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Abstract

Sybil attacks, in which an adversary forges a potentiallpaumded number of identities, are a danger to
distributed systems and online social networks. The goalybfl defense is to accurately identify sybil identities.

This paper surveys the evolution of sybil defense prototiws leverage the structural properties of the social
graph underlying a distributed system to identify sybilritiges. We make two main contributions. First, we clarify
the deep connection between sybil defense and the theogndbm walks. This leads us to identify a community
detection algorithm that, for the first time, offers provalgiuarantees in the context of sybil defense. Second, we
advocate a new goal for sybil defense that addresses the limoted, but practically useful, goal of securely
white-listing a local region of the graph.

I. INTRODUCTION

The possibility that malicious users may forge an unboumiedber ofsybil identities, indistinguishable
from honest ones, is a fundamental threat to distributetésysthat rely on voting [Douceur, 2002]. This
threat is particularly acute in decentralized systems,revliemay be impractical or impossible to rely
on a single authority to certify which users are legitimatéafgolin and Levine, 2005]. The goal of
sybil defense is to accurately identify sybil identifies‘ideally, the system should accept all legitimate
identities but no counterfeit entities” [Douceur, 2002]gtlsimple techniques can be either too brittle
(beating a CAPTCHA [Von Ahn et al., 2003] costs a fraction of atger too blunt (IP filtering penalizes
all users behind a NAT).

Against this background, Yu et al. have put forward a ratiicdifferent approach [Yu et al., 2006],
[Yu et al., 2008]: protecting a distributed system by legang the social network that connects its users.
Intuitively, as long as sybil identities are unable to cegmip manyattack edgegsonnecting them to honest
identities, it may be possible to separate the wheat fronchiadf by analyzing the topological structure
of the users’ social graph. This style of sybil defehpeomises not only to be more surgical, but offers
a mathematically precise and elegant way to characterzedhustness of a sybil defense technique in
terms of the number of attack edges it can handle. The visido bffer universalsybil defense to all
honest nodes in the system: as long as the social graph cmmtor certain assumptions, an honest node
will correctly classify almost all honest nodes in the graphile rejecting all but a bounded number of
sybil nodes [Yu et al., 2008].

Several protocols that embrace this style of sybil defersae Isince been proposed [Yu et al., 2006],
[Yu et al., 2008], [Danezis and Mittal, 2009], [Tran et alQ14], [Wei et al., 2012], [Cao et al., 2012] and
higher-level distributed applications that rely on thera beginning to emerge [Lesniewski-Laas, 2010],
[Lesniewski-Laas and Kaashoek, 2010], [Quercia and H&i@0], [Tran et al., 2009].

Although this goal may be more accurately characterized as dgtection[Viswanath et al., 2012a], we use here the term sgibfense
originally proposed by Yu [Yu et al., 2008] and widely adopted in the litemtu

2Henceforth, mentions of sybil defense, unless specified othervefa, to techniques that leverage the structure of social networks.



The first goal of this paper is to examine the promise and tmeldmental limits of universal sybil
defense. Indeed, as Vishwanath et al. pointed out in thegmeanalysis of social network-based sybil
defenses [Viswanath et al., 2010] it is not known whetheef¢hare fundamental limits to using only the
structure of social networks to defend against Sybils”.

We offer a first answer to this question by establishing ba#tige theoretical bounds on the resilience
of several well-known social network properties that hagerbleveraged in the context of sybil defense
and by evaluating in depth the validity of tisecial defenseision.

As we shall see, at the core of social sybil defense are a sassafmptions about the structure of a
social graph under sybil attacks that, in essence, amounbtteling the social graph as consisting of two
sparsely connected regions: one comprised of sybil nodelsthe other of honest nodes, homogeneously
connected with one another. We will discuss several studnetuding our own experimental results,
suggesting that this representation of the world lacks resdenuance. Rather, the evidence suggests
that although honest entities in social graphs do orgamzgghtly-knit overlapping communities, those
communities form together a network that as a whole is moteevable than each single community.

Our second goal for this paper is then to advocate a realighmiethe focus of sybil defense to
leverage effectively the robustness of communities toldgghiltration. The intuition that motivates us is
not new. Prior work has suggested casting sybil defense asnananity detection problem [Viswanath
et al., 2010] and asked whether it is possible to use offstiedf community detection algorithms to
find sybil nodes. On this front, we make two contributiongsEiwe show that this approach requires
extreme caution, as the choice of the community detectiotopol can dramatically affect whether sybil
nodes are accepted as honest. Second, we identify the nattbahfioundations on which the connection
between sybil defense and community detection rests: waifgea well-founded theory and point to an
established literature to guide the development of futytel slefense protocols.

Our conclusion is that instead of aiming for universal cagey, sybil defense should settle for a more
limited goal: offering honest nodes the ability to whitstlia set of nodes of any given size, ranked
accordingly to their trustworthiness. We believe that thia good bargain, and not just because it results
in a goal that, unlike its alternative, is attainable, butdnese (1) the guarantees it provides are in practice
what nodes that engage in crowd-sourcing [Yuen et al., 201 tpoperative P2P applications [Pouwelse
et al., 2005], [Cox and Noble, 2003] need, and (2) the comjunalt cost of providing these guarantees
depends only on the size of the desired white-listed seerdttan, as in techniques that aim for universal
sybil defense, on the total number of identities in the nekwo

As a first concrete step towards fulfilling the new goal we ps#pfor sybil defense, we present the first
community detection algorithm that offers provable gusgas in the context of sybil defense. Perhaps
surprisingly, the algorithm is based directly on an appicg in a context much different from which it
was originally designed, of the random walk algorithm of Argkn, Chung, and Lang [Andersen et al.,
2007].

Despite these advances, we believe that it is important kmadedge that, however narrowing, a
non-trivial gap still exists between the assumptions resmgsto support the theory behind the current
state of the art in sybil defense and the reality of sybilctsaencountered in the wild.

For example, evidence from the RenRen social network [Yand.eR@l1] shows attacks that differ
from what current sybil defenses anticipate and that, gegpeir simplicity, can be devastating.

The final goal of this paper is to suggest that a promising veapddress this challenge is through
defense in depttwhere early defense layers (of which we sketch a few) argded to catch the simple
sybil subgraphs where defenses based on community deteetbniques fail and, as a side effect, to
“nudge” the attacker towards precisely those settings a/lieese techniques can effectively detect sybil
nodes.

A. Roadmap

The paper proceeds as follows. Section 2 examines fourtstal@roperties of social graphs (popularity,
small world property, clustering coefficient, and condact) that have been previously leveraged by



sybil defense and asks: which can better serve as a found@aticsybil defense? The answer, we find,
is conductance, a property intimately related to the cohoémixing time of a random walk. We then
proceed in Section 3 to discuss protocols that exploit tiania in conductance as a basis for decentralized
universal sybil defense [Danezis and Mittal, 2009], [Trdanak, 2011], [Wei et al., 2012], [Yu et al.,
2006], [Yu et al., 2008]. These protocols provide elegantsivoase guarantees when it comes to their
vulnerability to sybil attacks, but these guarantees aitcally sensitive to a set of assumptions that
do not appear to hold in actual social networks [Bilge et @09, [Leskovec et al., 2008], [Mohaisen
et al., 2010]. This motivates us to explore, beginning widltt®n 4, an alternative goal for sybil defense
that leverages two observations: (1) social graphs havatamal structure organized around tightly-knit
communities and (2) the graph properties crucial for sybifledse are significantly more likely to hold
within a community rather than in the entire social graplcti®e 5 reviews recent work on the theory of
random walks that provides a solid theoretical foundatmaytbil defense based on community detection;
we deepen our investigation of random walks in Section 6,revinee show how the well-known concept
of Personalized PageRank (not to be confused with PageRatR tffers honest nodes a path towards
a realistic target for sybil defense, more limited than ersal coverage but nonetheless useful: a way
to white-list trustworthy nodes that proves efficient antbust in both theory and practice. Section 7
greets us with a sobering result: in spite of their sophasiin, state-of-the-art sybil defense protocols
seem helpless against very crude real-life sybil attackerd is reason for hope (and future research),
however: we show that sybil defense protocols based on mandalks continue to be effective when used
in combination with very simple checks that leverage stiadtproperties of the social graph other than
conductance. Section 8 offers our conclusions and pointsréztions for future research.

[I. FOUNDATIONS OF SYBIL DEFENSE VIA SOCIAL NETWORKS

Sybil defense via social networks is predicated on the aggamthat it is possible to leverage the
structural properties of the social graghunderlying a distributed system to differentiate the sapgr
H comprised only of honest nodes from the sybil subgréplin this section, we ask a basic question:
which structural property, if any, holds the greatest psertowards defending against sybil attacks?

We consider (and briefly review below) four well-known stural properties of a social graph: the
popularity distribution among its nodes, the small worldgerty, the graph’s clustering coefficient, and
its conductance [Bara@si and Albert, 1999], [Watts and Strogatz, 1998], [Leskoe¢ al., 2008]. We
focus on these particular properties because of their premae in social network analysis and because
they have been used to defend against sybil atfacKse literature on social graphs discusses several
other properties (including assortativity [Newman, 2Q03¢tweenness centrality [Freeman, 1977], and
modularity [Newman and Girvan, 2004]) that we do not consides see this paper as a first step towards
a comprehensive characterization of the defensive powfettseastructural properties of social graphs.

A. Structural properties of social graphs

Popularity: The node degree distribution of social graphs is heavedads in a power-law or lognormal
distribution.

Small world propertyThe diameter of a social graph—i.e., the longest distanted®n any two nodes
in the graph—is small.

Clustering coefficient: A measure of how closely-knit social networks are. When wea@ate the
vertex of a social network with the user that it represerits, dlustering coefficient is the ratio between
the actual number of friendships between the friends of a aisé the number of all possible friendships
between them.

SMore specifically: conductance is at the heart of social network bsgeitl defense [Yu et al., 2006]; the clustering coefficient has been
used for sybil defense in a recent work [Yang et al., 2011]; noelgreks are used as a feature in a recent defense technique based on
machine learning [Yang et al., 2013]; and the distance between ndales g fundamental role in other recent defense schemes [Xu et al.,
2010], [Viswanath et al., 2012b]



Formally, let f, denote the actual number of edges between neighbors of exverie.
fo:=Hxy:z € N,y € N,,zy € E},

whereN, denotes the set of neighbors:gfand letk be the maximum number of edges between neighbors

of v: . (degz(v))

_ b
-
The clustering coefficient of a graph is the average clusgecoefficient of all its vertices, i.e.

1
c(G) = G Z Cy-

veV(Q)

wheredeg(v) denotesv’s degree. Then,

Cy -

Conductanceintuitively, the conductance(C') of a setC' of vertices in a given network’ = (V, E)
is the ratio between the number of edges going out fidnand the number of edges insidé More
precisely, given a set of vertic&s, the conductance of the set is defined as

o(0) = L2,

where thevolumeof C, vol(C), is defined as the sum of the degrees of the vertices in
vol(C') := Zdeg(v),

and thecut induced byC' is the setcut(C') of edges with one endpoint i’ and the other endpoint
outside ofC,

cut(C):={uw e E:ueCveV —-C}.
Finally, theconductanceof a graphG is defined as

o(G) = ol o(C).

The conductance of a graph is tightly related toniixing time[Sinclair, 1992], a property that is at the
core of many solutions developed to date for sybil defensedyal., 2008], [Yu et al., 2006]. Informally,
the mixing time of a graph measures how fast a random walkoagpes the stationary distribution. A
more precise definition relies on a few important notionsuadlrandom walks, which we now quickly
review.

Given an undirected grapfi = (V, E') we define theuniform random walk inG as the random walk
defined by the following transaction probability matrix:

1 -
P(u,v) =  des) T E.E’
0 otherwise.

It is a well-known result of the theory of Markov chains (see instance [Mitzenmacher and Upfal,
2005]) that any connected, non-bipartite graph has a unstaionary distributionr that depends only
on the degree of the nodes:

deg(v)

vol(V')

m(v)



Hence, if P'(u,v) is the probability of reaching nodefrom nodeu after at-step-long random walk, we
have that for alku andv
tlim P'(u,v) = 7w(v).

Assume now to start a random walk at a given nadand to perform¢ steps. Thevariation distance
A,(t) measure how closely the probability distribution of the moidt approximates the stationary
distribution

Aut) = 5 S0P w,0) = 7o)

We are finally ready to formalize the notion of mixing time.
Definition 1 (Mixing time). The mixing timeT'(¢) of a random walk, for any > 0, is given by
T(e) = max mtln{t c AL (t) < €}

A crucial assumption underlying most of the work in sociabitylefense [Mohaisen et al., 2010] is
that social networks arfast mixing i.e., that their mixing time i¥'(¢) = min(log(n), log(%)), wheren
is the number of vertices. Far= ©(), this implies a mixing timel’(e) = O(log(n)). We definer as
7(;)

n

As we have mentioned, the mixing time of a graph is intimatebated to itsconductancelntuitively,
when conductance is high, mixing time is low. In particulais possible to show that a class of networks
is fast mixing (i.e.7 is O(logn)) if and only if its conductance is asymptoticattpnstanfMitzenmacher
and Upfal, 2005].

