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Technical Section 

ON THE TWO ARRAY MASK HIDDEN-LINE ALGORITHM 

L. ALVISI and G. CASCIOLA 
Department of Mathematics, University of Bologna, Italy 

A b s t r a c t - - T h i s  paper considers the Two Array Mask algorithm which enables rapid plotting of a continuous 
function F(x, y). After reexamining this method as a hidden-surface algorithm, its correctness and precision 
were analyzed for parallel and perspective projections; given that the method with perspective projections 
is, generally speaking, not exact, alternative solutions are proposed for this case. 

I. INTRODUCTION 

The solution to many problems lies in the functions 
of two variables, the functions being given either by 
an explicit description or a grid of values. 

In such cases the function has to be given a realistic 
visual representation (i.e., with the hidden lines or sur- 
faces eliminated). The algorithms mentioned in the 
literature for plotting the functions of two variables are 
of the hidden-line type operating in image space. A 
surface can either be represented using perspective or 
parallel projections, the former creating a visual effect 
similar to that of the human eye or of a photographic 
system. 

The most widely used algorithm in the literature for 
solving such problems is the one called the "Floating 
Horizon" or "Two Array Mask" (TAM),  which was 
used by some authors for parallel representation of a 
function[2, 4, 5, 7, 8] while it was used by others for 
perspective representation [3, 6]. One of the charac- 
teristics ofthis method is its rapidity, as the hypotheses 
of a single-valued continuous function are fully ex- 
ploited. With this method the surface is represented 
by drawing one or two families of curves, according 
to a strict order. 

Williamson [2] solved the problem in parallel pro- 
jections, by using a set direction of projection; Wat- 
kins[4] used sights taken from any direction whatso- 
ever, yet noted that some of them led to lines being 
erroneously eliminated. Butland[5] optimized the 
method, but only by including viewing from surface 
domain corners, and Sowerbutts [7], expanded upon 
Butland's ideas by futher extending viewing to consid- 
ering the front and sides. Skala[8] found evidence of 
a drawing order for curves which was "correct" for 
every, direction of projection, his main contribution 
being a particularly interesting and efficient modifi- 
cation that he made to Bresenham's Drawing Line Al- 
gorithm. Wright [ 3 ] suggested further expansion upon 
Williamson's method to include perspective projec- 
tions, but did not clearly describe the procedure for 
each center of projection in the drawing order of the 
curves. 

In this paper we propose to reexamine the TAM 
method for hidden-line elimination as an algorithm 
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for the elimination of hidden surfaces. It will in this 
sense be necessary to establish the "correct" surface- 
drawing order and an "exact" plotting method. 

The feasibility of the TAM method for both parallel 
and perspective projections, for each direction and 
center of projection respectively, was analyzed in order 
to display a cross-hatched surface. 

On the basis of this analysis, in the case of perspective 
projections, a variation on the TAM method is sug- 
gested that enables greater drawing accuracy as well as 
further alternatives for accurate plotting. 

2. PROBLEM 

Given the continuous function 

z = F(x ,  y) with ( x , y )  ~ [a, b l x [c ,  d], (1) 

it has to be graphically represented with the use of a 
display raster. Selection has to be made from the infinite 
points of the function to identify a subset that will 
conveniently represent it. The most instinctive and ef- 
ficient way of achieving this end is by considering the 
following rectangular grid on the domain: 

(x~,y j )  i =  1 . . . . .  N X  j =  1 . . . . .  N Y  

with 

where 

x i = a + ( i  - l )hx  

y j = c + ( j -  1)hy 

hx = (b - a ) / ( N X -  1) and 

hy = ( d -  c ) / ( N Y -  1) 

thereby considering the triples (xi, yj, F(xi ,  yj)). From 
this finite number of points it is necessary to construct 
a function, which we will call F * ( x ,  y) ,  definite and 
continuous on the domain of ( 1 ), that approximates 
F ( x ,  y). 

F* (x ,  y) can be obtained rapidly at an arbitrary 
point by selecting a linear surface patch approximation. 

Let each pair of subscripts ( i , j ) ,  with 1 < i < NX 
- I and I < j  < N Y -  I, be associated with the natural 
number, k, obtained from: 

k = ( j -  I ) ( N X -  1) + i. 
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The rectangular grid unit with vertices (x~..~)), (x~, 
))+t ). (x,+t,))+, ), (x,+t,))) may, therefore, be defined 
as Ek (Fig. 1 ). 

As it is known that three non-aligned points will 
determine a plane in space, it generally follows that a 
linear approximation that will satisfy ( 1 ) in the four 
vertices of E~ does not exist. However, by selecting 
three of the four points, linear approximation can be 
obtained that is feasible for halfofE~. The remaining 
half can be approximated in like fashion. 

This can, of course, be done in two different ways, 
each of them resulting in slightly different approxi- 
mations of( 1 ). In order that this should have no effect 
upon final representation, ( I )  has to be sufficiently 
regular. 

/ 

COP 

Fig. 2. 

3. PROJECTIONS 

There are two principal classifications of geometric 
plane projections: parallel and perspective ones. The 
distinction between the two is to be found in the re- 
lation between projection center and projection plane. 
If the distance between the two is finite, projection will 
be perspective, whereas if the distance is infinite, pro- 
jection will be parallel. Perspective projections are cat- 
egorized by the number of principal vanishing points 
they have and therefore by the number of axes the 
projection plane cuts. 

