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Abstract—This paper introduces dual-quorum replication, a novel data replication algorithm designed to support Internet edge

services. Edge services allow clients to access Internet services via distributed edge servers that operate on a shared collection of

underlying data. Although it is generally difficult to share data while providing high availability, good performance, and strong

consistency, replication algorithms designed for specific access patterns can offer nearly ideal trade-offs among these metrics. In this

paper, we focus on the key problem of sharing read/write data objects across a collection of edge servers when the references to each

object 1) tend not to exhibit high concurrency across multiple nodes and 2) tend to exhibit bursts of read-dominated or write-dominated

behavior. Dual-quorum replication combines volume leases and quorum-based techniques to achieve excellent availability, response

time, and consistency for such workloads. In particular, through both analytical and experimental evaluations, we show that the

dual-quorum protocol can (for the workloads of interest) approach the optimal performance and availability of Read-One/Write-All-

Asynchronously (ROWA-A) epidemic algorithms without suffering the weak consistency guarantees and resulting design complexity

inherent in ROWA-A systems.

Index Terms—Reliability, availability, serviceability, performance, distributed system, leases, volume leases, client-server and

multitier systems, data replication, quorum system.

Ç

1 INTRODUCTION

THIS paper introduces dual-quorum (DQ) replication, a

novel data replication algorithm motivated by the desire

to support data replication for edge services [1], [2], [3]. As
Fig. 1 illustrates, the Internet edge service architecture

attempts to improve service availability and latency by

allowing clients to access the closest available edge server

rather than a centralized server or a centralized server

cluster. The success of various Content Delivery Networks

(CDNs) [4], [5], [6] has shown the promise of this architecture

[7], [8]. But, as Fig. 1 also indicates, to provide a single service

from multiple locations, service logic (code) replicated on all
edge servers must access a collection of shared data. As a

result, the benefits promised by the edge service architecture

are limited by the coordination among replicas of shared

data. Thus, support for data replication is a key problem in

realizing the promise of Internet edge services.
Providing high availability, good performance, and

strong consistency for replicated data is fundamentally
hard in the general case [9], [10]. On one hand, an edge

server ideally would process both reads and writes with
local data to offer good service response time and
availability; when an edge server has to contact distant
servers to process client requests, it loses many of the
advantages offered by an edge service architecture. On the
other hand, applications using the edge service model
desire strong consistency guarantees across their shared
data. Distributed applications that assume only weak
consistency guarantees must be designed to address subtle
consistency issues such as write-write conflicts and stale-
ness bounds [11]. Consequently, the complexity of building,
debugging, maintaining, and updating such applications
increases dramatically, which is unacceptable for most
Internet services. As a result, current edge server deploy-
ment often serves only read-only data.

By exploiting object-specific workload characteristics, we
seek to design a data replication system for more general
edge services by offering optimized trade-offs among
availability, consistency, and response time. For example,
our previous studies show how to provide nearly optimal
replication for information dissemination applications such as
news [12] and for e-commerce applications such as TPC-W [2],
an industry standard benchmark that models an online
bookstore [13]. In this prior work, we developed customized
consistency protocols for three categories of objects:
1) single-writer, multireader objects like product descrip-
tions and prices; 2) multiwriter, single-reader objects like
lists of orders; and 3) commutative-write, approximate-read
objects like the current inventory count of each product.

However, a key limitation of our previous efforts to
support edge services was our decision to use weak
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consistency—and thereby introduce considerable complex-
ity—for the fourth category of objects: multiwriter, multi-
reader objects such as TPC-W’s per-customer profile
information. We made use of a Read-One/Write-All-
Asynchronously (ROWA-A) protocol [14], [15], [16] that
asynchronously propagated writes epidemically and al-
lowed any server to return local copies for read requests.
ROWA-A protocols provide excellent read performance and
availability but allow applications to observe inconsistencies
between reads and writes or among writes. Such incon-
sistencies introduce considerable complexity into the appli-
cation design, because all cases must be handled correctly no
matter how rare they are and because reasoning about corner
cases in consistency protocols is complex. Furthermore, these
protocols provide no worst case bound on staleness, i.e., it is
possible for a read to return stale data arbitrarily long after a
write, which can be unacceptable for some applications [17].

This paper introduces a new protocol, DQ replication, to
better meet the demands edge services place on such
multireader multiwriter objects. On one hand, DQ attempts
to approach the ideal read performance and availability of
ROWA-A protocols. At the same time, the protocol simplifies
the application design by greatly strengthening consistency
and staleness guarantees compared to ROWA-A.

Achieving strong consistency and staleness guarantees is
generally expensive. However, DQ is optimized for work-
loads that exhibit locality in two dimensions: 1) at any
given time, access to a given element tends to come from a
single server and 2) reads tend to be followed by other
reads and writes tend to be followed by other writes. For
this type of workloads, DQ approaches the excellent
performance and availability of ROWA-A protocols. For
other workloads, our algorithm continues to provide the
same consistency semantics, but its performance and
availability may degrade.