B. Preliminaries
Before proceeding with our analysis, we review a few impdrtamcentration results.

Theorem 1 (Markov inequality) For any random variableX with non-negative values and for aay> 0
EX
P(X >¢) < L
€
Theorem 2 (Chernoff bound) Let X = > " X, for X;,--- X, independent random variables {f, 1].
Then

P(|X — E[X]| > eE[X]) < 2exp (—?E[X]) .

Definition 2 (Lipschitz Condition) A function f satisfies thelLipschitz conditionwith respect to the
random variablesX;, - - - , X,, with parameters:;, 1 < j <n, if forany1 < j <n and aj,a;..

f(Xi=a1,- X =a;1, Xj = a;, Xj1 = a1, -+, X = an) 1)
— f(Xl = A1, ,Xj,1 = Cljfl,Xj = CL;,XJ'+1 = (]J]Jrl, cee ,Xn = (ln)‘ S Cj.

Theorem 3 (Bounded differences inequalityAssume thaf satisfies the Lipschitz condition with respect
to the random variables(y, - - - , X,, with parameters:;, j € [n]. Then

P(f = Elf)l > 1) < 2exp (—;—) ,

wherec = 37", ¢}
Finally, henceforth we say than an evditoccurswith high probabilityif lim, .., P(E) = 1, where
n is the number of vertices in the graph.

“For a more comprehensive treatment, see [Mitzenmacher and Up&8)] and [Dubhashi and Panconesi, 2009].



C. Which property is more resilient?

If an attack can add sybil identities to a social netwéfkconsisting only of honest nodes without
altering a given structural property @, then that attack will be undetectable by any sybil defense
technique that leverages that property. To assess thé#itytaf a property to serve as a basis for sybil
defense, we then compare, under a given adversarial mbaegffort required to create an undetectable
attack.

To this end, we assume that a graphwith n honest nodes is given and that the attack induces a
graph S of sybil nodes whose topology is under total control of theessary (unlikeH, which is fixed).

For each propertyl, we characterize the adversary’s effort as the number cddwident toH that the
adversary needs to add in order to introducsybil nodes in a way undetectable b

To establish clear and almost tight bounds on the numbertatlatedges necessary, we introduce a
simple but powerful attacker that we will use for some of oauids. To avoid detection, our adversary
starts by buildingS so that, when looked through the filter Of, it looks similar to H. For simplicity
and only for the purpose of deriving the bounds for poputactustering coefficient, and diameter, we
assume that the adversary builflsas a copy off .°

The adversary then tries to set up := |E(H)| potential attack edgeghat connectd with S. The
probability of a nodev becoming an endpoint of an attack edge is proportionaldalegree:

degH(v)1 @
m

As we will see, this factor is crucial in leaving unalterec throperties of the social graph and in
particular its degree distribution.

If the attacker is able to create arbitrarily many attackesjgno sybil defense can hope to distinguish
between the two regions of the graph. Therefore, as cusjomahe sybil defense literature [Yu et al.,
2006], [Yu et al., 2008], we assume that the attacker’stglid create attack edges is limited; in particular,
we postulate that tentative attack edges are accepted witfapility p and rejected with probability — p.

To account for the outcome of recent social engineering raxats [Bilge et al., 2009], we allow to

be constant, resulting in an expected number of attack eegesal topm. It follows easily from large
deviation theory that, ifn is large enough, the number of attack edges is also contethtaaoundpm.
We denote with the graph that results from joining and .S through the set of attack edges. We define
R to be the set ofentativeattack edges the attacker attempts to introduce. Simileetly be the number
attack edges the attacker succeeds in establishing.

Under this simple attack model, how resilient are then the &iructural properties of social graphs
that we are considering?

1) Popularity: The intuitive motivation for popularity as a basis for séaafense is that the degree
distribution of nodes may be noticeably altered as a resudhaadversary introducing a large number of
attack edges, thereby providing evidence of an attack. Jode attack model, however, we show that
the adversary can ensure th@s popularity distribution will be statistically indistguishable from that
of H even after establishing many attack edges. Intuitivelygesithe nodes at the endpoints of an attack
edge are chosen with probability proportional to their degrafter the attack only a few nodes will see

their degree change by much: in fact, the degree of a vertéX will increase, in expectation, by only
degp (v)
p|R.

2m

This intuition is formalized in the following simple propten.

Proposition 1. Let H be the input graph,S be the attack graphR the set of tentative attack edges
betweenS and H and p the probability that each attempt to add an attack edge seaseFinally, letG

SWhile in practice it is neither necessary nor likely, this assumption, withoalitgtively altering our conclusions, leads to simple bounds
on the effort required to make attacks undetectable to defenses bagmpularity, network diameter, and clustering coefficient. Note that
neither the conductance bound nor the theorems about ACL (see S¥tticely on this assumption.
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Figure 1. Degree distribution of the graphs before and after attackaff&ek shifts the distribution up (because it doubles the size of the
graph) and to the right (proportionally to the number of attack edges)ldes not change the shape of the curves.
be the resulting (random) graph. Then, for eack G,
p
Bldegg(v)] = degy(v) (1+ Rl )

wherem is the number of edges in the honest region. Furthermoréggf; (v) > log”n in H, then with
high probability the final degree of honest nodes is coneged, i.e.

degyy(v) (1+RIS= = 0(1)) < degg(v) < degy(v) (1+ |RI5>- +0(1))



Proof: Let v be a node inH (for nodes inS the same analysis applies). Then, because all attack
edges are added with probability proportional to the ogbidegree of the node i/, E[deg.(v)] =
degy (v) + |R|%21™) = deg(v) (1 + |R|5%). Furthermore, ifv's degree is larger thalg®n in H, then

2m

by the Chernoff bound (Theorem 2) it follows that:
P(| degg(v) — Eldegg(v)]] > 6log""n) < e 55" € O(n72),
Thus, with high probability, the post-attack degree of aegodvith degree larger thatvg® n will be

deg (v) (14 |RI55- = 0(1)) < degg(v) < deg(v) (1+|RI5 +o(1)).

[ |

Our experiments with real-life social networks confirm th®wee conclusion. Figure 1 shows the degree
distribution of snapshots of several social networks lBefand after two attacks in which attack edges
are inserted with probability = 0.01 andp = 0.1, respectively: the curves before and after the attacks
have the same shape. We conclude that popularity is ikkdwas a foundation for sybil defense.

2) Small world property:The small world property does not fare much better than @ojyl since the
adversary can easily keep the diameterzofrom growing suspiciously. First, it is easy for the adveysa
to bound the relative growth of the diameter@®@fwith respect to that of{: if S = H and the adversary
succeeds in inserting just one attack edge, the diameteatcanost double. Our experimental evaluation
of several real-life social networks shows (see 90% diamstimn of Table I) that the 90%-effective
diameter [Leskovec et al., 2005], which measures the maxirdistance between 90% of the pairs of
nodes, is indeed barely affected under attack.

3) Clustering coefficientieveraging the clustering coefficient appears promisingabse attack edges
reduce its value. Unfortunately, while the clustering &ogfnt of social networks is typically high, its value
varies significantly from network to network [Leskovec et &008], from0.79 in the actor collaboration
network of IMDB, down t00.35 for Live Journal and to a mere.09 for the social network of Yahoo!
Messenger chat exchanges. Thus, if an attack modifies te&edhy coefficient by a small multiplicative
factor, the change is hard to detect. This intuition is cegatun the following result.

Lemma 1. Let H be the input graph$ be the attack graph obtained by copyifgand p the probability
that a tentative attack edge succeeds in attaching to a nodg iThen, ifc(H) is the clustering coefficient
of H and ¢(H) € O(1), with high probability,c(G) > a~'c(H), wherea := 14 (1 + %p)2.

Proof: We show that the insertion of attack edges does not incréasmost nodes, their degree by
much. This implies a lower bound for the final clustering ficednt of the graph under attack.

First, note that, by definition, all nodes of degree 1Hnhave a clustering coefficient of 0. So, in
the following we consider only nodes with degree greaten thaAfter the attack, the expected degree
of a nodev in G is equal todeg(v) (1+ 3p). By the Markov inequality (Theorem 1), it follows that
the final degree of is at least degy, (v) 61 + 3p) with probability less tharé. So each node has
deg(v) < 2 degy(v) (1+ 3p) with probability at least. and thus

9 1Y
deg? (v) < 1 deg?; (v) (1 + §p) :

doga(0)(deto(v) 1) < § (14 ) deg(o)deg(0) - 1)+ (14 50) degnlo)

As degy(v) > 1 we have

degg(v)(degg(v) — 1) <

| ©

(1 " gp)QdegH@(degH(v) ).
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It follows that the clustering coefficient of each node deses by at most a factor &f (1 + Lp)
and that, lgy linearity of expectation, the clustering coedfit of G decreases by at most a factor of
2T (1 + lp) .

2 2

Consider the sum of the clustering coefficients of the nodekargraphH (the same argument applies
also to nodes irb). By assumption, we know that this sum@dg|Vy|). Now, each node € H contributes
to this sum by at most and, with probability at Ieas%, by e (v) wherecy (v) is the initial value of

§(1+30)"
v's clustering coefficient.

By linearity of expectation, the expected sum of the clustgrcoefficients after inserting the attack
edges is also if®(|Vy|). To prove that the bound promised by the lemma holds with Ipigibability,
we then apply the Bounded Difference Inequality (Theorem Bh & Lipschitz-condition coefficient of
c; = 1 for each of the random variables corresponding to the ainsteoefficient of the nodes if/. ®

Note that the constants in the theorem are large only to nfakstatement hold with high probability.
In practice, one can expect much smaller variations, as showable I.

The implications of this lemma are disappointingly cle@e tlustering coefficient is not a sound basis
for sybil defense, since even after the attack its value @adrop by too much. Th&€lustering Coeff
column of Table | confirms the theorem’s predictions.

Note that even though the theorem applies to the clusteoafficient of the graph, a similar observation
holds for the clustering coefficient of each single node hastegrees of almost any node change by a tiny
multiplicative factor. Thus, sybil defense techniqued tiety solely on analyzing the clustering coefficient
of each node [Yang et al., 2011] can be easily circumvented bgpable attacker.

4) Conductance:Yu et al. [Yu et al., 2008] proved that iif belongs to a class of graphs whose
conductance is asymptotically constant, an adversary daatintroduceO(n) attack edges to build a
graph G whose conductance is indistinguishable from thatHof In the following, we generalize this
result to graphg of arbitrary conductance.

We begin with two preliminary observations. First, becausedefinition, the conductance of a graph
is the minimum of$(C') on any subset” of the graph’s vertices, an adversary can always enforce
#(G) € O(¢(H)) by introducing a suitable cut in the sybil region, whose togy is under his complete
control.

Second, an adversary who wants to introducsybil nodes needs to add at leag®(¢(H)) edges,
lest the cut between the sybil and honest par&Gdbecome too sparse, making it easy to use changes in
conductance to detect the attack.

We now show that, by adding just a few more edges, an advesamgefined earlier, can ensure that

¢(G) € Qo(H)).

Theorem 4. Let H denote a network af honest nodes with conductangesuch thatp vol(H) € Q(logn)
and¢ < e~!, and letS be a copy off/. Suppose that the adversary is able to establish betweand H
¢log(¢~ ') vol(H) attack edges, whose endpoints are selected with probabitifyoptional to the degrees
of the nodes. Let: be the resulting graph. Then, with high probability(G) € Q(¢).

Theorem 4 is actually a direct consequence of the followmgre general result.

Theorem 5. Let H = (V, E) be a connected simple graph such th@t?) vol(V) € Q (logn), ¢(H) < %
and letS = (V’, E’) be another connected simple graph withS) > ¢(H). Suppose further that

&(H) vol(V) < vol(V') < vol(V).