The following general scheme has been adopted in 
this paper: Let COS be the center of the smallest sphere, 
S, containing the triples (x i , ) ) ,  F(xi ,  )))) for i = 1, 
. . . .  NX,  j = 1 . . . . .  N Y .  

For perspective projections a center of projection 
(COP) is selected outside the sphere S with the aim of 
seeing the surface in its entirety. As projection plane, 
we define 7r to be orthogonal to the COP and COS 
endpoint segment. In particular, we set r to cut the 
segment in its mean point; we call VRP this point of 
intersection (Fig. 2). 

An X - Y  orthogonal cartesian reference system is 
defined upon a-, with origin at VRP, and Y-axis con- 
sisting ofa  VUP vector projection. Here VUP is parallel 
to the ---axis (if  the COP is selected so that COP-COS 

is parallel to the z-axis, the VUP will be selected parallel 
to the y-axis). Finally, the X-axis is selected so that a 
left-hand system is formed by the X and Y axes and 
the COP-COS vector. 

A squared window containing the projection of 
sphere S, is then defined upon r (Fig. 3). 

For parallelprojections, we have to select VRP. The 
direction of projection will be the one set by the vector 
VRP-COS, where, without changing general cases, 
VRP is selected outside the sphere S (Fig. 4). 

As we did with perspective projections, we define 
the projection plane 7r to be orthogonal to VRP-COS 
and passing through VRP; we also define, an X-Y ref- 
erence system upon it and a squared window. 

(X, Y) will subsequently be used to indicate the 
coordinates of a point upon 7r and ( X S ,  Y S )  to indicate 
its device coordinates. 

4. GRID PATH 

Let us say that F*(Ek)  is the approximated F* 
function restricted to the Ek grid unit; therefore F* 
may be considered on the given domain as the union 
of the F*(Ek) .  

Yj+I 

! I 
I I 
! I 
| 

X i Xi+l 

~ Y 

VRP 

WINI)OW 

X 

Fig. 1. Fig. 3. 
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Sutherland, Sproull and Shumaker[9] had found 
evidence that the elimination of hidden surfaces could 
be considered as an enormous sorting process. It may 
be observed that because F, and consequently F*, are 
single-valued continuous functions, the F* (Ek) sorting 
with respect to a center or direction of projection can 
be obtained with low computational complexity. 

We need some kind ofF*  (Ek) sorting so that: 

if F*(Ek) occupies position i in the sorting, then 
it is either visible or (partially or totally) hidden 
by F* (Ek) surface units occupying previous po- 
sitions to the i-th (in order ranging from the near- 
est to the furthest). (2) 

Definition. A grid path is said to be any kind of or- 
dered succession of all Ek units. 

Definition. A grid path is said to be correct if con- 
dition (2) is satisfied by the succession of E~ units. 

Definition. Two F*(Ek)  and F*(Eh) surface units 
are said to be p-independent if there is no straight pro- 
jection ray (projector) p intersecting either of them. 
Whereas they are said to be p-dependent if such a pro- 
jector does, in fact, exist. 

Definition. Two F*(Ek)  and F*(Eh) surface units 
are said to be a-independent, if no plane a, containing 
a projector p and orthogonal to x -y  plane, intersects 
both of them. Whereas they are said to be a-dependent 
if such a plane does, in fact, exist. 

The edges of F*(E~) do belong to planes which are 
perpendicular to the x-y plane and orthogonal to each 
other. The order in which a plane a that is perpendic- 
ular to the x -y  plane cuts these orthogonal planes, can 
be estimated to be the same as the order in which line 
r, intersection of ot and x-y ,  cuts the definite grid on 
the domain. 

On account of the existing bijection between units 
F* (Ek) and Ek, it follows that line r's order of inter- 
section with the Ek grid units can be considered to be 
the same as the plane a's order of intersection with the 
F* (Ek) surface units. 

This means putting the a-dependent F* (Ek) units 

in an ordering. Note that two p-independent surface 
units are also a-independent, whereas it does not nec- 
essarily follow that two a-dependent units are also p- 
dependent. 

It can therefore be deduced that considering an order 
among a-dependent F*(Ek) units is more restrictive 
than it is among p-dependent units. Yet this enables 
an order to be established merely upon the basis of the 
grid units, and independently of the _--coordinates of 
the surface units, i.e., of F's  z-coordinates at the grid 
points. 

Problem 
Let us say that E~ grid units, k = 1 . . . . .  (NX 

- I)(NY - 1) are assigned upon the [a, b ] × [c, 
d] rectangular domain. 

Given a COP for perspective projections or a VRP 
for parallel projections, the correct grid path can be 
determined. 

It can above all be observed that the COS projection 
onto x-y  plane will fall at the center of the domain, in 
other words COSx =-- (b - a) /2  and COSy =- (d - c) /  
2. Therefore: for parallel projections a line s can be 
indicated, which does not interesect the domain, and 
is orthogonal to the ray with origin at (COSx, COSy) 
and passing through (VRPx, VRPy). rt rays parallel 
to (COSx, COSy) - (VRPx, VRPy) may, therefore, 
be considered to have origins on line s and to intersect 
the domain (Fig. 5). 