DQ replication achieves these goals by implementing
two key ideas:

. First, we devote two separate quorum systems, an
input quorum system ðQinputÞ and an output quorum
system ðQoutputÞ, for write and read requests, respec-
tively, to optimize both write and read’s availability
and performance. Because traditional quorum sys-
tems require each read quorum to intersect each write
quorum to provide regular semantics [18], a small
read (write) quorum implies a large write (read)
quorum; there is thus a trade-off between read

availability and write availability. In DQ, instead of
constructing read quorums and write quorums from
the same quorum system, clients send their writes to a
write quorum formed in Qinput and they read from a
read quorum in Qoutput. These two quorums do not
need to intersect to enforce regular semantics; instead,
regular semantics are enforced by communication
between the read quorum in Qinput and the write
quorum in Qoutput. By using two separate quorum
systems for reads and writes, DQ is able to optimize
the construction of Qoutput’s read quorum to provide
low latency and high availability for reads while
optimizing the construction of Qinput’s write quorum
to provide modest overhead and high availability
for writes.

. Second, DQ generalizes Yin et al.’s volume lease
protocol [19] to reduce the communication overhead
between Qinput and Qoutput to enforce consistency
and improve write availability. A volume lease is a
lease for a group of objects. The Qinput servers use
volume leases to invalidate cached objects at the
Qoutput servers as objects are updated and to allow
writes to continue without invalidating cached
objects when leases expire. The protocol uses
short-duration volume leases to allow writes to
complete despite network partitions, and it aggre-
gates these leases across a large number of objects in
a volume to amortize the cost of renewing short
leases.

Using our DQ protocol, workloads with a large number of
repeated reads (or writes) perform well because reads (or
writes) can often be supplied by a read-optimizedQoutput read
quorum (or write-optimized Qinput write quorum) without
requiring communication with the Qinput (or Qoutput).

Through both analytical and experimental evaluations,
we compare the availability, response time, communication
overhead, and consistency guarantees of the DQ protocol
against other popular replication protocols: the synchro-
nous and asynchronous Read-One/Write-All (ROWA)
protocol family [20], a majority quorum system [21], and a
grid quorum system [22]. For the important special case of
single-server Qoutput read quorum, average read response
time can approach a server’s local read time, making the
read performance of this approach competitive with
ROWA-A epidemic algorithms such as Bayou [23], but the
DQ approach avoids suffering the weak consistency
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guarantees and resulting complexity inherent in ROWA-A
designs. Additionally, analytical evaluations show that the
overall availability of the DQ protocol is competitive with
the ideal majority quorum protocol for the targeted work-
loads. Finally, for the targeted workloads, the communica-
tion overheads of this approach are comparable to existing
approaches. However, in the worst case scenario in which
the workload consists of only interleaved reads and writes,
the DQ protocol requires significantly more message
exchanges than traditional quorum protocols to coordinate
the separate input and output quorum systems. This
communication overhead for low-locality workloads is the
cost that the DQ protocol pays to provide the availability,
response time, and strong consistency desired for an
Internet edge service environment.

The main contribution of this paper is to introduce the
DQ algorithm, a novel data replication algorithm targeted
to a key workload for Internet edge service environments.
Note that although our work is motivated by a specific
replication scenario, we speculate that it will be more
generally useful. In particular, we believe that it may be
common in practice for systems that can have any server to
read or write any item of data to experience sufficient
locality to benefit from our approach.

This paper is organized as follows: Section 2 presents our
system model and a set of assumptions on which our
system is built. In Section 3, we present our system’s design
and correctness proofs. We compare our system with the
existing ones in Section 4 with both analytical and
experimental evaluations. In Section 5, we discuss related
work. Concluding remarks are presented in Section 6.

2 SYSTEM MODEL AND DEFINITIONS

As Fig. 2 illustrates, in order to provide reliable services for
multiple-writer multiple-reader objects, our edge service
environment removes the central server and constructs the
edge servers such that each physical server plays one or
more of the following three roles: 1) front-end servers that
handle service client requests from across the Internet,

execute application-specific processing, and act as edge
server clients or just clients to the DQ storage system; 2) output
quorum system ðQoutputÞ servers that process client read
requests; and 3) input quorum system ðQinputÞ servers that
process client write requests. We assume a request redirection
architecture that directs clients to a good (e.g., nearby, lightly
loaded, or available) front-end edge server; a number of
suitable redirection systems are discussed in the literature
[24], [8]. Note that service clients are unaware of the
underlying data storage system and never contact the
Qoutput or Qinput interfaces directly.

In an edge service environment, servers typically process
sensitive or valuable information, so they must run on
trusted machines such as dedicated servers in a hosting
center. We therefore assume a fail-stop model in which
servers may crash but cannot issue incorrect requests or
replies. We assume secure communication among servers
and that if the network corrupts a message, this corruption
is detected by low-level checksums and the message is
silently discarded. Each server can read a local real-time
clock and there exists a maximum drift rate maxDrift
between any pair of clocks. The network may delay,
duplicate, or reorder messages.

As long as the clock drifts across servers are bounded
as described above, our protocol ensures safety regardless
of other timing assumptions: servers may operate at
arbitrarily different speeds and we require no bound on
message delivery delay. However, long processing times
or message delays may interfere with liveness for some
requests. In particular, if machine A requests a lease at
time t0 and later receives a reply from server B granting a
lease of length T , then A conservatively expires the lease
at time t0 þ ð1�maxDriftÞT ; this approach ensures that
the receiver of a lease ðAÞ expires the lease no later than
the grantor of the lease ðBÞ.