Let Gr = (Vp, Er) be the union ofS with H and letg be the number of random attack edges between
H and S, whose endpoints are selected with probability proporticimathe degrees of the nodes. Then,
if

log ¢(H)™" - ¢(H) - vol(V) < g < vol(V')
we have that, with high probability)(Gr) € 2 (¢(H)).
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Graph Nodes Edges Attack Edges Diameter 90% Diameter Clust. Coeff Est. Conductance
AstroPh 17903 196972 0 14 4.99 0.67 0.010
..p=0.01% | 35806 | 395924.2(+22.2) 1980.2(£22.2) 14.1(40.2) | 5.63(+0.006) | 0.66 (£0.0001) | 0.005(40.0001)
p=0.1% 35806 | 413663.3(+£54.4) 19719.3(+54.4) | 11.8(+0.4) | 4.90(=+£0.004) | 0.61(£0.0003) | 0.036(=0.0039)
DBLP 718115 2786906 0 20 7.43 0.73 0.016
..p=0.01% | 1436230| 5601647.3(+85.7) 27835.3(£85.7) | 19.4(£0.4) | 7.95(£0.004) | 0.72(+£0.0000) | 0.004(=£0.0003)
..p=0.1% | 1436230| 5852543.5(+224.4) | 278731.5(+224.4) | 17.0(+0.3) | 7.01(+0.010) | 0.67 (+£0.0001) | 0.013(+0.0012)
Enron 33696 180811 0 12 4.83 0.70 0.005
..p=001% | 67392 | 363426.6(+24.6) 1804.6(+24.6) 12.4(40.3) | 5.12(+0.013) | 0.70(+0.0001) | 0.005(+0.0002)
..p=01% | 67392 | 379691.2(+71.8) 18069.2(£71.8) | 10.9(+0.3) | 4.67 (£0.004) | 0.64(+0.0004) | 0.022(+£0.0015)
Epinions 26588 100120 0 16 5.98 0.23 0.020
..p=0.01% 53176 201240.1(420.0) 1000.1(£20.0) 16.4(£0.2) | 6.73(£0.009) | 0.23(£0.0001) | 0.005(40.0001)
..p=01% | 53176 | 210213.5(+36.3) 9973.5(436.3) 14.6 (4+0.3) | 5.97 (£0.005) | 0.21(+0.0002) | 0.030(+0.0026)
EUAll 32430 54397 0 9 457 0.52 0.031
..p=0.01% | 64860 | 109337.5(+13.8) 543.5(+13.8) 9.9(40.1) | 5.06(+0.024) | 0.51(+0.0004) | 0.005(+0.0001)
..p=0.1% 64860 114245.0(+33.2) 5451.0(+33.2) 8.6 (+0.2) | 4.70(£0.002) | 0.42(=£0.0008) | 0.051(+0.0057)
Facebook 63392 816886 0 12 5.15 0.25 0.020
.p=001% | 126784 | 1641941.2(+46.1) 8169.2(446.1) 14.2(4+0.2) | 5.79(+0.002) | 0.25(+0.0000) | 0.005(+0.0000)
..p=01% | 126784 | 1715443.9(+121.8) | 81671.9(+121.8) | 13.2(+0.2) | 5.24(+£0.005) | 0.23(+0.0001) | 0.031(+0.0042)
RenRen 33294 705248 0 11 4.29 0.23 0.032
..p=001% | 66588 | 1417543.1(+48.4) 7047.1(+48.4) 12.9(40.1) | 4.82(+0.002) | 0.23(+0.0000) | 0.005(+0.0000)
..p=0.1% | 66588 | 1481107.0(+68.3) 70611.0(£68.3) | 11.6(£0.2) | 4.44(£0.002) | 0.21(+0.0001) | 0.060(£0.0040)
Slashdot 70999 365572 0 11 4.84 0.10 0.023
..p=001% | 141998 | 734795.4(+26.5) 3651.4(+26.5) 12.0 (£0.0) | 5.49(40.005) | 0.10(£0.0000) | 0.005(£0.0000)
..p=01% | 141998 | 767694.4(£85.1) 36550.4(£85.1) | 11.1(+0.1) | 4.92(£0.002) | 0.09(40.0001) | 0.036(=£0.0042)
WikiTalk 92117 360767 0 9 4.63 0.14 0.047
..p=0.01% | 184234 | 725141.2(+26.0) 3607.2(426.0) 10.1(40.1) | 5.01(%0.005) | 0.13(+0.0000) | 0.005(40.0000)
w.p=0.1% 184234 757628.1(£79.5) 36094.1(+79.5) 10.0(+0.0) | 4.76(£0.001) | 0.12(40.0001) | 0.048(40.0007)

Table |
Statistical properties of the largest connected component in a collectiomabfvorld data sets. The values reported reflect the properties
of the data set before and after the attack specified in Section 1I-C. Thésdsr sybil graphs are averaged oveé attack instances and
the 95% confidence intervals, obtained by the t-student distribution [Walpole el @83], are reported between parenthesis. In directed
graphs, we removed edge direction to obtain an undirected networkAS$tiePh [Leskovec et al., 2007] is a co-authorship graph from
2003; the DBLP [dbl, 2011] graph is a snapshot of the DBLP co-autip@ph from 2011; the Enron [Klimt and Yang, 2004], [Leskovec
et al., 2009] graph is an email communication network from 2009; the iBpi[Richardson et al., 2003] graph is a dataset from the
Epinions product review site obtained in 2003; the EuAll [Leskovec e2807] graph is an email communication network of a European
research institution from 2005; the HE Physics [Leskovec et al., 200&)lyis a citation network of high energy physics from 2003; the
Facebook [Viswanath et al., 2009] graph is a crawl of the FacebNek+ Orleans community in 2007; the RenRen [Jiang et al., 2010]
graph is snapshot of the RenRen social network from 2009; the Shafiteiovec et al., 2009] graph is a crawl of the website social
network from 2008; the WikiTalk [Leskovec et al., 2010] graph is derifrem the Wikipedia page edit history as of January 2008.

Note that the assumption tha{7/) < I that restricts somewhat the generality of the result hatds i
real networks.
In order to avoid disrupting the flow of the paper, we deferite Appendix the rather long proof of
Theorem 5. Its fundamental implication however is clearth# adversary is able to introduce at least
o(H)vol(V)log ﬁ attack edges (aD(vol(V')) when the mixing time i£)(log n)), then the conductance

of the graph will remain, with high probability, very neailge same as that aff. This in turn implies
that the mixing time of the network does not change after thecl, and so it is hard to detect such an
attack using this property.
Theorem 5 then allows to draw mixed conclusions about thatsility of conductance for sybil defense.
On the one hand, it proves that detection techniques baseth@mges in global conductance can in
principle be circumvented; on the other, it shows that tHerefequired to do so is much higher for
conductance than for any of the other properties we haveidenesl.
Table | confirms the theorem’s message. As expected, camuteetdrops significantly under a weak
attack p = 0.01), providing leverage for sybil detection. Under a stronta@k (p = 0.1), however,
conductance may actuallgcreasebecause, by adding random attack edges, the adversargenkarery
cut with some probability, including the cut with minimumrmuctance that defines the conductance of
the entire final graph.

®Note that any hope of using an increase in conductance as an indicaopasiible attack is futile, as the adversary can always insure

that conductance is below a threshold by creating a sparse cut in
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Property Number of edges to circumvent jt
Degree distribution g=>0
Diameter g>1
Clustering coefficient 0<g<m
Conductance H(@)mlogp(G)"1<g<m
Table Il

The number of attack edges needed to circumvent the four properties.

Note that computing a graph’s conductance is NP-hard. Timelwaiance values that we report are
computed by a widely-used technique proposed in recendalsoetwork literature [Leskovec et al., 2008].

D. Discussion

None of the structural properties of social graphs that wee l@nsidered provides an impregnable
defense against sybil attacks in general, or even agaiassghcific attack we have assumed. However,
as Table 1l shows, when a graph under attack is observedghrtine lens of conductance, the adversary
has to work much harder to look inconspicuous. These reboltis motivate and justify the insight of
Yu and his collaborators to rely on conductance in the woek jomp-started sybil defense via social
networks [Yu et al., 2006]. We review their approach, itscasses, and what we believe to be ultimately
its fundamental limitations in the next section.

[Il. L EVERAGING CONDUCTANCE TOWARDS UNIVERSAL SYBIL DEFENSE

The vision behind the seminal work of Yu and his collaborsieas to develop a decentralized approach
to universal sybil defensevith the goal of allowing honest users to correctly assa#is migh probability
the honesty of every other user in the system. False postidefalse negatives would still be possible,
but they would be few and, further, their number would be libwithin a rigorous theoretical framework.
This compelling vision, first articulated in the SybilGugstbtocol [Yu et al., 2006], was further refined
in their later work on the SybilLimit protocol [Yu et al., 28Dand has inspired several other efforts in
sybil defense [Danezis and Mittal, 2009], [Tran et al., Z20]Wei et al., 2012], [Cao et al., 2012].

We begin this section by discussing the main intuition ulyiley these techniques and the guarantees
that they provide; we then proceed to discuss the crucialthat a set of key assumptions play in ensuring
those guarantees, and present evidence suggesting thasghmptions do not appear to hold in actual
social graphs.

A. Picking whom to trust

The verification process that an honest nadeses in the above protocols to determine whether it can
trust another node is based, at its core, on the following idea: use a random weslample some portion
of the graph uniformly at random and identify which nodesrtst on the basis of that sample. Different
protocols apply this sampling strategy in different wayd émdifferent parts of the graph. SybilLimit [Yu
et al., 2008] samples edges; SybilGuard [Yu et al., 2006]@attkeeper [Tran et al., 2011] sample nodes
in the graph; Sybilinfer [Danezis and Mittal, 2009] uses taedom walks to build a Bayesian model for
the likelihood that a trac& was initiated by an honest node. In the remainder, we proaideverview
of how SybilLimit [Yu et al., 2008] applies the random samygliof edges to identify honest users. While
the details of the discussion are specific to SybilLimit, ihiition for how the structural properties of
the graph make random sampling effective is common to thiseefamily of protocols.

Let us consider a particularly simple version of the sybiledéon problem. We are given two disjoint
graphsH and S—the graph of honest and, respectively, sybil nodes; an dtorextexu—the seed; and
a vertexv. Our task is to determine whetherbelongs toH or to S. Suppose that both nodes select an
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edge at random, subject to the constraint that they mustaockdge from the graph they belong to:
acceptsv if they pick the same edge.

If the vertices belong to different graphs, the test is prféhe probability thatu acceptsv is 0.
Otherwise, the probability of collision is very low;, but it can be boosted thanks to the classic birthday
paradox. Vertexu picks a setS, of, say, \/m distinct edges, whilev picks a setS, of /m edges
independently at random: now acceptsv if there is a collision (i.eS, NS, # (). This probability is

1-P llisi 1 1 ! ﬁl L 3

r(no collision = ( \/ﬁ) ~ - 3)

a good probability of success. Note now that the Setcan itself be picked at random. Singg,| =
vm < m, almost all edges will be distinct. This simple protocol seeds with good probability: each
vertex picks a set of/m edges independently and uniformly at random. If the two sBe#&gsect, then:
accepts, otherwise it does not. The protocol is symmetric and candae&l by both: andv to determine
whether to trust one another. This basic idea can be furéfered to obtain a test that succeeds with
overwhelming probability with small-sized edge sets.

With this protocol, the probability that an honest seed ptxe& sybil node remains 0, while the
probability of accepting another honest node can be pushédat an acceptable computational cost. But
how can we implement the test in a distributed fashion? lerg hhatmixing time and hence conductance,
enter the picture. A simple approach is to take a random waltheé graph—which, in the interest of
efficiency, should be very short—and pick the last edge onwhkk. This is a correct implementation
of the previous protocol provided that the graph is fast ngxilndeed, as we saw in section 1I-B, if a
graph is fast mixing, the probability that a random walk aidéh O(log(n)) ends inu is approximately
dng @ I we pick a random edge = (u,v) incident to the final vertex of the walk, the edge is picked
with probablllty approximately equal to

deg(u) 1 deg(v) 1 1
2m  deg(u) 2m  deg(v) m’

which means that each edge is picked uniformly at random.

In reality, however,H and S are connected through the attack edges that nodéshave convinced
nodes inH to accept: it is then possible that a random walk startinghfioc S will traverse an attack
edge, enter, and pick one of the edges selectedby H. The intuition is that, as long as the cut
betweenH and S is sparse, such situations are sufficiently unlikely tha thechanism continues to
function with good probability. Indeed, as we already memsid, recent work has proved that as long
as the number of attack edges is boundobﬁg— then this approach can reliably distinguish between
honest and sybil nodes [Yu et al., 2006].

B. Limitation of the model

There are then two fundamental assumptions that undedyellegant approach towards decentralized
universal sybil defense. The first is that the cut betweensth®l and honest region—the set of attack
edges—is suitably sparse. The second is that the mixing ¢ifrthe honest region i$)(log(n)). The
combination of these two assumptions ensures that randdks whO (log n) steps will end in a random
edge in the honest region with high probability.

Recent literature has cast doubts on whether these assaspiadd in practice. Social graphs do not
seem to be fast mixing after all [Mohaisen et al., 2010], aakkefidentities are accepted as friends with
much higher probability than anticipated [Bilge et al., 2D)(J¥ang et al., 2011], implying that the set
of attack edges is not as sparse as assumed. We then ask: ttalegnee are SybilLimit-like protocols
sensitive to their assumptions about sparse cuts and miires?

To answer this question, using SybilLimit [Yu et al., 2008] r@presentative (we find that the behavior
of other SybilLimit-like protocols is similar), we producas in the recent work of Viswanath et al., a
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Figure 2. The ROC of SybilLimit on each of the social networks we comsidesn the graphs are attacked with attack strepgth0.01.
Other SybilLimit-like protocols show qualitatively similar results.