For perspective projections rt rays may be considered 
to have origins on (COPx, COPy) and to intersect the 
domain ( Fig. 6). 

Let us say that each rt ray induces a local order of 
the E~ grid units it intersects, given by the very. inter- 
section order of these units themselves. 

The local ordering induced by an rt ray can be in- 
dicated by listing the nt subscripts of the grid units 
intersected 

(k,. k2 . . . . .  k . , ) .  

Let P be the set of all the permutations of the first 

r i ." --'" / 

(VRP~ , V R ~  
/ 

/ 

Fig. 5. 
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r2 cuts the grid units in the following order: 
(coP, ,coP, ) 

Fig. 6. 

natural numbers  (NX - 1 ) (NY - ! ), and therefore 
all possible grid paths: 

P = { P l ,  P,. . . . . .  p ( s x - t ) ( s r - , ) }  

Ph " (kh.l, k&2 . . . . .  k&(NX-I)(NY-I)) 

1 < k&i < ( N X  - 1 ) ( N Y  - 1 ) 

where 

An rt ray will reduce all the possible P paths to only 
those of: 

P,t = {Ph; if u < v and k.  = kh,i and kv = kh, j 

then i < j  for each u, v = 1 . . . . .  nt}. 

In other words P,~ is the set of  the Ph containing units 
kl ,  k2 . . . . .  k.~ in the order induced by ft. 

Let all and only the rays rt which intersect the domain 
and induce different local sortings among E,  grid units 
be m; it follows therefore that all the correct paths 

• possible can be derived from 

(") p,,. 
/~1 . . . .  ,m 

Example 
Let P be the set of  all the permutat ions of  numbers  

1,2,3and4, i.e.,P= { ( I , 2 , 3 , 4 ) , ( 1 , 2 , 4 , 3 ) ,  . . . }  
(cfr. Fig. 7). 

r~ cuts the grid units in the following order: 

E,, E2, E4 

therefore 

P,, = { ( 1 , 2 , 3 , 4 ) , ( 1 , 3 , 2 , 4 ) ,  

E,,E3, E4 

therefore 

P,~= {(1,2,3,4),(2, 1 , 3 , 4 ) ,  

(1, 3, 2, 4) ,  (1, 3, 4, 2)} .  

and therefore the correct paths are: 

A / ' ,1= {(1 ,2 ,  3 , 4 ) , ( 1 ,  3 , 2 , 4 ) } .  
1-1.2 

For parallel projections it can be observed that working 
out the (xi, yj) grid point nearest to the line s, is the 
same as determining the min imum of a linear function 
constrained by a rectangular domain.  According to the 
theory of  Linear Programming,  the min imum is def- 
initely a vertex of  the domain.  From this it can be 
deduced that among the correct paths there will be at 
least one (usually all of  them)  which will have as first 
element a comer  grid unit  (Fig. 8). 

Whereas in the case of  perspective projections, the 
first grid unit  in each correct path will not usually be 
a comer  unit; in fact the problem is the same as iden- 
tifying the min imum of a convex function that is con- 
strained to a rectangular domain.  

/ / 

/ / 
• .. / / 

% 

\ .  \ \  / / I , \ . .  \.. "..../ / / '  
\ \ . . . . .  / J I / ,  

• \%%\  

(VRP x,vRpy ) ~ ".\,\. -\\ 

( l ,  2, 4, 3),  (3, I, 2, 4)} .  FigS.  
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All the possible cases are shown in Figs. 9a-c. 
According to the theory, of Convex Programming 

there is only one global minimum, but it is not usually 
on one of the vertices of the domain, which, on the 
other hand, is the case if the maximum is being sought 
( in which case there would be some local maxima, but 
these would, in fact, be on the vertices of the domain).  

/ 
/ 

/ 
/ 

-'-'"'"-.....~, / 

/ 
/ 

J 

/ 

J 
J 

(COPx ,COPy ) 

Fig. 9a. 

(COP ,CO ~ _  
. . . .  " /  I I  ~ 

o • # a 

. . . . ~  #s ° i ~  
s#  S o • 

Fig. 9b. 

(coP ,coPy) , ,  

/ 

/ 
/ 

~ ~ , ! ! : : .  .::i:l:}}!;!~E~:. 

Fig. 9c. 

(coP,. coPy ) 

Fig. 10a. 
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/ 

1 
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/ 

f 
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Fig. 10b. 

J 

III 

It can be observed that the cases shown in Figs. 9b 
and 9c can be dealt with by splitting the domain into 
two or four subdomains respectively, each independent 
of the others, and able, therefore, to be dealt with as if 
they were a case of Fig. 9a (Figs. 10a-b). 

These subdomains are independent, but because of 
the division shown in the figure, they are to be pro- 
cessed in the indicated order. 

By operating the division of the domain in this way, 
also in the case of  perspective projections, it is possible 
to consider correct paths as always having as their first 
element a corner grid unit. 

We will now present three possible correct paths for 
both parallel and perspective projections. 