We adopt Lamport’s register semantic definitions [18].
Two operations are considered concurrent if one starts
after the other starts and before it ends. DQ enforces
regular semantics:

. Property 1: A read of o that is not concurrent with any
writes of o can return only the value and logical
clock from the completed write of o with the highest
logical clock.

. Property 2: A read of o that is concurrent with one or
more writes of o can 1) return the value and logical
clock from the completed write of o with the highest
logical clock or 2) return the value and logical clock
from some concurrent write of o.

Regular semantics guarantee that a read always returns
the last completed write or any concurrent partially
completed write. We discuss the challenges to adapting
the protocol to enforce the stronger atomic semantics [18]
where reads and writes behave as if they occur instanta-
neously in some definite order in Section 3.3.

In the remaining sections, we describe interactions with a
quorum system in terms of a QRPC operation [25]. A QRPC
operation QRPCðsystem;RjW; requestÞ sends request to a
collection of servers in the specified quorum system (e.g.,
Qinput or Qoutput). The QRPC call then blocks until a set of
replies constituting the specified quorum (read quorum if
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the second parameter is R, or write quorum otherwise) on
the specified system have been gathered. The call then
returns the set of replies that it received. The QRPC
operator abstracts away details of selecting a quorum,
retransmissions, and time-outs. In particular, different
implementations may choose different ways to select which
servers from system to send requests to, and they may
select different retransmission strategies: our simple proto-
type implementation always transmits requests to the local
server if it is a member of system; it then randomly selects a
sufficient number of additional servers to form a read or
write quorum and transmits the request to them; retrans-
missions are each sent to a new randomly selected quorum
using an exponentially increasing retransmission interval.
A more aggressive implementation might send to all servers
in system and return when the fastest quorum has
responded or might track servers have responded quickly
in the past and first try sending to them.

3 DUAL-QUORUM PROTOCOL DESIGN

This section describes the design of the DQ replication
system and the key ideas for achieving our design goals.

We present the protocol in two steps. First, we discuss a
simplified asynchronous DQ (ADQ) protocol in Section 3.1.
This protocol allows independent optimizations of read and
write quorums, but because it assumes an asynchronous
system model, a write can block for an arbitrarily long
period of time. In Section 3.2, we describe how we introduce
volume leases to the protocol to improve write availability
while retaining good read performance. Finally, we discuss
correctness.

3.1 Asynchronous Dual-Quorum Protocol

The goal of ADQ is to achieve highly available, low-
latency, and consistent data replication for a range of
Internet services that exhibit the following characteristics:
1) end clients are widely dispersed and generate read-
dominant or write-dominant workloads; 2) a subset of
servers may unpredictably fail or be partitioned from the
rest of the system; and 3) applications require relatively
strong consistency. Therefore, we require the protocol to
provide regular semantics, optimize read/write perfor-
mance in normal nonfaulty cases, and optimize the read
and write availability to survive fail-stop node failures or
network partitions.

Quorum-based protocols seem a natural choice for
providing the consistency semantics required, but there is
a trade-off between read availability and write availability
due to the intersection requirements for read quorums and
write quorums. If we use a traditional quorum protocol and
make the read quorum large enough to provide good write
availability, read performance will be unacceptable because
reads will be WAN-distributed rather than local operations.

To address this dilemma, ADQ processes reads and
writes in two different quorum systems (Qinput and Qoutput)
and uses a cache invalidation strategy to synchronize the
state of objects replicated in Qinput servers and cached in
Qoutput servers to achieve regular semantics. The key
challenge is how to efficiently maintain callbacks in
Qinput and Qoutput to reduce the synchronization traffic
between them.

In the rest of this section, we will describe the basic read/
write operations followed by detailed description of the
object invalidation and renewal protocol.

Basic read and write operations. From the front-end
server’s perspective, an ADQ read is the same as a standard
quorum read [26], [27]. As Fig. 2 illustrates, upon receiving
a read request from a client, the server contacts a read
quorum Routput of the output quorum system Qoutput. An
Routput server can return a read immediately if it holds a
valid copy of the object. We call this case a read hit.
Otherwise, it must renew the object by communicating with
a read quorum Rinput of the input quorum system. We call
this case a read miss.

Upon receiving a write request from a client, the server
contacts every server in a write quorum Winput of the input
quorum system Qinput. Just like in the standard quorum
write protocol, the ADQ write has two phases. First, a
server i that receives the client’s write request retrieves the
highest logical clock from every server in an Rinput via
QRPC. Then, the server advances the logical clock and
assigns it along with its unique id as the write version
number. Second, the server sends the write request with the
version number to a Winput quorum via QRPC. The write
completes after i receives acknowledgments from every
server in a Winput quorum. If a Qinput server knows that there
is no Routput quorum that has a valid copy in each server, it
can perform the write and send an acknowledgment to i
immediately, a case that we call a write suppress. Otherwise,
the Qinput server must first invalidate a Woutput quorum. We
call this case write through.

Now, the questions are: how does a Qoutput server know
that its local object is valid; how does it renew it if not; when
does a Qinput server need to send invalidate messages to
Qoutput, and how does it do so? We will answer these
questions in the next few paragraphs by first detailing how
the system handles a read and then describing how the
system handles a write.