Graph Nodes | Edges | Diameter| 90% Diameter| Clustering Coeff| Est. Conductance
AstroPh 17903 | 196972 14 4.99 0.67 0.010
... preprocessed 12118 | 162232 10 4.46 0.58 0.017
DBLP 718115| 2786906 20 7.43 0.73 0.016
... preprocessed 191172 | 1438509 15 5.97 0.60 0.020
Enron 33696 | 180811 12 4.83 0.70 0.005
... preprocessed 9357 86656 10 4.90 0.47 0.005
Epinions 26588 | 100120 16 5.98 0.23 0.020
... preprocessed 5624 57341 7 3.89 0.18 0.040
EuAll 32430 | 54397 9 4.57 0.52 0.031
... preprocessed 1106 8569 5 3.49 0.18 0.222
Facebook 63392 | 816886 12 5.15 0.25 0.020
... preprocessed 40757 | 632597 7 4.43 0.23 0.023
Renren 33294 | 705248 11 4.29 0.23 0.032
... preprocessed 22032 | 473443 7 3.77 0.21 0.031
Slashdot 70999 | 365572 11 4.84 0.10 0.023
... preprocessed 17993 | 183406 8 3.82 0.03 0.027
Wiki-Talk 92117 | 360767 9 4.63 0.14 0.047
... preprocessed 13069 | 133343 5 3.78 0.06 0.333
Table 11l

Statistical properties of the graphs before and after pre-procesingpRyeessing drastically reduces the graphs’ size and significantly
alters their structural properties.
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Figure 3. Precision vs Recall of SybilLimit for different valuesgo{ranging from0.01 to 0.10). The number of attack edgesjg:. The
theoretical guarantee of SybilLimit-like holds only fpr= 0.01. The results are shown for the Facebook network. As the number gkatta
edges goes beyond the prescribed limit there is a significant drop iorpenfice. The same test made with other graphs shows similar
results.

ranking of nodes with respect to a giveerifier nodeu, in decreasing order of trust: the first node in
the ranking is the node that trusts the most [Viswanath et al., 2010]. We then measuraléfensive
efficacy of SybilLimit by using three metrics, well known inet field of information retrieval, that appear
very natural in this contexiprecision recall, andROC In particular, we define the precision at position
k as the fraction of honest nodes among thaodes that the protocol ranks the highest. Similarly, we
define the recall at positioh as the ratio between the number of honest nodes among thiegogitions

in the ranking and the total number of honest nodes in the ar&tw

Another well-known accuracy measure, employed in our amslys the ROC index, which measures
the probability that a randomly-chosen honest node be dersil more trustworthy than a randomly-
chosen sybil one. A probability of corresponds to the ideal case in which every honest nodenkeda
higher than any sybil one; a probability 6findicates the reverse case; a random ranking corresponds to
0.5 probability.

Sensitivity to mixing time. SybilLimit-like protocols do not operate on raw social nets: they are
to be used only on networks that have been preprocessedrhtiviidy removing all nodes with degree
lower than five [Yu et al., 2006]. Table Il shows the statati properties of the graphs we use in our
experiments.

Mohaisen et al. are the first to observe that this step, whiltesting the mixing time of social graphs
to the level required by SybilLimit to be effective, can alsaluce the size of the graph [Mohaisen et al.,
2010]. Table 11l confirms this observation: in the case of Wi&lk, the preprocessing step removes over
85% of the nodes. Removed nodes are effectively consideredsdypithe protocol, and while those nodes
may still be able in some circumstances to enlist other noddse network as proxies [Yu et al., 2008],
it is unclear in general how removed nodes can safely takarddge of honest nodes’ resources and vice
versa [Mohaisen et al., 2010].

Figure 2 shows the impact of the preprocessing step on tHerpence of SybilLimit. Preprocessing
increases the performances of SybilLimit in most networkigh the notable exception of the Enron
network, where preprocessimgcreasesSybilLimit's performance: in this small and incomplete wetk
(email between contacts outside of the company is not dlajlaliminating low-degree nodes ends up
disrupting severely the connectivity of the honest region.
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Sensitivity to sparse cuts.Figure 3 plots SybilLimit's precision versus recall for tipeeprocessed
Facebook data set—a similar behaviour is observed withth#ronetworks in our data set. SybilLimit
proves very effective when the number of attack edges isinvitie theoretical bound (which corresponds
to p = 0.01). Once the bound is exceeded, however, the performance i 8yit falls rather quickly:

the algorithm can no longer ensure that at mogtn) sybil nodes per attack edge are admitted, leading
to a sudden drop in the precision observed in our experiments

C. Discussion

The goal of universal decentralized sybil defense withrgjrtheoretical guarantees, which has driven
early research on sybil defense via social networks, restassumptions (short mixing time and cut
sparseness) whose validity is at best dubious. What to do?éaent survey [Yu, 2011], Yu suggests a
couple of ways forward: one could offer sybil defense onlyht® nodes in the core of the social graph, in
effect institutionalizing the removal of nodes that are well connected, or one could simply renounce
the elegant theoretical worst-case claims of the curremhéwork and rely instead on “weaker but less
clean assumptions” [Yu, 2011]. In the next section, we epgbothird alternative that offers every honest
node a useful degree of sybil protection without comprongson elegance and rigor.

IV. COMMUNITIES

The theoretical guarantees offered by the protocols déstliso far hold only as long as honest nodes
are closely connected to one another everywhere in thelsgpeiph and the cut between honest and sybil
nodes is sparse. Empirical evidence suggests a differalityresocial graphs consist of communities, each
a tightly knit sub-network. Indeed, it is quite conceivattiat the cut between two tightly-knit communities
of honest nodes! and B be as sparse as the cut betwetand the sybil region: to an honest nodeAn
using a protocol in the style of SybilLimit, a sybil node wduhen be indistinguishable from an honest
node in B [Viswanath et al., 2010], [Viswanath et al., 2012a].

While these considerations argue against universal syli@nde, they suggest an alternative goal: to
provide each honest nodewith the ability to white-list a trustworthy set of nhodes—nely those in the
community to whichu belongs. This new goal can be more precisely stated as fallow

Problem 1. Letu be an honest user and be a subset of honest vertices in the social graph such taat: (
u € C, (b) the graph induced bg' has mixing timer and (c) there are at most(|C|7~!) edges between
C and the rest of the social graph. We want an algorithm (ideallyenable to an efficient distributed
implementation) that. given and the social graph, can distinguish almost perfectly betwthe nodes
in C' and the nodes outside 6f.

We make two observations. First, the problem of univershil slefense is a special case of Problem 1
in which 7 = O(logn) and C' is the entire honest region. Second, sybil defense appeéosmally, to
reduce to the task of detecting the “community”of the honest seed.

The fundamental affinity between community detection anail syefense has been first observed by
Viswanath et al [Viswanath et al., 2010]. After pointing dbat, from the perspective of an honest node,
SybilLimit-like protocols separate the social graph in ta@mmunities—honest nodes and sybils—they
go on to ask a natural follow-up question: can off-the-sitelinmunity detection algorithms be used to
detect sybils? Their answer is mixed: on the one hand, thew ghat a generic community detection
algorithm due to Mislove [Mislove et al., 2010] (also a cdkaar in [Viswanath et al., 2010]) achieves
results comparable to those of SybilLimit-like protocols both a synthetic topology and a real-life
Facebook social graph; on the other, they observe thatkatsaevise to the community substructure of
the honest portion of the social graph can manage, as wesdisduabove, to make the sybil region appear
indistinguishable from a sub-network of honest nodes.

We believe that a first step towards a more conclusive ansmMer iecognize that casting the problem
simply in terms of generic community detection leaves itensgecified. While intuitively compelling, the
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Figure 4. Two edge attack.

notion of community is ambiguous, as the many community aliete algorithms found in the literature,
each aiming for a subtly different notion of community, clgaindicate [Fortunato, 2009]. But what
should be the basis of a notion of community that can be udedti®kly for sybil defense?

A. The minimum conductance cut

A somewhat obvious candidate to serve in this role is corathoet. Conductance is hard to tamper with
(see Section Il) and it is intimately related to mixing tinggcritical property to leverage against sybil
attacks (see Section III).

It is tempting to define the problem of sybil defense in terrhthe minimum conductance cut problem
found in the community detection literature:

Problem 2. Let G = (V, E)) be an undirected graph. Find a sét C V' whose conductance(C) is as
close as possible to(G), the minimum conductance of the graph.

If we believe that the honest region is fast mixing and thas itonnected to the sybil region via a
sparse cut, then the sétshould be very close to capturing precisely the entire horeggon. This view
is of course too simplistic and can lead to community detactlgorithms that can be circumvented
by an adversary using far fewer attack edges than neededp® SybilLimit-like protocols. Mislove’s
algorithm [Mislove et al., 2010], a community detection@ithm that has been used in the context of
sybil defense [Viswanath et al., 2010], provides an intamgsexample.

Mislove’s algorithm is a heuristic algorithm that finds sh@nductance cuts—which is, in essence,
analogous to finding an approximate solution to Problem 2teNbat finding an approximate cut is
the best one can hope for, unleBs= NP. The setC' is built greedily. Starting from a vertex, the
algorithm growsC' by incorporating the vertex connected t@’ that results in a set'U{v} with minimal
conductance. If no neighboring vertex decreases the ctates then the algorithm adds the vertex that
increases it the least.

"The original proposal for Mislove’s algorithm [Mislove et al., 2010jes on a normalized conductance metric, but in the context of sybil
defense the protocol is evaluated using just conductance [Viswanath €010]. For consistency, we follow the approach of the second
paper.
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Although this simple heuristic appears to capture the fitmibehind Problem 2, it fails against the
following simple attack. Lety be an honest node, that has no neighbor of degree smaller3thafe
create the sybil region with nodes, s4, ..., s, as follows:

e sp ands; are connected to.
. for everyi < n — 2, s; is connected with the next two sybil nodes in the sequernge,and s;,»,
and also with the previous twg;_; ands;_».

Figure 4 illustrates the attack, involving only the two akadges connecting to s, and sy, that results
in Mislove’s algorithm deterministically admitting evenode of the sybil regiof.

At the beginning, the best choice for the algorithm is to ddel fowest-degree nodg: the value of
the ratio that defines the conductance of the new set desreas@s numerator is increased by only two
edges (those from, to s; ands,), while its denominator is incremented by three. After flaigl mistake,
the best node to add becom@s which raises the numerator again by two and the denomirtdour.
Proceeding in a similar way leads to admitting the entirausaqess, . . . s,,.

B. Discussion

Reframing sybil defense to leverage the community sub-strechat exists in social graphs requires a
deep understanding of the relationship between sybil defand conductance—in essence, understanding
when a solution to Problem 2 is also a solution to Problem ¥ Kéy to the approach we explore in
subsequent sections relies, at a local scale, on a techongnteal to the efforts towards universal sybil
defense discussed in Section Ill: random walks.

V. FAST MIXING COMMUNITIES

Because of its tight connection with the theory of random wake minimum conductance cut problem,
which we have used to formalize the intuitive relationshegpaeen sybil defense and community detection,
has been studied in depth. Indeed, as we will see, a recertdlyoped sybil-defense algorithm [Cao
et al., 2012] is based on a well-known random walk algorithrevipusly developed to answer certain
foundational issues in the theory of algorithms [Spielmad &eng, 2004].

Problem 2, as we have called it, is NP-hard [Garey and Johri€x9] and from the point of view of
approximation, a series of results have established \&mamn-trivial approximation guarantees [Sinclair
and Jerrum, 1989], [Leighton and Rao, 1999], [Arora et alQR0In our context, however, these
sophisticated algorithms do not appear to be directly apple. They are not obviously parallelizable, an
essential scalability requirement given the huge size alflife social networks. A second, more subtle,
drawback is that their running time is polynomial in the sofethe entire graph. In contrast, there exist
methods whose time complexity depends only on the size oféteof trustworthy nodes that we are
trying to determine, which we expect to be significantly darathan the size of the entire network.

Spielman and Teng developed the first such “local” algorifBpielman and Teng, 2004]. Very roughly,
their idea is to associate a weight with each node and to ifgles$ part of the community all nodes
whose weight exceeds a certain threshold. To determine énghtvof a node, they effectively run many

truncated random walks of the same length O é , all originating from the same node (tlseed: a

node’s weight is given by the frequency with which it is \ésitdivided by its degree. The potential of this
algorithm for sybil detection becomes evident once oneméts the weight of a node as a measure of
the trust that the seed node putsvinindeed, the recent sybil detection protocol SybilRank [Caale

8Furthermore this attack can be modified to withstand also the preprocefsgingd in section 11I-B. For instance, to avoid a preprocessing
of nodes with degreec 5, the attacker can add in the sybil region a setigssi, ..., s, Of sybil nodes as before. Each sybil nogeis
connected to the previous four sybil nodes, ..., s;—4 (if they exist) and the four consecutive sybil nodgs, ..., s;+4 (if they exist).
Furthermoreso, s1, ands,, are connected to. In this setting it is possible to see that if initially picks so, it will then pick all the nodes
in the sybil region in sequence. If nodehas no honest neighbor of degredafter preprocessing), then the entire sequence of sybil nodes
is admitted before any of his honest neighbors.
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2012] is essentially an implementation of the algorithm pfeBnan and Teng, run using multiple seed
nodes.