Without changing general cases, the grid unit E, may 
be considered nearest to the line s or to the point 
(COPx,  COPy) in the following examples (cfr. Fig. 
11); 

Strip path 
( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,  10, I1, 12, 13, 14, 15, 16, 17, 
18, 19, 20) 
or symmetrically: 
(1, 5, 9. 13, 17,2,6,  10, 14, 18,3,7,  11, 15, 19,4,8,  
12, 16, 20). 

ZigZag path 
(1, 2, 5, 3, 6, 9, 4, 7, 10, 13,8, 11, 14, 17, 12, 15, 18, 
16, 19, 20) 
or symmetrically: 
( 1 , 5 , 2 , 9 , 6 , 3 .  13. 10,7,4,  17, 14, 11,8, 18, 15, 12, 
19, 16, 20). 

CAG 1 3 : 2 - E  
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17 18 19 20 
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9 10 11 12 
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2 3 4 

t ~ n  
fd:=false 
if YS>masktop[XS] then 

masktop [XS]: = YS 
fd:=true 

if YS<maskbottom [XS] then 
maskbottom [AS]:= YS 
fd:=true 

iffd then PLOT(XS, YS) 
end 

begin 

UP_..PLOT (XS, YS) 

end 

The UP_PLOT procedure presented here is purely in- 
dicative: Further arrangements would, in fact, have to 
be made before it could become operative. 

!> 

Example 
Given the situation presented in Fig. 12a, the quad- 

rilateral of vertices (6, 10), (5, 5), ( 12, 6), ( 13, 9) will 

Fig. II. 

Square path: 
( 1 , 2 , 5 , 6 , 3 , 7 , 9 ,  I0, 11,4,8, 12, 13, 14, 15, 16, 17, 
18, L9, 20) 
or symmetrically: 
( 1 , 5 , 2 , 6 , 9 ,  10,3,7, II.  13. 14. 15,4,8, 12, 16, 17, 
18, 19, 20). 

5. TAM METHOD FOR CROSS-HATCHED DRAWING OF 
SINGLE-VALUED CONTINUOUS FUNCTIONS 

This method consists in drawing on the screen, in 
the established order, all the quadrilaterals Qk, of the 
vertices: 

(XS. YS~), (XSi, YS~+, ), 

(XSi+,, YSj+, ), (XSi+I, YSj), 

where Q, are parallel or perspective projections of  the 
F* (E,) surface unit. 

This method will really only draw the sides of  the 
quadrilaterals; to be precise, any sides common to more 
than one quadrilaterals will be considered once only. 
The principle of only drawing the visible sides is to 
preserve the boundary of the area that is being drawn. 
This can be done by using two arrays called Masktop 
and Maskbottom. Any pixels making up the sides of 
the quadrilaterals will therefore be drawn i f  and only 
if they lie outside the determined area of invisibility. 

Definition. A drawing method can be said to be exact 
if all and only the visible pixels of the sides of the Qk 
appear in the final image. 

As has already been suggested in [8], in this paper 
the idea of  the Masktop and Maskbottom arrays will 
be combined with Bresenham's Drawing Line algo- 
rithm, obtaining a very efficient process that can be 
implemented in hardware. 

procedure BRESENHAM(XSI, YS I, XS2, YS2: integer) 
procedure UP__PLOT ( XS, YS: integer) 
vat fd: Boolean 
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Fig. 12a. 
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have to be processed in device coordinates. The situ- 
ation is shown in Fig. 12b after the sides have been 
drawn in and the two arrays have been updated. 

6.  T H E  T A M  M E T H O D  I S  E X A C T  F O R  

P A R A L L E L  P R O J E C T I O N S  

Let us consider a plane ¢~ perpendicular to the x-y  
plane and passing through a projector p ( Fig. 13a). As 
has been mentioned, a local ordering will be induced 
for the F*(Ek)  units intersected: let us take this to be: 

(F*(E~ , ) )  i = 1 . . . . .  nl. 

Let A, and B, be the intersections of the plane c~ with 
the edges of F*(E~,)  and let a, and b, be the parallel 
projections of A~ and B, onto the projection plane ~" 
(Fig. 13b). 

The plane a is projected on a vertical line v; then 
F * ( E k , )  n c~ points will be mapped on the vertical 
interval [at ,  b,] belonging to v. 

x z 

A1 

!> 

Fig. 13a. 
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7~ 

Fig. 13b. 
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L e m m a  
Let ( F * ( E k , ) )  i = 1 . . . . .  nl be the local ordering 

induced for the F * ( E k )  by the plane a. 
Suppose that parallel projections map F* (Ek,) N a 

onto the interval [ a ,  bi] ofv.  Then 

U [a. b,] 
i= I . . . . . .  f 

= [ rain (a,) ,  max (bi)] f o r e a c h j < n t  
i= l  . . . . .  j i= l  . . . . .  j 

Proo f  
By the continuity o fF * .  F * ( E k , )  will have a point 

on a in common with F*(E~- 2); therefore the interval 
[at ,  b,] will have a value in common with [a.,, b2] and 
SO: 

[a, ,  bl] U [a2, bz] = [ m i n ( a l ,  az), max(bl ,  b2)]. 

