7.
We have

φ(KF ) =
CH(KF ) + CS(KF ) +XV ∩KF

+XV ′∩KF

volH(KF ) + volS(KF ) +XV ∩KF
+XV ′∩KF

+ 2YKF

(7)

=
CH(KF ) + CS(KF ) +XV ∩KF

+XV ′∩KF

volH(KF ) + volS(KF ) + g
. (8)

To find the right bound for the conductance, it is necessary toconsider separately the following four
cases that cover the relative size of the volumes ofV ∩ KF and V ′ ∩ KF in relation to V and V ′,
respectively.

1) Large V ∩KF and smallV ′ ∩KF : whenvolH(KF ) ≥ 3 volH(V )
4

andvolS(KF ) <
3 volS(V

′)
4

.
2) SmalV ∩KF and largeV ′ ∩KF : whenvolH(KF ) <

3 volH(V )
4

andvolS(KF ) ≥ 3 volS(V
′)

4
.

3) SmallV ∩KF and smallV ′ ∩KF : whenvolH(KF ) <
3 volH(V )

4
andvolS(KF ) <

3 volS(V
′)

4
.

4) Large V ∩KF and largeV ′ ∩KF : whenvolH(KF ) ≥ 3 volH(V )
4

andvolS(KF ) ≥ 3 volS(V
′)

4
.

Case1: Large V ∩KF and smallV ′∩KF . In this case we havevolH(KF ) ≥ 3 volH(V )
4

andvolS(KF ) <
3 volS(V

′)
4

. Recall thatKF ∈ K hasvol(KF ) ≤ 1
2
vol(VF ), whereVF = V ∪ V ′. So we have,

volH(KF ) ≤
1

2
vol(VF ) ≤

1

2
(volH(V ) + volS(V

′) + 2g) ,

by the assumptionvolS(V ′) ≥ g. Now,

volH(KF ) ≤
1

2
(volH(V ) + 3 volS(V

′)) .

Hence, from the assumption on the size ofKF ∩ V , we have

3

4
volH(V ) ≤ 1

2
(volH(V ) + 3 volS(V

′)) ,

and

volS(V
′) ≥ 1

12
volH(V ).

Now, suppose thatk or k′ ≥ 1
C
⌈φ(H) · vol(V ′)⌉, for a large constantC, by equation 7 we get:

φ(KF ) ≥
1
C
⌈φ(H) · vol(V ′)⌉

volH(KF ) + volS(KF ) + 2g
≥

1
C
⌈φ(H) · vol(V ′)⌉

12 volS(V ′) + volS(V ′) + 2 volS(V ′)

≥
1
C
⌈φ(H) · vol(V ′)⌉
15 volS(V ′)

≥ 1

15C
φ(H),

where the last inequality comes fromvol(V ′) ≥ volS(V
′). Hence we haveφ(KF ) ∈ Ω(φ(H)).

We can therefore restrict now our attention to the case wherek, k′ ≤ 1
C
⌈φ(H) · vol(V ′)⌉. Consider a

single setKF ∈ Kk,k′ for a given pair ofk, k′. In expectation over the random choice of attack edges
according to the model we have:

E[XV ∩KF
] = g

volH(KF )

volH(V )

volS(V
′ \KF )

volS(V ′)
.
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This is because, for each of theg attack edges, there is a probabilitydeg(v)
volH(V )

that v ∈ V will be the

endpoint inH and, similarly, hereis a probabilitydeg(v
′)

volS(V ′)
that the other endpoint will bev′ ∈ V ′.

Since volH(KF )
volH(V )

≥ 3
4

and volS(V
′\KF )

volS(V ′)
= 1− volS(KF )

volS(V ′)
≥ 1

4
we have

E[XV ∩KF
] ≥ 3

16
g.

Further, since attack edges are independent, using the Chernoff bound (Theorem 2) we get that

P

[

XV ∩KF
≤ 1

16
g

]

≤ exp

(

− 1

192
g

)

.

Thus with probability1− exp
(

− 1
192

g
)

we have thatφ(KF ) is lower bounded by

φ(KF ) ≥ CH(KF ) + CS(KF ) +XV ∩KF
+XV ′∩KF

volH(KF ) + volS(KF ) +XV ∩KF
+XV ′∩KF

+ 2YKF

≥
1
16
g

volH(KF ) + volS(KF ) + 2g
≥

1
16
g

15 volS(V ′)

≥ 1

240
φ(H),

where the last inequality comes form the bound onXV ∩KF
and the previous considerations on the volume

of KF .
To complete the proof of this case we have to show that the result holds not only for a single set, but

for all the setsKF ∈ Kk,k′ with k, k′ ≤ 1
C
⌈φ(H) · vol(V ′)⌉.