Since the work of Spielman and Teng, however, the use of atedcrandom walks for computing low
conductance cuts has been further refined. In particuladefsen, Chung and Lang [Andersen et al.,
2007] originate many random walks from the honest seed, dBeirprevious algorithm [Spielman and
Teng, 2004], but the length of their random walks, insteade@hg fixed, is determined by means of
a (geometrically distributed) random variable. This aiifjon has a property that is extremely useful in
our context: it identifies a region around the honest seedse/ltmnductance is smaller than what is
computable with the approach used in SybilRank.

Andersen and Perez [Reid Andersen, 2009] and, very recdatigran and Trevisan [Oveis Gharan
and Trevisan, 2012] have proposed further improvements.dbt immediately obvious, to us at least, if
these algorithms can be used by an honest seed to rank otthes aocording to its trust in them. For this
reason, we will focus henceforth on the method proposed jefsen, Chung and Lang, which naturally
computes such a ranking [Andersen et al., 2007].

A. Discussion

Formalizing community detection in terms of Problem 2 alouws to draw from the rich literature on
algorithms based on random-walks. Among them, the algarith Andersen, Chung and Lang stands out
for the combination of its features: it supports node ragkthe cut it computes has smaller conductance
than most of its peers; its running time depends on the sizéhefcommunity, not that of the graph;
and it is easy to parallelize. In the next section we will dea&t this algorithm solves Problems 1 and 2
simultaneously, i.e., it is able to identify a community @inest nodes containing the honest seed, without
being lured into the sybil region. Further, we will prove thest theoretical guarantees concerning the
performance of a community detection algorithm in the cxinté sybil defense and show experimentally
that the algorithm is quite competitive with the state of #re

VI. PERSONALIZED PAGERANK AND LOCAL DEFENSE

In this section we analyze the “variable length” random watthod of Andersen, Chung and Lang [Andersen
et al., 2007], ACL henceforth, and show that it provides battmfal and experimental guarantees for our
localized vision of social sybil defense: white listing betcommunity to which our honest node belongs.

ACL is based on the Personalized PageRank (PPR) random wallsewdefinition we now review.
Starting from an initial seed vertex at each step in the walk a pebble returns to nodéth probability
« and moves to a uniformly random neighbor of its current lecatwith probability 1 — a. This
random walk has a unique stationary distribution [Anderseml., 2007] that we denote asr, , =
(ppPry,(v1), ..., pPPr,,(vs)). Clearly, this distribution depends on the starting nedand thejumpback
parametery. We will drop these subscripts when they are clear from theeod.

Intuitively, it is as if, starting from the honest seed, wafpemed many random walks whose length
is determined by means of a geometric random variable: aorangdalk has lengthk with probability
a(1 —a)*1. The expected length of each walkds!, meaning that long walks are rare and short walks
in the neighborhood of the seed are common. In this fashiennpodes in the “community” to which the
seed belongs should be visited most frequently. Nodes aigresl a score proportional to the number
of times they are visited.

ACL introduces an additional step to the PPR computationstioge assigned to the vertices is given
by
PPI,,, (1) @)

deg(u)

for all verticesu. This step, also used in the algorithm of Spielman and Tepg[®an and Teng, 2004],
ensures that the score acquireddys not inflated by its unusually high degree.

scoreq ,(u) :=



19

In the following we will prove theoretical guarantees foetACL score. It is interesting to note that
they hold only for the ACL score and not for the PPR score (forctvseveral nodes of high volume
may be included in the first positions of the ranking). The AQgoathm proceeds by sorting the nodes
in V' in descending order afcore, ,,. While ACL is originally motivated by finding a low conductance
cut, the properties enjoyed by such ranking can be explaitetie context of sybil defense as well, as
the rest of the section shows.

Intuitively, the ranking computed using a honest nedas the seed defines, from the point of view of
v, an ordering of the nodes Wi, from the most trustworthy to the least.

This ranking is significantly more robust than that obtaifgdmethods based on PageRank (see for
example EigenTrust [Sepandar D. Kamvar, 2003] and TrustRZokan Gyongyi, 2004]): because a
random walk can reset only to the seed node, this ranking msuine to all attacks to PageRank based
on exploiting random walks that jump back to a spam node [ClarayFriedman, 2006]. Notably, in the
context of sybil defense, ACL solves Problem 1: it computessadonductance cut containing the honest
seed and almost no sybil nodes. The next subsection is det@teroving the following theorem which
formalizes this result.

Theorem 6. Let C' be a set of vertices such that the graph it induces is condesmel has mixing time
7 and with| cut(C)| € o(vol(C')771). Let1/2 > ¢ > 0 be a constant and let := (107)~'. Given a seed
v, define

S, = {u : score,,(u) > (2vol(C)e'/10) 1}

(this is the set of nodes that obtain high enough ACL scoregnTthere exists a subsét C C' such
that vol(C") > (1 — ¢)vol(C') and such that, ift € C’, thenvol(S, N C) > (1 — o(1)) vol(C) and
vol(S, \ C) = o(vol(C)).

Notice that here, and in the rest of the section, when refgno the mixing time of the graph induced
by the setC' we write 7 in place ofr(e) wheree € O(2) (see Definition 1).

Some comments are in order. Theorem 6 provides mathemgtieaantees on the security of the ACL
ranking in the context of sybil defense. If we let the 6ebf the statement be any connected subset of
the honest region, and denote withits mixing time, the theorem says that the ACL score computed
using most of the nodes @' as seeds recovers almost perfectly in the first positions of the ranking,
essentially achieving the goal envisioned by Problem 1.

Notice that the guarantees of Theorem 6 are expressed irs teffrmolume and not, as has been the
custom in prior papers on sybil defense (see for instanceetyal., 2006], [Yu et al., 2008], and [Tran
et al., 2011]) in terms of number of nodes. However, if we assuhatvol(C) € O(|C]), then the
guarantees given in terms of volume translate into the famdnes expressed in terms of number of
nodes. Since social graphs consists mostly of low-degreles)ove expect this condition to be roughly
satisfied in practice, as our experiments on the perfornsaoCLACL confirms. More formally, it can also
be shown for instance that if the graph follows a power-lagtrdiution [Albert and Baradsi, 2002] with
exponent greater than two, then this condition holds.

A. Security guarantees of ACL

In this section we prove Theorem 6. Our results are heavigetban previous work [Andersen et al.,
2007], [Zhu et al., 2013]: for completeness, we present tiexdull proof of all the statements and discuss
the security implications in detail.

Referring to the statement of Theorem 6, we use the followioigtion. C' is a subset of nodes that
induces a connected component, denoted>&S], with mixing time = and cutcut(C) € o %‘C)
Intuitively, C' is the community of the honest seed, connected to the resieafdcial graph by means of
a somewhat sparse cut. The rankings PPR and ACL will be comipitéd respect tax := (107) !,

To prove the theorem, we first lower bound the ACL score for atles insideS, and then we upper
bound the aggregate PPR score of the nodes outsiddore specifically, we first prove the following
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lemma, which shows that the total score that can be absonpedebcomplement of the community
containing the honest seed is negligible.

Lemma 2 (Boundedness Lemmalet C' be a set of vertices such that the graph it induces is condgecte
has mixing timer, and its cut is such thatcut(C)| € o(vol(C)r7!); and leta := (107)~!. Then, for
any positive constartt < ¢; < £, there exists a subsét’ of C, such thatvol(C’) > (1 — ¢;) vol(C') and

such that
> ppr,,(u) = o(1)
ueV\C

wherev is any (seed) node i’ (the o(1) term goes to zero a§' grows).

Proof: Let b(i, t) be the random variable describing the following event: aloam walk of lengtht,
starting on node, crosses an edge inut(C') during the walk. To upper boung [b(i,t)], we will use a
technique inspired by [Yu et al., 2006].

Suppose that the walk starts from the stationary distiwioutestricted to the subgraph (considering
also the edges that leavé): then, the probability of crossing any edge in the cut in\egistep is equal

to i‘;;((g)) So, by the union bound, the probability of crossing the aubne of thet steps is smaller than
or equal totf(ﬁz((g).
Let p; be the probability that we visit vertexin the stationary distribution. Singg = deg(i)/ vol(C),
e have: degli) ut(0)
;P 0] ey = ;P b6 Dlpe <
So,

> " Pb(i,t)] deg(i) < t|cut(C).

ieC
Now, this inequality implies that there is a 38t C C' of nodes of volume at least — ¢;) vol(C), with
constant) < ¢; < 3, such that for any € C” we haveP[b(i, t)] < t%. Otherwise, we would get
a contradiction becausg ., P [b(i,t)] deg(i) > t|cut(C)|.

For1 <i <n, letz; be the indicator vector for node (i.e. a vector whose components are all set to

0 except for thei-th one, which is set td). With abuse of notation we write, for the indicator vector
of the nodev. We can now describe the PPR calculation in matrix form asAmdersen et al., 2007]:

ppr,, = o Z (1—a)tz,W" (5)
t=0
ppr,,, defines the Personalized PageRank vector with jump-backapildy o and seed node. W is
the standard random walk transfer mattik/;; is the probability of reaching nodg in a single step of
the walk, starting from node
Let B =3, cync %i We have that:

ppr,,(B) =a ) (1-a)z,W'(B). (6)

t=0

®The ACL algorithm [Andersen et al., 2007] is actually defined in terms lszgt version of the walk, in which at every step there is a
probability of 1/2 of remaining in the same node. For the purpose of this paper the two defindie equivalent up to a simple change in
« so for simplicity here we use the standard random walk.
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Now suppose that € C’. Note that the probability of landing in a node ¥n\ C' at stept starting
from v is upper-bounded by the probability of crossing the cutryia walk of lengtht. Hence,
cut(C)
(1 —¢q) vol(C)

ppr,,(B) < o) (1-
s

cut(C
< (1-
- a(l — ) Vol ; o
a cut(C)
<
~ log*(1 — a) (1 —¢1) vol(C)
-1 cut(C)

a(l—cp)vol(C)

1

By choosinga = -,

[ |

Note that since the score of each node is obtained by divitiegpr probability by the degree (whose
value, by the completeness hypothesis, is at least equigl the previous lemma provides also a bound
on the total score of nodes i \ C.

We have showed that the overall score assigned to nodgs, ifi' is proportional to the size of the cut
and strictly bounded by(1). We now prove that most of the nodesdhreceive a constant fraction of
the overall score.

As in the statement of Theorem 6, I8f denote the set of nodes that receive a high ACL score with
respect to a seed that is, S, := {u : score, , (u) > (2vol(C)e'/10)~1}.

Lemma 3 (Coverage Lemma)Let C' be a set of vertices such that the graph it induces is condebtes
mixing timer, and its cut is such thatcut(C)| € o(vol(C)r71); and leta := (107)~'. Then, for any
positive constant < ¢; < i, there is a set”’” C C such thatvol(C’) > (1 — ¢1) vol(C) and such that
vol(S, NC) > (1 —o(1)) vol(C), forv e C".

Proof: Observe that, by setting = ﬁ a sizable fraction of the Personalized PageRank random

walks will be longer thanr, the mixing time of G[C]. More precisely, let(t) be the probability of a
Personalized PageRank random walk that steps long. Since the lengths of the random walks follow
a geometric distribution, we have thidt) = a(1 — «)" and consequently,

Zl (1—a)"

Consider the set”” C C for which we showed in the previous lemma that, for anye C’, the
probability of crossing the cut for &:step long walk starting in a node @’ is bounded byt- C“jflcgn

Fix a nodev € C'" and letv; # v be any other node id'. We want to determine a lower bound on the
score assigned to node by PPR if we compute it using as seed.

As already mentioned, we have

PPT, 4 (Ul) =« Z (1 — Oé)tl’thxi,
t=0
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wherelV is the standard random walk transfer matrix. If we restriat attention to random walks longer
than the mixing time, we obtain the lower bound

pPr,, (Vi) > @ Z (1—a)z,Wha,.
t=T1

So, in order to find a good lower bound tor,, ,(v;), we would like to know the probability that a
random walk of lengtht, for ¢ > 7, ends inv;. Note that this would be easy in the graph induced’hy
because we know that its mixing time s while it is not immediately obvious when we consider the
edges going out of’ (whether attack or non-attack edges). But from the previeosia we know that
the total PPR score leaking frodi is o(1). This implies that very few random walks “leak” probability
outside ofC. Let us suppose that no random walk leavésand denote byppr’ the ppr score in this
setting. Then, since the mixing time 6f[C] is 7, we can computepr’:

/ - t de V; 1 - ¢ de [
por(0) 2 0 30 - (S - ) 2 00 - (5 vt )

t=1

For any positived > 0 it follows that,

) deg(v;) - t
ppr, ,(vi) > m (a tZ(l —a) )

=7

deg(v;) 1y’
(15 8)vol(C) (1 B 1o_T>
deg(v;) o~ 1/10
— (1+9)vol(C) '

We know from Lemma 2 that the total score distributed by wallieg cross the edges in the boundary
of C'is at mosto (1). From the previous chain of inequalities, each node&”imhas ppr’ € Q(VO%(C)).
So, even if we remove the score distributed by walks thatsctbe cut, there exists a sét’ C C' with
vol(C”) > (1 — o(1)) vol(C) for which each nodey; in C” has PPR score greater th Vol((”é)) (e71/10)
and ACL score larger thagle—(c) (e71/10) |

Note that these lemmata imply the existence of a gap betweesdore of the nodes inside and those
outside ofC. We leverage this gap to prove Theorem 6.
Theorem 6: From Lemma 2, we have that the nodeslin\, C' have aggregate PPR scoredifl);
furthermore, all nodes ilW” have score at Iea%t#(c) (6_1/10)_ The PPR score of a node of degrée

in V'\ C, computed using as seed node C’, must be larger tha@#(c) (6*1/10) to be in the setS,:
thus, the total volume of nodes i, \ C is o(vol(C')). Hence the claim follows? |

Comparison with the state-of-the-art.
In the theoretical framework that underpins SybilLimit atslilk, the honest regio C V' is assumed

to be fast mixing, i.er = O(log(|H|)). Let g be the number of attack edges connecting honest and sybil
nodes.