Supposing that the thesis is true for j  - I we will prove 
it for j .  Still on the basis of the continuity of F*, 
F * ( g k , )  will have a point on ~x in common with 
F*(Ek,_,): therefore the interval [aj, b A will have a 
value in common with [a j - i ,  bj_,]; but [a j - , ,  bj_]] 
C [  min (ai).  max (bi)] thus proving the 

t = l  . . . . .  2-1 i=l  . . . . .  j - I  

thesis. 
This lemma ensures that on each vertical line v, there 

is a single projected interval (or segment) at each in- 
stant i. 

Definition. A polygon is said to be vertically convex 
if its intersection with a vertical line is a single segment. 

Similarly a polygon will be defined to be horizontally 
convex if its intersection with a horizontal line is a 
single segment. 

Definition. We define Zh.q as 

Zh,q = U Qk~,~ 
i = l . . . . , q  

with Q~.,= as parallel or perspective projection of 
F* (Ek~.,), h as the subscript of  a correct path and q as 
the q-th unit in the path h. 

The following will therefore be valid: 
Theorem. By considering a correct path h for parallel 

projections, it follows that Zh.q is a vertically convex 
region for each q < ( N X  - 1 )( N Y  - 1 ). 

Proo f  
Let us suppose, ab absurdo, that there is a q such 

that Zh.q is not vertically convex; it would therefore 
also follow that the intersection of a vertical line v, 
with Eh.q would not be a single segment. Yet parallel 
projections map the plane a onto the line ~' and, as 
the path is correct, it will respect the order induced by 
the plane a; therefore, according to the previous 
lemma, it is not possible to have more than one mapped 
segment. 

It can therefore immediately be deduced that the 
TAM method is exact for parallel projections: these 
generate some Vh.q for each q, which are vertically con- 
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vex, as has been proved by the theorem; the boundary 
of a vertically convex polygon, on the other hand, may 
be accurately described by means of two single arrays 
(two discrete single-valued functions). 

7. THE TAM METHOD IS NOT EXACT FOR 
PERSPECTIVE PROJECTIONS 

By bringing the conditions to mind that were im- 
posed in paragraph 3. for perspective projections, let 
us consider the sheaf of planes passing through COP 
and orthogonal to the x-y plane (Fig. 14a). 

Let us say that the plane of the sheaf passing through 
COS is a* and the angle COS COP T on the plane a* 
is I'. The plane passing through COP and the X-axis 
of the plane 7r is 8. 

Let us then consider that a plane a belonging to the 
sheaf mentioned is passing through a projector p; • is 
the angle between the planes a and a* on the plane/3. 

Therefore, if perspective projection maps the plane 
a onto the line v of r ,  this will form an angle f/with 
the Y-axis (Fig. 14b) resulting in the following relation: 

tg(9) = tg(c})ltg(I') (3) 

lZ \x o oP 

" '~ ' "  " . . . . . . .  ~ T 

Fig.  14a. 

This expression binds the slope of line v to the COP 
selection and to the plane t~ of which the line v is pro- 
jection. 

As has already been mentioned such a plane a will 
induce an ordering among the F* (Ek) units intersected; 
let us take this to be: 

(F*(Ek,)) for i =  1 . . . . .  nt 

Let Aj and Bt be the intersections of the plane 
with the edges of the F*(Ek,) unit and let a, and b~ 
be the perspective projection of A~ and Bt upon v. 

Taking t, projection of T, to be the origin on the 
line v, then F*(Et,)  0 a will be mapped on the real 
interval [al, bt ]. 

Just as was the case with parallel projections, in per- 
spective projections the intervals [a~, b~] for i = 1 . . . . .  
nt are never separated on line v. 

Given (3), the v lines are not usually vertical, which 
would lead us to consider that for vertical lines there 
is no guaranteed "continuity" of intervals [a~, bd for 
i = 1 . . . . .  nt, a necessary prerequisite for the precision 
of the TAM method. 

This means, therefore, that an F(x,  y), a COP and 
a correct path can always be determined, so that there 
is at least one Zh.q which is not vertically convex and 
which would result in an inexact drawing. 

Example 
Let the following grid of values be assigned: 

(x~,yj, F(xi ,  yj)) i =  I . . . . .  7, j =  1 . . . . .  5 

with 

xi = i - 4  

y g = j - 3  

F ( x ,  y j )=  10 for i = 3 ,  j = 3  

0 otherwise. 

~ Y 

' k~  VRP 

WIN )OW 

X 
t> 

71: 

Fig. 14b. 

If the Strip path is used and the surface assigned is 
observed from COP -~ ( 1, -7 ,  10), the result obtained 
is shown in Figs. 1 5a-b. 

It has therefore been proved that the TAM method 
is inexact for perspective projections; the boundary of 
a vertically non-convex polygon may not, in fact, be 
accurately described by means of two single arrays (two 
discrete single-valued functions). 

8. THE TAM METHOD IS EXACT FOR PERSPECTIVE 
PROJECTIONS WITH TWO VANISHING POINTS 

FOR x AND y AXES 
As has been shown in the preceding paragraph, it 

can be deduced that the TAM method is exact for per- 
spective projections only when ft = 0. By examining 
(3), it can be seen that ft is zero only when • = 0 or 
F = 7r/2. In the former case we are forced back to 
parallel projections; in fact, none of the a planes con- 
taining p projectors ever cut the plane a*. In the latter 
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Fig. 15a. 