Read hit and read miss. In order to ensure that reads
always return versions of objects consistent with recent
writes, as Fig. 3 illustrates, each server maintains a set of
per-object and per-server variables. Each Qinput server
maintains a Lamport logical clock lc for generating version
numbers for writes. Both Qoutput and Qinput servers store the
newest local copy of an object o in valueo for local reads and
writes. valueo includes a value and a version number. To
filter redundant or old invalidations or updates, each
Qoutput server j maintains lastKnowno;i, 8i, i 2 Qinput as the
highest version number of o for which an invalidation or an
update has been received from a Qinput server i. To track the
validity of a local cache, each Qoutput server j uses valido;i, 8i,
i 2 Qinput to indicate if j still has a valid local copy from i.
valido;i is true if and only if the newest value received from i
is at least as new as lastKnowno;i. To track the callback
states of Qoutput, each Qinput server maintains a pair of
variables: lastReado and lastAcko;j, 8j, j 2 Qoutput. lastReado
stores the newest version of o that i has sent to any
Qoutput server; lastAcko;j stores the highest version number
contained in the invalidation acknowledgments from a
Qoutput server j for o. The protocol maintains an invariant: if
valido;i ¼ true at j, then lastReado � lastAcko;j at i.
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A Qoutput server j considers an object o valid if its local
state satisfies the following condition:

Validity condition 1 (VC1). 8i, i 2 Qinput, valueo:lc �
maxðlastKnowno;iÞ and 9 Rinput s:t: 8r, r2Rinput, valido;r¼
true.

If VC1 is true, the cache has the latest version of all learned
versions, and j has valid copies from an Rinput quorum. If j
satisfies VC1, j can directly return the current value to a read
request, i.e., read hit. We will prove in Section 3.3 that it is safe
to do so.

Otherwise, a read on j is a read miss and j needs to
communicate with Qinput servers to get a consistent version.
In particular, j sends object renewal messages to an
Rinput quorum via QRPC to renew the object. Each
server i in that Rinput quorum responds to an object
renewal request with its local valueo and then updates its
local state lastReado with valueo:lc. Upon receiving an
object renewal reply ðo0; lcÞ from a Qinput server i, if
lc � lastKnowno;i, then j updates lastKnowno;i with lc
and sets valido;i to be true; if lc > valueo:lc, then j replaces
its valueo with the value in the reply. When VC1 becomes
true, j returns its valueo to the client.

Invalidation suppress and write through. A Qinput

server i processes a write request as a write suppress when
the following condition is true:

Suppress condition 1 (SC1). 8j, j 2 Qoutput, lastReado <
lastAcko;j.

As we prove in Section 3.3, if SC1 is true at each server
of a write quorum in Qinput, then VC1 must be false at all
read quorums in Qoutput. Therefore, it is safe to suppress
the invalidations.

If SC1 is false, it is a write through. To ensure that all read
quorums inQoutput are unable to read an older value, ineeds to
do some additional tasks before completing the write. i sends
invalidations with the version number of the write to Qoutput

using QRPC. Upon receiving an invalidation Invalðo; lcÞ
from i, a Qoutput server j updates its lastKnowno;i to lc and
sets valido;i to false if lc > lastKnowno;i. Then, j sends an
acknowledgment back to i so that i can update its lastAcko;j to
lc and completes the write after collecting acknowledgments
from a Woutput quorum.

Example. Fig. 4 illustrates the four read/write scenarios in
an edge service system with three Qinput servers (1, 2, 3)
and multiple Qoutput servers ðA; . . .Þ. The input quorum
system is configured as a majority quorum, i.e., two
servers for a read quorum and two servers for a write
quorum; the output quorum system is configured as
ROWA quorum. Initially, all Qinput servers replicate the
object hvalue; versionNumi of ho; 1i and all Qoutput servers

cache the object from each Qinput server (i.e.,

lastKnown2i ¼ 1, validi ¼ true, i ¼ 1; 2; 3). Note in the

figure that we represent lastKnown by lk, valid by v,

false by F , and true by T .
For simplicity, Fig. 4a omits the details of retrieving

the version number before issuing the write to the
quorum. As indicated in Fig. 4a, when a client issues
write1 (o0, 2) to a Winput quorum composed of server 1
and server 2, it is a write through case for both servers
since both have lastReadA ¼ lastAckA, i.e., SC1 is false.
Therefore, both servers send invalidations to a Woutput

quorum. Upon receiving an invalidation message from a
Qinput server i ði ¼ 1 or 2Þ for o with version number 2,
Qoutput server A updates its lastKnown1;2 to 2 and valid1;2

to false as indicated in step �3 in the figure. Then, A
sends an acknowledgment ho; 2i back to server 1 and
server 2, which update their lastAckA to 2. Each Winput

server applies the new version object and returns write1

after receiving acknowledgments from a Woutput.
Now, suppose another write write2 ho00; 3i is issued to

the same Winput quorum, as indicated in Fig. 4b, SC1 on
either server is still true after write1. Therefore, both can
write suppress, i.e., both can update their value to ho00; 3i
and return immediately.