By settinga = m and choosing” = H, we havecut(C) = g. Suppose to have = o (ngﬂ))
as in the assumption of SybilLimit [Yu et al., 2008]. AF| = O(vol(H)), in a connected graph ACL is
able to accept a slightly larger number of attack edges thdmill$mit: O(lg(’l(('gf)) Vs O(log‘g]}m). Note
however that ACL guarantees are expressed in terms of theneotf H rather than the number of its
nodes.

ONote that the theorem would not hold if we used the PPR score directly.
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Moreover, with the additional assumption thatl(C') = O(|C]) discussed in the previous section,
Theorem 6 guarantees that for any positive constantc; < % the ranking given bycore, ,(u), for a
fraction 1 — o(1) of nodesu € V/, contains in the firstV’| positions all but al — o(1) fraction of good
nodes, essentially matching both the number of attack edgeghe guarantees of SybilLimit.

The consequences of our theoretical results can be sunedaai follows.

« Under the hypotheses of SybilLimit-like protocols, thefpemance of ACL is comparable with the

state of the art.

. In the more general setting where only a subset of the hoaggirr is assumed to be well-connected,

ACL can guarantee that a subset of honest nodes is trustedth@resybil nodes.

« In harder settings, there is an explicit tradeoff betweenrttixing time of the honest region and the

number of attack edges that the network can handle.

B. Computing the ranking

Algorithm 1 ApproxACL(v, «, €)
ppr(u) =0Vu eV
r(v) =1
r(u) =0Vu e V\ {v}
Q = {v}
while |Q] # 0 do
Extractu from Q.
while r(u) > edeg(u) do
ppr,r = Push,(ppr,r)
Insert in@ all the nodesw in the neighborhood of, such that-(w) > edeg(w).

end while
end while
score, ,(u) = gs;gz; Yu eV

return scoreg,,

The PPR distribution can be expressed as the solution oftarsysf linear equations, and it can be
computed or approximated very efficiently in parallel (feejnstance, [Fogaras et al., 2005] and [Bahmani
et al., 2011]). Here we present the push-flow algorithm of ésdn el al., which computes an approxi-
mation of the ACL score and possesses many desirable pepgiindersen et al., 2007]. The algorithm,
which we name ApproxACL, for Approximated ACL score, has thmeput parameters: the starting
honest vertex, the jump back probabilityy, and the error parameter ApproxACL computes a vector
460 = (@1, .-, qn) that is an approximation of the ACL score vectoore, ,. ApproxACL first computes
an approximation of thepr stationary distribution as follows. The algorithm startghwan amount of
“residual PPR score” equal tbfrom the starting node. This residual score flows from the source node
to the rest of the network with a series of “trickle” operaso Each push-flow operation simulates one
step of the PPR random walk by transferring a small amounesidual score from a vertex to its
neighborw in proportion to the probability that the random walk movesnf « to w in one step. For
each nodes, ApproxACL keeps track of two quantities: gr(v) value and a residual valugv). The
former is the current approximation of the PPR of the nedeavhile the latter is the amount of total
residual amount of “score” that the node is allowed to disiie to itself and to its neighbors. Once the
approximated PPR distribution is computed, the algorithwidds the stationary distribution probability
of each node by the degree to compute the approximated ACle.scor

The algorithm is described as Algorithm 1 (for a full disdosssee [Andersen et al., 2007]).

How does the behavior of ApproxACL change as a function of tammetersy and ¢? Theorem 6
tells us how we should set the value ®f The dependence anis also reasonably straightforward. The
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Algorithm 2 Push,(ppr, r)
Ensure: The new updated vectonspr,,, and ryey are such thappr,,, = ppr andr = ' with the
following exceptions:
PPInew(V) = Ppr(v) + ar(v)
74new(U) = 1_Tar<v)
forall weV: (u,v) € E do
Tnew(“) - T(U) + #go(év)r(v)
end for
return  pprew € new
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Figure 5. Impact of varyingx. Precision vs Recall graph with Facebook-New Orleans data set (aper weak attack (edge density
p = 0.01) and (b) a strong attack (edge density= 0.1). Figures (c) and (d) refer to a weak and a strong attack, resplgctinethe
WikiTalk graph.

parametee measures how far we are from the actual ACL score. Clearly,lemadlues ofe imply longer
running times. The good news is that this dependence onspracis linear: it is possible to show that
the running time of the algorithm i©(--) and therefore, for a given, the running time i)(1).

A second consequence of the choicecafomes from the way the push-flow algorithm works. It can
be shown that all verticess whose probabilityppr(w) in the stationary distribution is smaller than
receive a score df from ApproxACL. When ApproxACL stops, nodes with a non-zefg value define
a connected component around the source, while the scork ofitaide vertices i9. It is interesting
to see what happens when ApproxACL is run with two valaes §. If we produce the ACL ranking
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=10"* | =10°| =106 | =1077
=103 0.84 0.83 0.82 0.82

=101 0.81 0.79 0.79

=10"° 0.73 0.73

=106 0.99
Table IV

KENDALL-TAU DISTANCE CORRELATION BETWEEN ANe-RANKING AND A §-RANKING FOR THE FACEBOOK SNAPSHOT THE INDEX IS A
REAL NUMBER BETWEEN+1 (PERFECT CONCORDANCEAND —1 (REVERSE ORDER. A VALUE OF 0 INDICATES THAT ONE RANKING IS
A RANDOM PERMUTATION OF THE OTHER SIMILAR HIGH CORRELATION WAS OBSERVED FOR DIFFERENT SNAPSHTS OF SOCIAL
NETWORKS.

in the two cases, then the non-zero portion of th@nking is longer than the corresponding prefix of
the §-ranking. The surprising finding is that these rankings agy \stable, in the following sense. Let
uS,...,us, andud, ..., ul be the two rankings. Then these two rankings are almost time.s@his can

be measured for instance with the Kendall-Tau distancegpsrted in Table IV. This is a very useful
property in the context of sybil defense. It says that if wentma identify quickly a set of trusted nodes,
we can do so simply by using a larger valuecoBecause the running time of the protocol is dependent
on the values ofv ande and not on the size of the graph, this allows ApproxACL to efiety scale in
situations where partial node rankings suffice.

C. Comparative Evaluation

Our key question in evaluating ACL is to determine whetheutceeds in expanding the guarantees
offered by today’s social defense systems in two directiqh¥ withstanding denser attacks, and (2)
providing high-quality sybil defense without relying oretassumption that the entire graph is fast mixing.

a) Method and environmentViswanath et al. observe that, despite their peculiariggbil defense
schemes are based on the same fundamental principle—cdtyrdatection—and produce highly corre-
lated results [Viswanath et al., 2010]. Hence, for the sdkelarity, the experiments we report compare
ACL only against SybilLimit, which we use as the SybilLimiké champion. Although SybilLimit
performed better than its peers, our experiments with Sylald, Sybilinfer and Gatekeeper returned
qualitatively similar results.

The graphs we use to compare their performance are gendrgtedbjecting social networks that
we assume to include only honest nodes to the attack dedanb8ection II-C. We then run ACL and
SybilLimit on the resulting graphs, rank the nodes usingghme methodology discussed in Section lll,
and measure precision (the percentage of nodes in the pfefie canking that are honest) and recall (the
percentage of honest nodes that are in the ranking’s prebxr) the perspective of 10 randomly chosen
seeds. We report the average of the values we obtain.

We configure SybilLimit to havd.5,/m random walks of length.5log(n), wherem is the number
of edges in the final graph. ACL is configured with= 10~3 ande sufficiently small to label every node
in the attacked graph with non-zero weight. For DBLP- 10~7; for all other graphs = 10~°¢ suffices.

In section VI-D(d), where we report the results of the othigoathms as well, we set the length of the
random walks in SybilGuard as5log(n) and the number of ticket sources in Gatekeepet(és

b) ACL tolerates denser attack$&igure 6 shows the degree to which ACL and SybilLimit succeed
in defending the Facebook and WikiTalk graphs when the lats&f®ngth, measured as the percentage
of attack edges in the graph, varies frgm= 0.01 to p = 0.1. Note that, to respect the “operating range”
of each protocol, the results we report for ACL are obtainedhmoriginal Facebook graph, while the
results from SybilLimit apply to thereprocessedracebook graph.

We observe that the ability of ACL to correctly classify nodiegirades gracefully as the attack increases
in strength, remaining relatively high even whegr= 0.1. Indeed, for the Facebook graph, the selectivity
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Figure 6. The impact of varying the attack strength, respectively, aeliemk (a,b) and WikiTalk graph (c,d). Results for SybilLimit are
reported on preprocessed graphs while for ACL we use raw graphs.

of ACL under an attack of strenggh= 0.05 is comparable to SybilLimit's with an attack pf= 0.01. The
performance of SybilLimit, on the other hand, decreasdseratapidly as the attack strength increases.

c) ACL does not need preprocessirfgigure 7 shows the protection offered by ACL and SybilLimit
to the DBLP, Epinions, Facebook, Slahdot, RenRen, and Wikigadphs for an attack whepe= 0.01.
For ACL, we report only results from the raw graph. For Syhbilitiwe report results from both the raw
and preprocessed graphs.

Without preprocessing, ACL achieves high precision at hggtall. SybilLimit's performance, on the
other hand, is mixed. For most graphs, SybilLimit providesedlent protection as long as the graphs are
preprocessed. When the graphs are not preprocessed, thedoffeverage degrades to varying extents.
The degradation in coverage for Facebook and RenRen is r#glifor Epinions the degradation is minor
but noticeable.

SybilLimit performs poorly on DBLP with or without preprocsg, though preprocessing the graph
does provide a significant boost. We speculate that this pexdormance is the side effect of the relatively
high mixing time observed by recent work [Mohaisen et al1®0

d) A second attack modeln this section we compare the algorithms using an attacketnwaiely
used in the literature [Danezis and Mittal, 2009], [Wei et @012]. The number of attack edgess
fixed, and random honest nodes are declared to be sybil uatdchievey attack edges. Then, more sybil
nodes are created from scratch until a totahodybils is reached. These sybils are then connected to
one another via a scale-free topology: similar to other mesgbil defense literature [Wei et al., 2012],
our attack uses the scale-free topology of Basd#Albert. We run each experiment ten times, and report
the average values of precision and recall.
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Figure 7. The precision-recall tradeoffs for ACL and SybilLimit on DBLEpinions, Facebook, Slahdot, RenRen and WikiTalk, with
p = 0.01. Results for ACL are reported for the raw graphs. Results for SybilLaretreported for both raw and preprocessed graphs.

Figure 8 shows the results for our Facebook and WikiTalk lgi@apdg = 50,000 and~ = 10,000. In the
Facebook graph, ACL and Mislove are essentially perfecpertrming all other algorithms (Gatekeeper,
SybiLimit and SybilGuard). In the WikiTalk graph, Mislove outperformed by the other algorithms. The
large performance difference between the two graphs cosfin@ sensitivity of Mislove s algorithm to
the graphs’ topology (see Section IV) and supports simiteeovations made in the recent literature [Cao
et al., 2012]. We also ran experiments with other graphsimbta similar results.
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Figure 8. The precision of ACL and the other algorithms on the FacebodRk\dkiTalk graphs with the attack model described in section
VI-D(d) with g = 50000 and~y = 10000. Results are shown for the averageldfrandom trials.

D. Local vs Global detection

We have shown that ACL is very effective in practice to addfessblem 1. Building a universal sybil
defense system for community-structured networks, howegenains an open problem.

In a recently published paper, Cao et al. suggested to expefedgive coverage by relying on multiple
trusted seed nodes instead of a single one [Cao et al., 20X#E precisely, suppose there are several
trusted seeds evenly distributed among communities ofdtorales; it is then possible to merge the local
ranking of the nodes to get a unified global ranking of the sddethe network.

While effective in practice, the use of multiple seeds doesimmediately lead to strong theoretical
guarantees, even assuming that all seeds are honest naidesxdmple, suppose we can prove, as it
is typical for ACL, that al — o(1) fraction of the honest seeds will assign a negligible faactof the
overall score to sybil nodes and distribute the rest eveolpss the honest region. There is always,
however, a fraction of unlucky honest seeds for which sudrantees are impossible—e.g., seeds at the
boundary between the honest and sybil regions. Unfortiypdtecause of the arbitrary nature of the sybil
region, walks originating from these nodes might produceiaconstrained (and adversarial) probability
distribution among the sybil nodes.