STRIP , i0 

Fig. 15b. 

case the plane 7r is orthogonal to the x-y  plane and 
therefore COPz - COSz. 

It can also be said that there is a direct relation be- 
tween the width of angle fl and the accuracy of the 
method; in fact iffl  approaches zero, then the method 
improves in precision and by (3) q~ approaches zero 
and /o r  F approaches ~r/2. Summing up, this means 
that the TAM method is exact for perspective projec- 

tions when a COP is chosen whereby COP:  E COS:;  
i.e., provided that the perspective projections have two 
vanishing points for x and y axes. 

The scheme described in paragraph 3. may therefore 
be modified by altering COSz until it is the same as 
the z-coordinate of the COP selected. This will guar- 
antee the TAM method to be exact. 

Yet if, as in paragraph 3., a squared window con- 
mining the S sphere projection is defined upon 7r, the 
projected images will be lengthened along the Y-axis 
as COPz >> max ( F(xi, yj)) or COPz >> min (F(xi, yj)), 
thus giving a real, yet unpleasant effect. 

As an alternative, choosing the window as the small- 
est rectangle containing the S projection, will provide 
a more pleasant image similar to the one obtained by 
following the instructions in paragraph 3. 

However, by modif~ng the scheme in this way, COP 
selection is restricted; in fact, in order to guarantee 
that the projection exists on every point of the function, 
(COPx, COPy) will always have to be outside the F(x, 
y) domain. 

9. EXPERIMENTAL SUGG~ONS 
In preceding paragraphs we have seen that it is not 

possible to forecast the accuracy of the TAM method 
for perspective projections with three vanishing points. 
As soon as a Zh~ is present which is not vertically con- 
vex, instead of describing its boundary, the two array 
mask being used will, in fact, describe the boundary 
of the smallest vertically convex polygon containing 
Zh.q, which we are going to call V(Zh.q) (Fig. 16). 

If, therefore, one pixel of a side of Qh.~,., falls in the 
difference region: 

V ( Z h . q )  - Zh.q 

it will be treated as if it were invisible, although it is 
outside the Zh.q region. 

m., c 
Fig. 16. 
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It can therefore be observed that the TAM method 
"'is not exact by default" for perspective projections; 
in other words, it does not draw visible pixels either, 
by contrast with methods which are "'not exact by ex- 
cess" yet which also draw invisible pixels. 

However, the use of the TAM method will still re- 
main a valid alternative, as the problems arising occur 
mainly where the data of a function vary rapidly or 
where COP near to the surface are given, while the 
method is characterized by its considerable execution 
speed. 

So if we wish to continue using the TAM method 
it is best to analyze whether, with the tools available, 
it would be possible to reduce the difference region for 
each q. 

In paragraph 4. it was seen that once a COP and the 
surface domain had been set, there was more than one 
correct path. Obviously different 7~h.q areas and con- 

Example 
Let us consider the case in Fig. 19: Let us say that 

E5 is the grid unit containing (COP.z-, COPy)  or the 
nearest to it. The domain will therefore still be divided 
into four subdomains by lines x = x_, and y = y, .  Let 
us suppose that for each subdomain the Strip path has 
been chosen along the x-axis. In order to minimize the 
difference region V(~h.q) - ~h.q for each q, instead of 
examining one subdomain at a time, we would advise 
one strip being examined at a time for each subdomain; 
in other words we would recommend the following 
correct path overall: 

(Es, Er, E4, E.,, Ej, Et, Es, Eg, Ey) 

Finally, by following the afore-mentioned rule, the Qk 
sides will be drawn in the following order and direction, 
where the subscript pairs of the endpoints are indicated: 

Q5 : (2, 3) - -> (2, 2); 

06: - - - 

Q4: 

Q2: (2, 1) - - >  (2, 2); 

Q3: - - - 

QI:  - - -  

Qs : (2, 4) - -> (2, 3); 

Q9: - - - 

Q 7  " - - - 

(2, 2) - -> (3, 2); 

( 3 ,  2) - - >  (4, 2); 

(2, 2) - ->  (1, 2);  

(3, 2) - -> (3, 3); (3, 3) - -> (2, 3); 

(4, 2) - -> (4, 3); (4, 3) - -> (3, 3); 

(1, 2) - -> (1, 3); (1, 3) - -> (2, 3); 

(3, 2) - -> (3, I); (3, 1) - -> (2, I); 

(4, 2) - -> (4, 1); (4, I) - -> (3, I); 

(I, 2) - -> (I, 1); (1, i )  - -> (2, i);  

(3, 3) - -> (3, 4); (3, 4) - -> (2, 4); 

(4, 3)  - ->  (4, 4) ;  (4, 4 )  - ->  (3, 4) ;  

(I, 3) - -> (1, 4); (I,  4) - -> (2, 4); 

sequently difference regions of varying widths for each 
q will be induced by each path. 

There is experimental evidence that the Strip path 
is the most reliable of those suggested (Figs. 17a-c). 

Whichever path is selected, it may either be devel- 
oped along the x-axis or the y-axis; preference would 
instinctively be given, and this has been confirmed by 
experimental evidence, to the more horizontal of the 
two axes, once projected onto the plane r .  