Fig. 4c illustrates a read miss scenario. Consider the
system in the previous example, read1 on A has to renew
object o from an Rinput quorum because VC1 on A is false
after write1. Suppose A selects servers 2 and 3 as the
Rinput quorum for its object renewal, then server 2 will
send ho00; 3i and server 3 will send ho; 1i to A as renewal
replies. After A applies these two replies, its value
becomes ho00; 3i and valido;2 becomes true. Therefore, VC1
becomes true. A then returns ho00; 3i for read1 request.
Note that because the Winput quorum of write1 intersects
the Rinput quorum of read1, A is able to read the newest
completed version.

As indicated in Fig. 4d, a subsequent read2 right after
read1 on A will be a read hit since VC1 is still true.

As illustrated from the above examples, for work-
loads consisting of read bursts, the first read forces all
servers in an Routput quorum to validate their cached
copies to satisfy VC1. Therefore, all subsequent reads
to the same read quorum are read hits. If we configure
the Routput quorum to contain only one server, then
most reads in a burst are local operations. Therefore,
the protocol typically yields nearly optimal read
response time and availability for such workloads.
Similarly, for workloads consisting of write bursts of
the same data, the first write invalidates cached copies
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in a Woutput quorum, making all subsequent writes to
the same write quorum behave as write suppresses.
Typically, we configure the Qinput as a majority quorum
system to provide optimal write availability [28]. tu

3.2 Dual-Quorum with Volume Leases

The ADQ protocol just described allows one to vary read
and write quorum sizes independently; therefore, our target
application would benefit from using a read quorum size of
1 so that reads can be serviced locally in the normal case;
any larger read quorum size introduces a network delay to
every read and provides qualitatively worse read response
time. However, a read quorum size of 1 could lead to
unacceptable write availability because it requires a write to
successfully contact all servers in Qoutput to invalidate
cached data in the write through case.

The full DQ protocol therefore adapts Yin et al.’s volume
lease protocol [19] to support very small read quorums in
Qoutput while retaining acceptable availability on writes. An
object lease represents permission to access an object until
specified time [29]. A volume lease is a lease on a group of
objects (volume). Under the volume leases protocol, a client
may access a cached object if it holds valid leases on both

the object and the object’s volume, and a server can modify

data as soon as either lease expires. The combination of

short volume leases and long object leases yields good read

response time and high availability for systems with small

Qoutput read quorums; servers in Qoutput can cache objects

locally for a long time to reduce individual object renewal

load, and although they must frequently renew volume

leases, the cost is amortized across a large number of objects

in a volume. At the same time, the combination does not

suffer from poor write availability despite large Qoutput write

quorums: a write that cannot contact all servers in a

Qoutput write quorum just needs to wait for the (short)

volume lease to expire.
To simplify the description of the protocol, we assume

infinite-length object leases or callbacks [30]. The protocol
can be generalized to finite-length object leases simply by
treating lease expiration like object invalidation in the
basic protocol.

Data structures. As Fig. 5 illustrates, each server main-

tains a set of variables in addition to the basic data structures

in Fig. 3. First, to track the duration of leases, each server

maintains a real-time clock cTime with a drift rate bounded
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by maxDrift. Each server also maintains an expiresv;n
indicating when a volume lease for v on server n expires.

The protocol uses delayed invalidations and epoch numbers
to minimize the cost of renewing volume leases. A volume
lease can only be renewed by a Qoutput server if the server
can guarantee that it will not allow access to any stale object
in that volume. Naive implementation must synchronize
the state of each object in a volume, which can yield
unacceptable overheads and synchronization delays, espe-
cially if volumes span many objects.

Delayed invalidations reduce the cost of short disconnec-
tions to Oð#ðmissed invalidationsÞÞ from Oð#ðobjects in a
volumeÞÞ. When a new write arrives, rather than sending the
invalidations immediately to those Qoutput servers that have
valid object leases but expired volume leases, theQinput server
can defer the invalidation messages because the Qoutput

cannot read the object until it renews the volume lease. It
can then send a batch of delayed invalidations when the
Qoutput server renews the volume lease. Therefore, each
Qinput server also maintains a per-volume invalidation buffer
delayedv;j, 8j, j 2 Qoutput to store delayed invalidations of
objects in v for server j.

Epoch numbers bound the size of delayedv;j, 8j, j 2 Qoutput

and enable fast resynchronization after long disconnections.
Each Qinput server i maintains an epoch number epochv;j; j 2
Qoutput and each Qoutput server j stores the max epochv;j value
associated with each object o received from 8i, i 2 Qinput as
epocho;i. Whenever a server garbage collects delayedv;j, it
increments epochv;j. Volume lease renewals and object
renewals are marked with epochv;j. When epochv;j on i
changes, j conservatively assumes that all object callbacks
from i with old epochs have been revoked by i so that any
subsequent read will revalidate the cache copy.

The main difference between this protocol and the
asynchronous protocol is that the object validity check
condition and the write suppress condition are changed
because of volume leases. In the rest of this section, we will
describe how those conditions have changed.

Object validity and renewal. A Qoutput server j considers
an object o under volume v valid if its local state satisfies the
following condition:

Validity condition 2 (VC2). 8i, i 2 Qinput, valueo:lc �
maxðlastKnowno;iÞ and 9 Rinput s:t: 8r, r 2 Rinput, valido;r ¼
true ^ expiresv;r > cTime.