This is not only true for the ACL algorithm, but virtually fong sybil defense algorithm that relies on
random walks and mixing time (see for instance [Yu et al.,800Dru et al., 2006], [Cao et al., 2012]).

Unfortunately, it is not clear how such unlucky choice ofdewvill affect the overall ranking. In fact,
notice that while thecorrect seeds will distribute evenly the score among honest notesyriong ones
might concentrate the score to a smaller, but still sigmificaubregion of the sybil graph, thus letting
such nodes overtake the first positions of the ranking.

Nevertheless, we think that the use of multiple seeds is aiging research direction, and recent
literature [Cao et al.,, 2012] has empirically verified theeefiveness of this approach in real-world
scenarios.

E. Discussion

We have shown experimentally that ACL can identify quite aataly the community of a given honest
seed and that it provides formal guarantees for the rankingsoduces. While it is effective at solving
Problem 1, as we are about to see in the next section ACL isvsiitlerable to some simple, primitive
sybil attacks that are encountered in deployed social m&saea stark reminder of the gap that, while
narrowing, still exists between the theoretical assunmgtithat underpin the theory behind the current
state of the art in sybil defense, and the reality of sybih@ts encountered in the wild. The existence
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of this gap does not, in our view, belittle the importance e turrent theoretical tools, as it is only by
understanding their strengths and limitations that onedad#ain a firmer grasp of the problem of social
sybil defense. It does, however, point to a concrete chgdleand the next section outlines an approach
that we believe can prove fruitful in addressing it.

VII. SOCIAL SYBIL DEFENSE AGAINST REAL WORLD ATTACKS

Our appraisal in Section Il of the resilience of differemustural properties of social graphs indicated
that leveraging the complementary notions of mixing time aonductance is the most promising line
of defense against sybil attacks; furthermore, technidpsesed on this approach can provide impressive
end-to-end guarantees. Yet one key question remains: hiestieé are these techniques against actual
sybil attacks?

While data on sybil attacks in deployed social networks isreatlily available, two recent papers have
included experience reports that shed light on the typestatks that occur in the wild.

Cao et al. report to have successfully used SybilRank to iyestibil users in the Tuenti social
network [Cao et al., 2012]. They observe large clusters ofl sigers in regular topologies (star, mesh,
tree, etc.) that are connected to the honest communitiesighra limited number of attack edges. They
also report that an unspecified fraction of the remainingants are sybil, but to preserve confidentiality
they are unable to report on the number or characteristitkase accounts.

Yang et al’s experience in analyzing the RenRen social n&tigosignificantly different [Yang et al.,
2011]: they did not observe any large clusters of well-caier sybil nodes connected in turn to the honest
sub-graph through a small set of attack edges, as would becgby the sybil defense techniques we
have surveyed; instead, they find isolated sybil nodes eachected to the honest sub-graph through a
large number of attack edges.

The simple attack observed in the RenRen social network idgmraiic for conductance-based proto-
cols. We simulated the attack on our Facebook graph by intiod s isolated sybil nodes and by allowing
the attacker to attempt to establish potential attack edges by selecting both the honest andythié s
endpoint uniformly at randomn{ andn denote the number of edges and of vertices, respectivetiein
Facebook graph). As usual, each potential attack edge epset with probabilityp. In the experiment
we sets = pn so that the order of magnitude of the average degree of syihanest nodes is the same.
To assess the results we used the well-known ROC index, defin®ection IlI-B. The results show that,
even for a very small number of attack edges=0.01), every protocol performs poorly: the ROC(sl5
for SybilLimit, 0.44 for SybilGuard,0.34 for Mislove, 0.49 for Gatekeeper, and.37 for ACL. Notice
that a0.50 ROC is consistent with a random ranking.

These results are not coincidental, as the vulnerabilitgafductance-based techniques to an attack
where each sybil node can create more than one attack edgadamental: indeed, Yu et al. proved a
lower bound of©(1) to the number of attack edges per sybil node that any miximg tbased algorithm
might tolerate [Yu et al., 2008].

These experiences indicate that while today’s socialsedasybil defenses are designed to provide the
theoretically-best defense posture, they may be alsoyeastdumvented.

A. Defense in depth

To overcome this impasse, we believe that effective syliéase mechanisms should embrace a strategy
inspired by the notion of defense in depth [Stytz, 2004 heathan relying solely on techniques based on
conductance, they should include a portfolio of complemmgntetection techniques. For example, Yang
et al. observe that it is possible to spot sybil nodes by tractheir clustering coefficient (see Section II)
and the rate at which their requests of friendship are aedefitoth of these measures in the RenRen
graph are significantly higher for honest nodes than forlsylm the case of the clustering coefficient,
this is because a single sybil node that randomly issueadsi@p requests is unlikely to have many
friends who are themselves friends with each other) [Yangl.e2011]. As a rule of thumb, Yang et al.
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suggested to report as sybil those users whose friendshipest acceptance rate is less thatv and
whose clustering coefficient is below/100. They report that this is sufficient to correctly identify rao
than 98% of the sybil nodes, with a false positive rate of less thaiys. Note that, while these results
sound impressive, they are not cause for unconditionabcatien, as it is quite easy for a slightly more
sophisticated adversary to circumvent both checks by ngstiiendship requests to other sybil nodes
under his control. But, at the very least, checks like theskentlae life of the attacker more difficult and
prevent more sophisticated defenses from being triviathesdepped. Indeed, they may even nudge the
attacker, whether he likes it or not, towards the kind ofcksawhere conductance-based method can start
to be effective. For instance, simply adding a defense ltharmonitors the rate of friendship acceptance
introduces a bound (albeit loose) on the conductance of uhéetween honest users and sybil nodes.

In particular, assume that honest users accept sybil reguisprobability p and that the threshold of
accepted requests below which a node is flagged as sybil ®en, in our attack model, the following
simple result holds:

Proposition 2. Suppose that honest nodes accept friendship from a sybd watth probabilityp. Then,
to have average acceptance ratio larger th&rand avoid detection, a sybil node must cre%f# edges
to fellow sybil nodes for every tentative attack edge aimeanahonest node.

Proof: For a given sybil node, let be the ratio between the numbgr of edges connecting to other

sybil nodes andv;,, the number of attack edges that a sybil attempts to credtehenest node, i.e\ =
Es

==
"Note that in expectation the total number of edges that thié sgde will successfully create i5,+pFE),,

; japEn _ 6Ep+pEn _ 0+p i
SO Its average acceptance rat S5, = BB, — orl So to have the average acceptance ratio Iarger

than7', we have thag*2 > T and henceS > 12 ]

For example, if honest users accept friendship requests pvibability p = 10% and T = 50% (as
in [Yang et al., 2011]), then each sybil node should havetdighks to sybil nodes for every attack edge
to avoid detection.

Proposition 2 bounds the conductance of the cut betweensha@mel sybil nodes, in the sense that
whenever the sybil region has fewer edges than the honesnrage conductance of the cut is at most
opi=L.

\7Vﬁile this bound on conductance is loose, it is encouragiag gbch limitation to the attacker can be
obtained based on a fairly primitive measure such as theofdigendship acceptance. We speculate that
in the near future new defense layers based on advancedmadelarning and profiling techniques [Stein
et al., 2011] will force a sybil attacker who wants to escaptection to generate sybil regions that ever
more accurately resemble honest regions, connected thrawgparse cut of attack edges to the honest
portion of the graph: in other words, exactly the scenaritabile for conductance-based sybil defense.

VIIl. CONCLUSIONS

This work has traced the evolution of social sybil defensesifthe seminal work of Yu et al [Yu et al.,
2006] to the developments of the last several years [Yu e2808], [Danezis and Mittal, 2009], [Tran
et al., 2011], [Cao et al., 2012] to recent reports [Yang et2011], [Cao et al., 2012] that detail their
usage in practice.

We have identified two main trends in the literature. The fsdiased on random walk methods whose
goal is to identify fast-mixing (sub)regions that contahe thonest seed. The implicit assumption is that
social networks under sybil attacks must exhibit a simplecsire—a fast-mixing region of honest nodes
connected via a sparse cut to the sybil region. We have seenthis initial simplified picture of the
world has progressively become more nuanced, leading thadstbased on random walks that are able
to cope with a more complex world consisting of a constalatf tightly-knit, fast-mixing communities
loosely connected among themselves and to the sybil region.

The other trend that we have discussed considers sybil slefes an instance of community detection.
While we have revealed the limitation of this approach, weehla@en able to enucleate its core validity.
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As we have shown with our discussion on Personalized PageRamkwo approaches can go hand
in hand to yield more robust sybil defense protocols thatcamapetitive with the state of the art. The
discussion has highlighted the importance of the body efdiure that studies foundational issues on
random walks. As we have shown, both algorithms and usefuteqatual tools can be distilled from it
and successfully deployed in the context of sybil defense.

We also compare our solutions with real world attacks. Weebelthat the defense-in-depth approach
that we have advocated as a response to this challenge cactib@ated by moving from the original
vision of offering individual honest users decentralized ainiversal sybil defense [Yu et al., 2006], [Yu
et al., 2008] towards defense techniques that assume thatetender has complete knowledge of the
social graph topology [Cao et al., 2012], [Yang et al., 20114l @an deploy the kind of parallelizable
implementations suitable for handling the large graphs refime social networks. In particular, social
network operators are in a position to use machine learreogniques, user profiling, and monitoring
of user activity to gain additional knowledge that can hdipn filter sybil attacks not well-suited for
detection using techniques based on random walks, comyndatection, and their combination. Still,
as attackers increase in sophistication, claims of a skw#iet should be met with healthy skepticism.
As the arms race between attackers and defenders contibwél,be increasingly important that new
defense mechanisms clearly state the kind of attack theyt@iwithstand, a landscape that too often is
blurred.
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APPENDIX
A. Proof of Theorem 5
We prove Theorem 5, whose statement we now recall.

Theorem 5. Let H = (V, E)) be a connected simple graph such th&t!) vol(V) € Q (logn), ¢(H) < %
and let S = (V',E’) be another connected simple graph withS) > ¢(H). Suppose further that
o(H) vol(V') < vol(V') < vol(V).

Let Gr = (Vr, Er) be the union ofS, H and letg be the number of random attack edges betw&en
and S, whose endpoints are selected with probability proportiotzathe degrees of the nodes. Then if

log( ) - 6(V) -vol(V) < g < vol(V') we have that, with high probability,
¢(Gr) € 2(4(V)).

To prove the theorem we need to show that the probabilityathaets of volume smaller tha§1vol(VF)
have conductance ifR(¢(H)) is 1 — o(1).
We start by defining some useful notation.

_L
o(V)

Definition 3. For any disjoint subsetsl, B of V, let Cr(A, B) be the number of edges with one endpoint
in A and one inB in the final graphGr. More formally:

Cr(A,B):=|(z,y) € Er:x € Ay € B|.
Similarly letC'y (A, B) and Cs(A, B) be the analogous for grapi/ and S, respectively.

Definition 4. For any K C Vg, let Cy(K) be the number of edges with one endpoin&im V' and the
other in V' \ K. More formally:
Cu(K):=Cu(KNV,V\K).

Similarly for the graphS, let Cs(K) betCs(K) = Cs(K NV, V'\ K).

In the rest of the section, unless otherwise specifiddik’), ¢(K), cut(K) without subscript refer to
the volume, conductance and cut®fC Vg, respectively, in the grap&yf'r. On the other hand;oly (K),
ou(K), cuty (K) refer to the volume, conductance and cut of the subset/’, respectively, in the graph
H, and a similar convention is adopted for the graph

Definition 5. Let K be the family of subsets &f- such that for anykxy € K, vol(Kr) < 3 vol(Vr) and
G [KF| is connected.

We use the following proof strategy. First, we show that we i&strict our attention to only the subsets
of Vr in K. Then, we partition these subsets and derive a probabilistind on their cut irGx. Using
these bounds, we show that the probability that any sulisetof Vi with vol(Kr) < %VOI(VF) has
conductance)(Kr) € Q(¢p(H)) is 1 —o(1).

We begin by showing that we can restrict our attention to #miliy of sets K such that for any
Kr € K the induced grapld-» [Kr| is connected, thus motivating the definition Af.

Lemma 4. Let Gp[KF] be the subgraph induced Wy, and let K, Kp,, - - -, Kg,, with R > 1, be the
connected components 6% [Kr]. If ¢(Kr,) > o for all i with 1 <i < R then¢(Kr) > .

Proof:

vol(Kr) S vol(Kg) > vol(Kr,) — Y. vol(KF,)

o(Kp) = | cut(Kp)| _ > lcut(Kp)| >0 é(Kr,) vol(KF,) - > avol(Kg,) _

We proceed by defining a useful partitioning Af.
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Definition 6. Let K, C K be the family of subsets dfy such thatKp € Ky if and only if
CH(KF) =k and CS(KF) =k

Definition 7. For any subsetr C Vi let Yy, be the number of attack edges with two endpoints in
Kp, let Xyng, be the number of attack edges with one

endpoint inV N Kz and the other one iVr \ Kr, and finally letXy ~x, be defined in a specular
way.