It would finally be advisable to introduce a rule de- 
fining the order and direction that the sides of each Qk 
are to be drawn in. Let us suppose that the x-axis, after 
projection, is the more horizontal of  the two and that 
the first grid unit  is Ez, then the sides of Qk may be 
drawn as (Fig. 18): 

a) 

b) 

c) 

d) 

(xs,. YSj÷, )--~ (xs , .  YSj) 

( x s .  YS~)--~ (xs~+,. YSj) 

(xs,+,. YS.)--~ (xs,+,. YS.+, ) 

(XSi+t, YSj+~)'" (XS,, YSj+,) 

where once a segment is considered as the side of a 
previous Qk it does not need to be reexamined. 

10. THE FOUR ARRAY MASK METHOD 
Having worked out in previous paragraphs why the 

TAM method is not exact, we are now going to suggest 
a variant called the Four Array Mask (FAM) method 
which considerably improves final representation and 
at the same time ensures a comparable speed of exe- 
cution. 

The method under examination sets out to reduce 
the extent of the difference region V(7~h.q) - y.h.q by 
introducing a new pair of  arrays called Maskleft and 
Maskright. The two new arrays perform similar tasks 
along the horizontal axis as Masktop and Maskbottom 
do along the vertical axis; so if the latter ensure drawing 
precision in the case of vertically convex Y'h4, the ad- 
dition of the new pair of arrays even provides an exact 
result for horizontally convex ~h.q. 

Obviously, as perspective projections cannot  guar- 
antee that the Y~h.q are vertically convex, neither can 
they guarantee that they are horizontally convex; on 
the other hand, the difference region is considerably 
reduced. In fact if by analogy we define O(Y~h.q) as the 
smallest horizontally convex polygon containing Zh.q 
(Fig. 20), then we have as difference region: 

V(Zh.q) f3 O(Xh.q) - ~ 
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Fig. 17a. F(x,y)=4cos((x2 + y2)/lOwith(x,y)~[-lO, Fig. 17c. F(x,y)=4cos((x2 + y2)/lOwith(x,y)E[-IO, 
lO]X[-lO'lO]andNX=NY=40°bservedfr°mCOP(3' lO]×[-lO, lO]andNX=NY=4OobservedfromCOP(3, 

5, 20). Output  obtained using Strip Path. 5, 20). Output obtained using Square Path. 

where, obviously 

V(~h.q) f"l O(Y-,~.a) C V(£h.q). 

Some experimental results are shown in the follow- 
ing: Figs. 21a-b show the results obtained with the 
TAM and FAM methods applied to the linear surface 
patches worked out from the following set of values: 

(xi,  yj, F(x i ,  yj)) i =  1 . . . . .  20, j =  1 . . . . .  20 

with 

x i =  1 + ( i -  1)/2 

yj = 1 + ( j -  1)/2 

, ,q 

Yi+1 ..... : : 

r, 
Yi 

El 

E k 

I> 

(COP x ,COPy ) 

X i Xi+ 1 

Fig. 18. 

Y4 . . . . .  

. . . .  

Fig. 17b. F(x,y)=4cos((x2+y2)/lO)with(x,Y)~[-lO, Xl X 2 X 3 X 4 
10] × [ - 10, 10] and NX = NY = 40 observed from COP (3, 

5 .20) .  Output  obtained using ZigZag Path. Fig. 19. 



F(xi ,  y j ) =  10 for i = 3 , 4 ,  j =  3 . . . . .  18 

0 otherwise 

Fig. 20. 

, i 

. . . .  . . . . . . .  
[ . . . . . . . . . . . . . . . . . . . . .  

'.."! 

I :; .. . .  ~-7.~ "~ " 

i 

! 

observed from the COP - ( - 5 ,  12, 18); 
Figs. 22a-b  show the results obtained with the two 

methods applied to the surface: 

F ( x ,  y) = 4sen((x  2 + y2) /10)  with 

( x , y )  E [ - 6 , 6 ] x [ - 6 , 6 ]  and N X = N Y = 4 0 ,  

Fig. 2 la. Output obtained using TAM method. 

observed from the COP =- ( 10, 5, 10). 
Finally Table 1 gives a comparison of  the perfor- 

mance of  the two methods with the Strip path setting. 
The results of  the tests shown here were obtained by 
using a DEC GPX II graphic workstation with a VMS 
4.4 operating system; the programs were developed in 
Pascal. 

Note that symmetry is induced by the additional 
pair of arrays in terms of the X and Y axes. Conse- 
quently, when selecting a path, there is no longer any 
point in giving preference to development along one 
axis rather than another;  the order and direction that 
the Qk sides are drawn in are no longer ofany  relevance. 

As a consequence of the above, this variant does not 
require the use of an algorithm conceived to draw di- 
rected segments (Bresenham from the first to the sec- 
ond endpoint) .  In particular our  realization uses an 
accelerated drawing line algorithm exploiting the bi- 
directional concept [ l 0 ]. 