Similar to the basic protocol, j uses VC2 to decide
whether to process a read as a read hit or a read miss. In a read
miss, j needs to send different requests to different
Qinput servers and reply when VC2 becomes true. In
particular, for each target server i selected, j sends one of

three things: 1) if the volume from i has expired and the
object from i is invalid, it sends a combined volume renewal
and object renewal request; 2) if just the volume has
expired, it sends a volume renewal request; or 3) if just the
object is invalid, it sends an object renewal request.

The object renewal process is exactly the same as in the
basic DQ protocol we described in Section 3.1 except that
each Qinput server i also sends its epochv;j with the object
values and j updates its epocho;i and valido;i.

The volume lease renewal needs to do a few more things.
Upon a volume lease renewal request from a Qoutput server j,
a Qinput server i sends the delayed invalidations delayedv;j
and a volume renewal message containing a lease length L
and the volume epoch number epochv;j. i then records the
volume expiration time ðexpiresv;j ¼ Lþ cTimeÞ.

When j receives a volume lease renewal reply from j, it
first applies the delayed invalidations to affected objects as
described in Section 3.1 and updates expiresv;i and epocho;i
for all objects under volume v. To account for worst case
clock drift and any network delays, j conservatively sets
expiresv;i ¼ to þ L � ð1�maxDriftÞ, where to is the time
that j sent the volume lease renewal request, L is the volume
lease length granted in the reply, and maxDrift is as
defined in Section 2. To allow i to clear its delayed
invalidation queue, j sends i a volume lease renewal
acknowledgment containing the highest version number
among all of the processed invalidations. When i receives a
volume lease renewal acknowledgment for volume v and
version number lc from j, i clears all delayed invalidations
with logical clocks up to lc from delayedv;j.

At any time if i wishes to garbage collect delayed
invalidations that it has not sent to j or that j has not
acknowledged, i advances epochv;j. Note that if j receives
from i a volume lease with a new epoch, then epochv;i 6¼
epocho;i for all o in v. As a result, all previously valid objects
from i immediately become invalid, i.e., valido;i ¼ false.
Therefore, if j misses some object invalidations from i when
its volume lease from i has expired, a volume lease renewal
from i can resynchronize j’s state by either 1) updating
valido;i and lastKnowno;i with the delayed invalidation or
2) advancing epochv;j by sending a volume renewal with a
new epoch number.

Invalidation suppress and write through. A Qinput

server i processes a write request as a write suppress, when
the following condition is true:

Suppress condition 2 (SC2). 8j, j 2 Qoutput, lastReado <
lastAcko;j or cTime � expiresv;j.

If SC2 is true, i processes the write locally, appends
the invalidation for the pending write in delayedv;j for
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each Qoutput server j that has expired volume leases
(i.e., expiresv;j < cTimeÞ, and acknowledges the write
request immediately.

If SC2 is false, it is a write through. To ensure that at least a
Woutput is unable to read the old value, i needs to do two
things: 1) send an invalidation for the pending write to
those Qoutput servers that have both a valid object lease and a
valid volume lease and 2) append the invalidation for the
pending write in delayedv;j of each Qoutput server j that has
expired volume lease. As soon as SC2 becomes true,
i processes the write locally and acknowledges the client.

Comparing with the basic protocol, the volume lease

protocol has better write availability because it can expire

volume leases without communicating with any Qoutput

server, but read performance might degrade due to volume

lease renewals. Consider the same write through scenario in

Fig. 4a. If any of the Qoutput server (e.g., A) is disconnected,

write1 will block until A comes back. With volume leases,

write1 only needs to wait at most until expiresv;A when the

volume lease for A is definitely expired. When write1 waits

long enough, eventually SC2 will be true due to volume lease

expiration. Therefore, a write through scenario can be reduced

to a write suppress scenario by trading latency for availability.

On the other hand, read performance might degrade because

of the additional volume lease renewal cost. Consider the

same read hit scenario in Fig. 4b. The subsequent read

following read1 in the basic protocol is a read hit, but it might

be a read miss due to a volume lease expiration that breaks

VC2. Even worse, the volume lease renewal might fail due to

network partition of A from any Rinput. In this case, we

assume the underlying request redirection architecture will

redirect the read to other available edge servers.

3.3 Correctness

In this section, we prove that the DQ protocol guarantees
regular semantics, i.e., satisfies both Property 1 and
Property 2 as defined in Section 2. We first prove that
the simplified ADQ protocol satisfies the two properties.
Then, we give proof of correctness for the full DQ with
volume leases protocol (DQ). Finally, we discuss issues of
extending the protocol to support stronger semantics such
as atomic semantics [18].

ADQ protocol. We first establish a helpful lemma: once a
write completes, no subsequent read at any Qoutput server
can return an older value.

Lemma 1. If a write W for object o completes in the ADQ
protocol, then no subsequent read of o returns a value with a
timestamp lower than W:lc.

Proof. Consider two cases for W : 1) write suppresses at each
Winput server or 2) a write through for at least one server i
in a Winput quorum. We first prove that any subsequent
read in case 1 is a read miss and any subsequent read in
case 2 is either a read hit with a value at least as new as
W or a read miss. Then, we prove that the object renewal
invoked by any read miss returns a value at least as
new as W .