Given the previous definitions, we can now proceed withrsgedi few lemmas, whose proof we postpone
to the last subsection of this appendix.

Lemma 5. Let C' be a constant larger thari2000, volg(V’) < %2(‘/) and let¢(H) < % . For any
0 <k k < E[¢(H)-vol(V’')] we have

1

(K| < exp (ﬁ log (W) - G(H) -Vols(v')).

Lemma 6. Under the assumptions of Theorem 5, &t € K.
Yk, has expected value
VOIH(KF) VOLg(KF)

voly (V) volg(V') "

E[YKF] =49

Moreover
P(Yk, > 3vol(Kp) + E[Yk,]) < exp(—=3volg(V)).

Based on these lemmas, we can now prove the main result.

Proof of Theorem 5:We want to prove that, for alkx C Vr suchvol(Kr) < %vol(VF) we have
o(Vr) € Q(¢(H)) with probability 1 — o(1). We begin by splittingK in 4 families of sets. Then we
consider each family separately and we prove that the pilitgahat for any setk € K the probability
thatp(Kr) ¢ Q(¢(H)) is asymptotically smaller than the size of the family to whitbelongs. This, in
turn, will imply the result.

From Lemma 4 we know that we can restrict our attention to &8tsC V- whose induced subgraph
Gr[KF| consists of single connected components. The lemma shofastithat if we can prove a lower
bound on the conductance of all such connected componer@s7of|, then the bound applies also to
(K p).

We now proceed to prove that for akyk’ all subsetsi C Vi in K have conductanc@(¢(H))
with probability 1 — o(1).

We start with an easy example to warm-up, notice that in timgpke case the result holds with
probability 1:

a) Ko,: Let us consider the elemenis, € Ko . If Cy(KF) is 0, sinceH is connected, we have
that K- NV is either equal td/ or to the empty set. Similarly, we can see tligt NV’ is either equal
to V’ or to the empty set. Recall th& o, C K contains only setd(; such thatvol(Kr) < i vol(V)
and that, by assumptiorply (V) > volg(V’). Then, the only two possible elements K o are V' and
V.

If Ve Koo we havevoly (V) = volg(V'). Otherwisevol(V') = voly (V) +g > volg(V')+¢g = vol(V’),
but sincevol(Vp) = vol(V)+vol(V’) < 2vol(V) thenvol(V') > £ vol(Vi), which contradicts the definition
of K.

As voly (V) = volg(V') we haved(V) = —& - = —2__ > 1o (;) S(H).

-~ log o
Similarly, if V' € Ky we haveg(V’') = —4— > log (ﬁ) o(H
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b) General caseWe now consider the general case in whick 0 andk’ > 0, recallk = Cy(Kp)
andk’ = Cs(KF). Recall the definitions o¥x,.,Xvnx, and Xy k.., given in Definition 7.
We have

Cu(Kr)+ Cs(Kr) + Xvare + Xvinkge
volg (Kr) + vols(Kr) + Xvak, + Xvink, + 2Yk,
Cu(Kr) + Cs(Kr) + Xvag, + Xvink,
volg(KF) + vols(Kr) + g '

To find the right bound for the conductance, it is necessaryottsider separately the following four
cases that cover the relative size of the volumesd/afi K and V' N K in relation toV and V”,
respectively.

1) Large V N Kp and smallV’ N Kp: whenvoly (Kp) > 22200 andvolg(Kp) < 2¥s),

2) SmalV N K and largeV' N Kp: whenvoly (Kp) < 29 andvolg(Kj) > 2,

3) SmallV N Kp and smallV’ N Kr: whenvoly (Kp) < 220 and volg(Kp) < 2220,

4) Large V N Kr and largeV’ N Kp: whenvoly (Kr) > 2250 andyolg(K ) > 2¥ls07),

(7)

O(KF)
(8)

Casel: Large V N K and smallV’ N K. In this case we haveoly (Kr) > 2220 andvolg(Kr) <
%(V'). Recall thatKr € K hasvol(Kr) <  vol(Vp), whereVp =V U V'. So we have,

1 1
voly (Kr) < 3 vol(Vr) < 5 (volg (V) + volg (V') + 2¢g) ,

by the assumptiorolg(V’) > g. Now,
1
voly (Kr) < 5 (volg (V') + 3volg(V")) .

Hence, from the assumption on the size/of NV, we have
3 1

B volg (V) < 5 (voly (V) + 3volg(V')),
and
volg(V") > % voly (V)
Now, suppose that or k' > L [¢(H) - vol(V’)], for a large constant’, by equation 7 we get:
clo(H) -vol(VT & [o(H) - vol(V')]

d(Kp) >

voly (Kr) + vols(Kr) +2g — 12volg(V') + volg(V”’) + 2 volg (V")

clo(H) -vol(V)] _ 1
2 © 15 volg (V') Z 5P

where the last inequality comes froml(V’) > volg(V’). Hence we have(Kr) € Q(o(H)).

We can therefore restrict now our attention to the case whete< L [¢(H) - vol(V’)]. Consider a
single setk» € Ky for a given pair ofk, £’. In expectation over the random choice of attack edges
according to the model we have:

VOlH(KF) VOl,g(V, \ KF)
VOIH(V> V015<V,)

EXvak,] =g
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This is because, for each of theattack edges, there is a probabilit llg{(g{}) thatv € V will be the
endpoint inH and, similarly, hereis a probabilit Ofi((q{/)) that the other endpoint will be’ € V.

H VOlH(KF) 3 VOls(V/\KF) o VOls(KF) 1
Smcew > andW =1- ol (V1) > 7 we have

3
EXvnk,| > 67

Further, since attack edges are independent, using the @hbound (Theorem 2) we get that

1 1
PlX < —q| < _ .
[ VNKrp S 169} > €xp ( 1929>

Thus with probabilityl — exp (—179) we have thatp(Kr) is lower bounded by

Cu(Kr)+ Cs(Kr) + Xvak, + Xvinke
VOlH(KF) + VOLS'(KF) + XVQKF -+ XV/QKF —+ QYKF
169 o 19
voly (KF) + vols(Kr) +2g — 15volg(V7)

1
> —o(H
> S oH),

where the last inequality comes form the boundomn x,. and the previous considerations on the volume
of Kp.

To complete the proof of this case we have to show that thdtreslds not only for a single set, but
for all the setsKy € Ky, wWith k, k' < £ [¢(H) - vol(V')].

By Lemma 5 we know that

o(Kr) >

| K 1| < exp (ﬁ log (ﬁ) - o(H) -VOIS(V')>,

for any with k, ' < Z[¢(H) - vol(V')].
Furthermore, there are at mosily (V)? < 4n* different pairsk, k' with k, k' < L[¢(H) - vol(V')]
such thatKy ,- is not empty. So, using the union bound, we get that:

1
P <3KF CVUV : ¢(Kp) < ﬁw{))

1
< 4n*P <EIKF,7€, kK :KpC Kip No(Kp) < —¢(H))

160
) ~V013(V')> P <¢(KF> < ﬁlod)(m)

(m
() o -vo1s)) e (5550
1

@) (exp (—@ log <m) -o(H) - VOIS(V’))) :
Thus for all K covered by Case 1 we have that with high probability<r) € Q2(¢(H)).

< 4n'exp (3; - ¢(H)
1 - G(H)

< 4nt exp ( log

1 log
384
1

m

Case2: Large V'N K and smalll’ N K. In this case we haveoly (Kr) < %H(V) andvolg(Kp) >
3volg (V")
S
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If VOIH(KF) > VOls(KF) we have
Cou(Kr)
voly (Kr) + volg(Kr) + 2¢
Cu(Kp)
V01H<KF) + 3 VOls(KF)

Cru(Kr)
Tvoly (k) € PO

So we can restrict our attention to the case wheh;(Kr) < 5 volg(V’), and the proof of this case
mirrors the one for the case above.

o(Kp) >

Case3: Small SN K and smallH N K. In this case we haveoly (Kr) < 222V andvolg(Kr) <
% For this reasonyoly (Kp) < 4voly(V \ Kp), asvoly(Kr) < 5 voly (V). Hence,

Similarly, Cs(Kr) > ¢(S) vols(KFr) and hence the following inequality fa¥( &) holds

Cu(Kr) + Cs(Kp) + Xvar, + Xvinke
VOIH(KF) + VOlS(KF) + XVﬂKF + XV/mKF + QYKF
¢(H) volg(Krp) + ¢(S) vols(Kr) + Xvak, + Xvinks

voly (Kr) + vols(Kr) + 2Yk, + Xvaky + Xvinke
o(H) voly (Krp) + ¢(5) vols(Kp)
VOIH( F) + V015<KF) + QYKF .

¢(KF)

By Lemma 6 we know that
VOIH(KF) VOls(KF)

volg (V') volg(V')’

and thatP (Y, > 3vol(Kr) + E[Yk,]) < exp (—3volg(V)).
ThUSP(YKF > 8-max (VOIH(KF),Vols(KF))) < P(YKF > 3V01(KF)+E[YKF]) is at Mmoskxp (—3 VOIH(V))
In this case we have a strong probabilistic bound and thusameuse a simpler bound on the size
of Ky 4. In fact it is enough to notice thak, ;| < 2velu(VIgvels(V) < 92velu(V) to get from the union
bound that:

E[YKF] =4

P <E|KF C Vuv': YKF > 8 - max (VOIH<KF),VOIS(KF))) cO (e—volH(V)) .
Thus with high probability,

¢(H) voly(Kr) + ¢(S) vols(KF) oL
voly (KF) + volg(Kp) + 16 max (voly (Kr), volg(KFp)) — 18

¢(Kp) > P(H).

Case4: Large S N Kr and large H N K. FinaIIy in this case we haveoly(Kr) > %H(V) and
volg(Kp) > 29(V) "Note thatg < vols(V’) < 2 volg(Kr),
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Cu(Kr)+ Cs(Kp) + Xvak, + Xvink,

VOlH(KF) + VOIS(KF) + XVﬂKF + XV/ﬁKF + QYKF

Cy(Kp) + Cs(KF)
voly (Kr) + volg(KF) + 2g

Cu(Kr) + Cs(Kp)

VOlH(KF) + V015<KF) + %Vols(KF)

Cu(Kp) + Cs(Kp)
S (voly (Kp) + vols(KF))

v

Y

>

Note that for any four positive positive real numbers we htat if ¢/s > </4, then giz > ¢, thus we
get
Cy(Kr) Cs(Kp)

volyy (KF)7 VOls(KF)) = O(9(H)).

Having covered all four cases, we can then conclude &) € (2 (¢(H)) with high probability,
completing the proof. [ |

¢(Kr) = min (11

B. Proofs of Lemmas 5 and 6.

Proof of Lemma 5:

Remember thai(; ,» contains the subsefs; of V» such thatCy (Kr) = k andCy(Kr) = k’. Notice
that once we have selected theedges betweekr NV andV \ K and thek’ ones betweerkr NV’
and V'’ \ K, we have defined the two cuts In and V’, so we have just four possible sets-. Thus,
for a given pairk, £/, we have at most

(K| < 4 (('?) ‘ (?)) = 4(%[¢(H)|£~?\|101(V’)1) ' (%W(H')?v'd(v’ﬂ)

1

]E|e & O(H)-vol(V') ]E’\e %d’(H)'VOl(V/)
< 4
< wmwm) )

%Qﬁ(H) -vol(V")
L $(H)-vol(V' 1 ) /
< 4 |E||E'|e? el )< (2065 2@5)0“’(’”““”
- (Lo(H) - vol(V7))* ~ \o(H) ¢(H) ’
where§ = max (Vo'fv',), Vo'ffv' ) Thus, by the theorem hypothesés= 'f“/) Finally, because of the

lower bound on the size afols(V’) we know that,
_ 1Bl _
~ volg(V') = voly (V) =

and hence,

2 /
120 *(b(H)‘VOlS(V )
| K| = < )
o(H

< exp (( (12O> 1) %¢(H)-Vols(v’)>
1

< exp < (12C) + log (¢(H)> + 1> -%qs(H) ~v015(v’)).
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Using the fact that > 9000 we have|Kj x| < exp <384 log< o )> - P(H) - vols(vf)>, completing

the proof.
Proof of Lemma 6:

By definition of Y, we have

VOlH(KF) VOls<KF)

ElVicel =g volg (V) vols(V') "

Let x be the even{Yy, > 3vol(Kr)+ E[Yxk,]}. Using the Chernoff bound (Theorem 2) we get that:

P(x) =

IN

IN

IN

IN

<

(

o
P(WKF Blvicll > (i) ) Elvie )
exp (~ gy (ol

o I vt

exp ( — 3voly (V)

exp (—3volg(V)).

volg (V") (vol(Kr))*
g VOlH(KF) V015<KF)

The last inequality follows from the fact thabl(K ) > voly(Kr), vols(Kr) and thatvols(V') > g.