By Lemma 5 we know that

|Kk,k′ | ≤ exp
( 1

384
log

(

1

φ(H)

)

· φ(H) · volS(V ′)
)

,

for any with k, k′ ≤ 1
C
⌈φ(H) · vol(V ′)⌉.

Furthermore, there are at mostvolH(V )2 ≤ 4n4 different pairsk, k′ with k, k′ ≤ 1
C
⌈φ(H) · vol(V ′)⌉

such thatKk,k′ is not empty. So, using the union bound, we get that:

P

(

∃KF ⊆ V ∪ V ′ : φ(KF ) <
1

160
φ(H)

)

≤ 4n4P

(

∃KF , k, k
′ : KF ⊆ Kk,k′ ∧ φ(KF ) <

1

160
φ(H)

)

≤ 4n4 exp

(

1

384
log

(

1

φ(H)

)

· φ(H) · volS(V ′)

)

· P
(

φ(KF ) <
1

160
φ(H)

)

≤ 4n4 exp

(

1

384
log

(

1

φ(H)

)

· φ(H) · volS(V ′)

)

· exp
(

− 1

192
g

)

∈ O

(

exp

(

− 1

384
log

(

1

φ(H)

)

· φ(H) · volS(V ′)

))

.

Thus for allKF covered by Case 1 we have that with high probabilityφ(KF ) ∈ Ω(φ(H)).

Case2: Large V ′∩KF and smallV ∩KF . In this case we havevolH(KF ) <
3 volH(V )

4
andvolS(KF ) ≥

3 volS(V
′)

4
.
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If volH(KF ) ≥ volS(KF ) we have

φ(KF ) ≥ CH(KF )

volH(KF ) + volS(KF ) + 2g

≥ CH(KF )

volH(KF ) + 3 volS(KF )

≥ CH(KF )

4 volH(KF )
∈ Ω(φ(H)).

So we can restrict our attention to the case whenvolH(KF ) <
4
3
volS(V

′), and the proof of this case
mirrors the one for the case above.

Case3: SmallS ∩KF and smallH ∩KF . In this case we havevolH(KF ) <
3 volH(V )

4
andvolS(KF ) <

3 volS(V
′)

4
. For this reason,volH(KF ) ≤ 4 volH(V \KF ), asvolH(KF ) ≤ 1

2
volH(V ). Hence,

CH(KF ) ≥ φ(H) volH(KF ).

Similarly, CS(KF ) ≥ φ(S) volS(KF ) and hence the following inequality forφ(KF ) holds

φ(KF ) =
CH(KF ) + CS(KF ) +XV ∩KF

+XV ′∩KF

volH(KF ) + volS(KF ) +XV ∩KF
+XV ′∩KF

+ 2YKF

≥ φ(H) volH(KF ) + φ(S) volS(KF ) +XV ∩KF
+XV ′∩KF

volH(KF ) + volS(KF ) + 2YKF
+XV ∩KF

+XV ′∩KF

≥ φ(H) volH(KF ) + φ(S) volS(KF )

volH(KF ) + volS(KF ) + 2YKF

.

By Lemma 6 we know that

E[YKF
] = g

volH(KF )

volH(V )

volS(KF )

volS(V ′)
,

and thatP (YKF
> 3 vol(KF ) + E[YKF

]) ≤ exp (−3 volH(V )) .
ThusP (YKF

> 8·max (volH(KF ), volS(KF ))) ≤ P (YKF
> 3 vol(KF )+E[YKF

]) is at mostexp (−3 volH(V )).
In this case we have a strong probabilistic bound and thus we can use a simpler bound on the size

of Kk,k′ . In fact it is enough to notice that|Kk,k′| ≤ 2volH(V )2volS(V ) ≤ 22 volH(V ) to get from the union
bound that:

P (∃KF ⊆ V ∪ V ′ : YKF
> 8 ·max (volH(KF ), volS(KF ))) ∈ O

(

e− volH(V )
)

.

Thus with high probability,

φ(KF ) ≥ φ(H) volH(KF ) + φ(S) volS(KF )

volH(KF ) + volS(KF ) + 16max (volH(KF ), volS(KF ))
≥ 1

18
φ(H).