In case 1, each Winput server satisfies SC1. Suppose
there exists an Routput quorum such that each server has a
valid copy W 0 with W 0:lc < W:lc. Consider any server j

in the Routput quorum. By VC1, the max version of all
invalidations that j receives from all Qinput servers is at
most W 0:lc and there exists an Rinput quorum such that
valido;i is true for each i in the Rinput quorum. Therefore,
each i in the Rinput quorum has lastAcko;j � lastReado.
Since the Winput quorum intersects the Rinput quorum, at
least one Winput server has lastAcko;j � lastReado, which
contradicts SC1. Therefore, it is impossible to have such
an Routput quorum that returns an old value without
renewing first; any subsequent read will force at least
one Qoutput server to renew from an Rinput quorum.

In case 2, i sends invalidation with W:lc to at least a
Woutput quorum before W completes. Since any
Woutput quorum intersects with any Routput quorum,
any subsequent client read request will be sent to at
least one of the Woutput members j whose lastKnowno;i
is at least as new as W:lc. Therefore, j will return a
valid object with a version at least as new as W:lc if
VC1 is true. Otherwise, it is a read miss.

Finally, we prove that a read miss returns a value at
least as new as W . Since W has completed, there exists at
least a Winput quorum whose members have received W .
Because any Rinput quorum intersects any Winput quorum,
any object renewal from an Rinput quorum will return a
write at least as new as W . tu

Theorem 1. The ADQ protocol provides regular semantics.

Proof. Two operations o1 and o2 are considered concurrent if
o1 starts before o2 completes and after o2 starts or vice
versa. Suppose the last completed write is W , by
Lemma 1, any subsequent read will return a value at
least as new as W . Since W is the last completed write,
any subsequent read that is not concurrent with any write
of o will return W , i.e., Property 1 holds.

Suppose a write W 0 is concurrent with a read R and
the last completed write is W (note W 0:lc > W:lcÞ. By
Property 1, any reads that precede W 0 after W
completes return W . Therefore, before W 0 or R starts,
there are two cases to consider for any Qoutput read
quorum Routput: 1) Routput has at least one invalid
member (Lemma 1), or 2) all Routput members are valid
and at least one valid member holding value of W
(renewed by any subsequent read).

When R sends requests to Routput of case 1, then
we have a situation where both the renewal and the
write W 0 are active in the Qinput. Since Qinput as
traditional quorum systems provides regular semantics,
the renewal could return the invalid Routput member a
value of either W or W 0. As a result, the read will return
either W or W 0 to the client. Notice that W 0 might change
some Routput quorums from case 2 to case 1; for these
Routput quorums, we have the same result as above. For
any Routput quorum that remains in case 2 when serving
the R request, it will return W .

Similarly, we can prove that for multiple concurrent
writes and reads, we still have the same result. There-
fore, ADQ provides both Property 1 and Property 2. tu
DQ protocol with volume leases. The proof for the full

DQ protocol that makes use of volume leases is similar to

the proof for ADQ. First, a property similar to Lemma 1 is

still true for DQ protocol with volume leases.
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Lemma 2. If a write W for object o completes in the DQ with
volume leases protocol, then no subsequent read of o returns a
value with a timestamp lower than W:lc.

Proof. Consider the same two cases in the proof of Lemma 1.
By replacing VC1 with VC2 and SC1 with SC2 in the proof
of Lemma 1, we can easily derive the same conclusion
about case 1: any subsequent read in case 1 is a read miss.

First, we prove that any subsequent read in case 2 is
either a read hit with a value at least as new as W or a
read miss. In case 2, after W completes, SC2 is true on
each server of a Winput quorum. Therefore, any output
server j either 1) receives an invalidation with W:lc or
2) j:expiresv;i < j:cTime for all i in the Winput quorum. If
j receives an invalidation with W:lc during W write
through, then VC2 makes sure that it returns a value at
least as new as W . If j does not receive any invalidation
with W:lc, then its volume leases must have expired
from at least a Winput quorum. Because the Winput

quorum intersects with any Rinput quorum, j cannot
have valid volume leases from an Rinput quorum.
Therefore, VC2 on j is false, i.e., read miss.

Finally, we prove that any read miss returns a value at
least as new asW . In a read miss, if any of theRoutput server
renews the object, from proof of Lemma 1, it will get a
value at least as new as W . Otherwise, it needs to renew
some volume leases to make sure that it has valid volume
leases from an Rinput quorum. According to the volume
lease renewal protocol, at least one of the Rinput quorum
that intersects any Winput quorum has a delayed invalida-
tion with W:lc for j or a newer epoch number than j’s
current object epoch number. Therefore, the renewal of
volume leases makes j’s local stale object invalid if it is
older than W and invoke an object renewal that brings a
version at least as new as W . tu

Theorem 2. The DQ protocol with volume leases provides
regular semantics.

Proof. Similar to the proof for the basic DQ protocol, by
Lemma 2, we can easily derive that DQ protocol with
volume leases provides regular semantics. tu

Atomic semantics. Though in principle the DQ protocol
can be extended to support atomic semantics [18], doing so
would likely give up most of the benefits of the approach. In
general, there are two approaches to support atomic
semantics for quorum systems: writeback [31] and majority
matching [32]. The writeback mechanism implements atomic
semantics by requiring each read operation to write back the
read value to a write quorum. The majority matching
approach blocks a read until it collects matching replies
from at least a majority quorum. Either approach is
problematic for our efforts to optimize read performance
by supporting small read quorums. In the case of a
writeback, reads must access both a read quorum and a
write quorum. In the case of majority matching, each read
must contact at least a majority of servers.