One way of dealing with the four arrays mask is 
outlined below: 

procedure BDR._BRESENHAM ( XS I, YS 1, XS2, YS2: 
integer) 

procedure ORIZ._.UP_.PLOT ( XS, YS : integer) 
vat fd: Boolean 
begin 

fd:= false 
if YS>masktop[XS] then 

masktop [ XS] := YS 
fd: = true 

if YS<maskbottom [ YS] then 
maskbottom [XS]:= YS 
fd: = true 

if XS> maskright [ YS] then 
fd: = true 

ifXS<masldeft [ YS] then 
fd:--true 

if fd then PLOT(XS, YS) 
end 
procedure ORIZ._UP ( XA, XB, YS:integer) 

ifXA <masldeft [ YS] then 
left [ YS] :=XA 

if XB>maskright [ YS] then 
right [ YSI:=XB 

end 
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Fig. 2lb. Output obtained using FAM method. 



Two Array Mask algorithm 205 

else . . . . .  
VERT_UP_PLOT (XS, YS) 

VERT_UP(XS, YA, YB) 

end 

11. EXACr METHODS OF DRAWING FOR 
PERSPECTIVE PROJECTIONS 

iii It has been shown why the TAM and FAM methods 
are not usually exact for perspective projections. It has 
also been shown that, for single-valued continuous 
functions, F* (Ek) sorting can be worked out with low 
computational complexity. Starting with the latter re- 
sults, further alternative methods to the mask ones can 
be worked out, which are exact for perspective projec- Fig. 22a. Output obtained using TAM method. 
tions although they are not so rapid. Subsequently two 
of these methods will be referred to, which, although 
slow in most other cases do prove here to be most 
competitive under these conditions; in fact they do not 
require F* (E~) sorting, which, as is known, is the most 
expensive phase of the methods of elimination &hid-  
den lines or surfaces. 

Newell. Newell and Sancha algorithm 
This is the idea of developing an order of priority 

for all the quadrilaterals in the set, according to their 
depth. Once this sorting has been determined, the 
quadrilaterals are scan-converted into the frame buffer, 
one at a time, starting with the deepest. 

In our case a correct sorting is immediately given 
by one of the paths previously examined. In order to 
exploit it, we have just to scan the grid units in the list, 
from the last one up to the first. 

Fig. 22b. Output obtained using FAM method. 

procedure VERT_UP_PLOT(XS, YS:integer) 
var fd:Boolean 
begin 

fd:=false 
if YS>masktop[XS] then 

fd:=true 
if YS<maskbottom [XS] then 

fd:=true 
if XS>maskt-ight [ YS] then 

maskright [ YS]:=XS 
fd: = true 

if XS<maskleft [ YS] then 
maskleft [ YS] :=XS 
fd: =true 

iffd then PLOT(XS, YS) 
end 
procedure VERT_UP(XS, YA, YB:integer) 
begin 

if YA <maskbottom [XS] then 
maskbottom [XS]: = YA 

if YB>masktop[XS] then 
masktop [ XS] := YB 

end 
t ~ n  

if dy<=d~ then . . . . .  
ORIT__UP_PLOT (XS, YS) 

 RiL_uP(XA, xs, rs) 

Visibility buffer algorithm 
This is the idea of proceeding as per the TAM 

method, but using a bidimensional array of Boolean 
(visibility buffer) of the dimensions of the screen so as 
to accurately preserve the Zh,q regions as well as their 
boundaries, by conveniently setting some elements of 
the array. 

The quadrilaterals are examined one at a time, ac- 
cording to whichever path has been worked out as cor- 

Table 1. F(x, y) = 4 sen ((x: + y")110 with (x, y) ~ [ - 6 ,  
6] × [ - 6 ,  6] and NX = NY = 40. 

TAM method 

COP Pix¢1% Time (sec) 

(10,t0,10) 100 9.32 

(10,5,10) 93.9 8.05 

(10,0,10) 92.9 8.02 

(4,4,15) 97.7 7.70 

(4,4:15) 95.0 9.91 

(4,0,20) 9"7.9 8.87 

FAM method 

Pixel % Time(see) 

100 10.16 

99.1 9.61 

973 9.40 

100 8.98 

100 11.59 

100 10.04 
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rect (ranging from the nearest to the furthest). Each 
quadrilateral is examined as follows: 

1. The sides are considered pixel by pixel; visibility is 
evaluated according to whether or not they are out- 
side the region that has been setted to true in the 
buffer; 

2. The quadrilateral is scan-converted into the buffer 
by setting the correspondent elements of the bidi- 
mensional array to true. 

12. CONCLUSIONS 
In this paper the TAM method has been reexamined 

as a method of eliminating hidden surfaces by showing, 
and clearly separating the sorting phase from the 
drawing phase of the surface units. 

A general theory has also been presented for working 
out the correct path for both parallel and perspective 
projections, and it has been shown that the TAM 
method is exact for the former but not for the latter 
projections, with the exception of projections with two 
vanishing points for x and y axes. 

The FAM method was generally suggested for per- 
spective projections; this was theoretically shown to be 
more accurate, and experimental evidence showed that 
execution time was comparable with that of the TAM 
method. 

Generally speaking, however, exact representation 
can be found in different drawing methods; on account 
of their simplicity and efficiency the Newell, Newell 
and Sancha and visibility buffer methods were consid- 
ered. 

Full presentation and detailed analysis of the real- 
ization of the methods examined may be found in [ 11 ]. 
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