Case4: Large S ∩ KF and largeH ∩ KF . Finally, in this case we havevolH(KF ) ≥ 3 volH(V )
4

and
volS(KF ) ≥ 3 volS(V

′)
4

. Note thatg ≤ volS(V
′) ≤ 4

3
volS(KF ),
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φ(KF ) =
CH(KF ) + CS(KF ) +XV ∩KF

+XV ′∩KF

volH(KF ) + volS(KF ) +XV ∩KF
+XV ′∩KF

+ 2YKF

≥ CH(KF ) + CS(KF )

volH(KF ) + volS(KF ) + 2g

≥ CH(KF ) + CS(KF )

volH(KF ) + volS(KF ) +
8
3
volS(KF )

≥ CH(KF ) + CS(KF )
11
3
(volH(KF ) + volS(KF ))

.

Note that for any four positive positive real numbers we havethat if a/b > c/d, then a+c
d+b

≥ c
d
, thus we

get

φ(KF ) = min

(

CH(KF )
11
3
volH(KF )

,
CS(KF )

11
3
volS(KF )

)

≥ O(φ(H)).

Having covered all four cases, we can then conclude thatφ(GF ) ∈ Ω (φ(H)) with high probability,
completing the proof.

B. Proofs of Lemmas 5 and 6.

Proof of Lemma 5:
Remember thatKk,k′ contains the subsetsKF of VF such thatCH(KF ) = k andCH(KF ) = k′. Notice

that once we have selected thek edges betweenKF ∩ V andV \KF and thek′ ones betweenKF ∩ V ′

andV ′ \KF , we have defined the two cuts inV andV ′, so we have just four possible setsKF . Thus,
for a given pairk, k′, we have at most

|Kk,k′ | ≤ 4

((|E|
k

)

·
(|E ′|

k′

))

≤ 4

( |E|
1
C
⌈φ(H) · vol(V ′)⌉

)

·
( |E ′|

1
C
⌈φ(H) · vol(V ′)⌉

)

≤ 4

( |E|e
1
C
φ(H) · vol(V ′)

)
1

C
φ(H)·vol(V ′)( |E ′|e

1
C
φ(H) · vol(V ′)

)
1

C
φ(H)·vol(V ′)

≤ 4

(

|E||E ′|e2
(

1
C
φ(H) · vol(V ′)

)2

)
1

C
φ(H)·vol(V ′)

≤
(

2Ceδ

φ(H)

2Ceδ

φ(H)

)
1

C
φ(H)·vol(V ′)

,

whereδ = max
(

|E|
vol(V ′)

, |E′|
vol(V ′)

)

. Thus, by the theorem hypotheses,δ = |E|
vol(V ′)

. Finally, because of the

lower bound on the size ofvolS(V ′) we know that,

δ =
|E|

volS(V ′)
≤ 12|E|

volH(V )
≤ 6,

and hence,

|Kk,k′ | =

(

12Ce

φ(H)

)
2

C
φ(H)·volS(V ′)

≤ exp

((

log

(

12C

φ(H)

)

+ 1

)

2

C
φ(H) · volS(V ′)

)

≤ exp
(

(

log (12C) + log

(

1

φ(H)

)

+ 1

)

· 2
C
φ(H) · volS(V ′)

)

.
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Using the fact thatC > 9000 we have|Kk,k′| ≤ exp
(

1
384

log
(

1
φ(H)

)

· φ(H) · volS(V ′)
)

, completing
the proof.

Proof of Lemma 6:
By definition of YKF

we have

E[YKF
] = g

volH(KF )

volH(V )

volS(KF )

volS(V ′)
.

Let χ be the event{YKF
> 3 vol(KF ) +E[YKF

]}. Using the Chernoff bound (Theorem 2) we get that:

P (χ) = P (YKF
− E[YKF

] > 3 vol(KF ))

= P

(

YKF
− E[YKF

] >

(

3 vol(KF )

E[YKF
]

)

E[YKF
]

)

≤ P

(

|YKF
− E[YKF

]| >
(

3 vol(KF )

E[YKF
]

)

E[YKF
]

)

≤ exp

(

− 1

3E[YKF
]
(3 vol(KF ))

2

)

≤ exp

(

− volH(V ) volS(V
′)

3g volH(KF ) volS(KF )
(3 vol(KF ))

2

)

≤ exp

(

− 3 volH(V )
volS(V

′)

g

(vol(KF ))
2

volH(KF ) volS(KF )

)

≤ exp (−3 volH(V )) .

The last inequality follows from the fact thatvol(KF ) ≥ volH(KF ), volS(KF ) and thatvolS(V ′) ≥ g.