4 EVALUATION

Through both analytical and experimental evaluations, we
compare the availability, performance, and communication

overhead of DQ with volume leases protocol against other
popular replication protocols. We show that DQ yields read
performance competitive with ROWA-A epidemic algo-
rithms and that overall availability is competitive with the
majority quorum protocol.

4.1 Response Time

Analytical evaluation. First, we analyze the response time
of DQ and make comparisons with other popular protocols
in the context of the edge service environment where every
service client connects to a nearby edge server via a fast
connection, e.g., a LAN-like connection, lan, with 6 ms RTT.
All edge servers connect to each other through an overlay
network, overlay, with RTT delays of 80 ms. For a client to
connect to servers other than its nearby edge server, it has to
go through a WAN-like connection, wan, with 86 ms RTT.

To preserve the optimal availability, the Qinput is
configured as a majority quorum system. But, the read
quorum in Qoutput can be configured to consist of one server
so that a client needs to read only from its nearby server.
Therefore, the response time of a read hit will only involve
lan delays, but the response time of a read miss is lanþ
overlay because this closest server needs to renew from
other edge servers. The response time of write suppress is
2wan, one round trip to retrieve the highest timestamp and
another round trip to perform the actual write. The response
time of write through is 2wanþ overlay because the write has
to send invalidations and wait for acknowledgments to
come back from a write quorum Qoutput in addition to
retrieving the highest timestamps and sending the write to
be performed. If we assume the workload consists of groups
of consecutive reads followed by consecutive writes, most
reads are read hit (except for the first one in each group) and
most writes are write suppress (except for the first one in each
group). Suppose the write percentage is w, then the read
percentage is 1� w and we have the best case average
response time for DQ:

respDQ�Best ¼ w� 2wanþ ð1� wÞ � lan:

When the workload consists of interleaved reads and
writes, most reads are read miss and most writes are write
through. The average response time for these workloads is
potentially poor. Depending on the write ratio, there are
two cases for this scenario:

. When w � 0:5, the worst workload pattern is a set of
interleaved writes and reads followed by a set of
consecutive writes. Therefore, the response time is

respw�0:5
DQ�Worst ¼ ð1� wÞ � ð2wanþ overlayÞ þ ð1� wÞ

�ðlanþ overlayÞ þ ð2w� 1Þ � 2wan:

. When w � 0:5, the worst workload pattern is a set of
interleaved writes and reads followed by a set of
consecutive reads. For the consecutive reads, the
worst scenario is that different reads touch different
Routput in Qoutput, which still requires renewal from an
Rinput quorum. Therefore, the response time is

respw�0:5
DQ�Worst ¼w� ð2wanþ overlayÞ þ ð1� wÞ

� ðlanþ overlayÞ:
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Protocol comparison. Given the above formulation of
response time, we can compare DQ with a range of
algorithms.

In comparing with DQ, the ROWA protocols read from
only one server and write to all replicas. Although
ROWA protocols are often treated separately in the
literature [33], [20], they are, in fact, a special case of quorum
protocols in which the read quorum is composed of any one
server in the system and the write quorum is the entire set of
servers. In the context of the edge service environment, the
ROWA protocols read from a nearby edge server via a fast
connection, and they block a write until all the edge servers
have received the write. Therefore, the average response
time for ROWA protocols is

respROWA ¼ w� wanþ ð1� wÞ � lan:

ROWA-A protocols [14], [15], [16] are variations of
ROWA protocols that allow the write to be propagated
asynchronously to other servers. Therefore, the response
time is

respROWAA ¼ lan:

Other traditional quorum systems such as majority
quorums [21] or grid quorums [22] need two round trips
for a write (get timestamp and write) and need to contact
more than one server for read. Therefore, their response
times are

respMajority ¼ respGrid ¼ w� 2wanþ ð1� wÞ � wan:

Average response times of various protocols are
illustrated in Fig. 6, where we plot the average response
times while varying the write ratio and fix the number of
replicas to 15. DQ provides its best case response time
when workloads consist of only read hits and write
suppresses. As Fig. 6 shows, DQ is an order of magnitude
better for read-dominated workloads (i.e., w close to 0)
than traditional quorum systems and yields comparable
response time for write-dominated workloads. As indi-
cated by the third line from the bottom, DQ read hits yield
performance competitive with ROWA-A epidemic algo-
rithms against read-dominated workloads because they
only need to communicate with the closest server.

However, when the workloads are composed of inter-
leaved reads and writes, DQ response time can be 40 ms
longer than the traditional quorum systems. DQ has the
worst case response time against workloads consisting of a
large number of read misses and write throughs. DQ read misses
and write throughs require communication with distant
servers similar to the behaviors of both majority and grid
quorum operations. Therefore, they all experience the wan
delays. Furthermore, because writes in quorum systems
(including DQ) require one wan trip to retrieve the highest
timestamp and another to perform the actual write, the
response time of write-dominant workloads is twice that of
ROWA. Write throughs require an additional wan trip to
invalidate a write quorum in Qoutput. At a 50 percent write
ratio, when DQ has the maximum amount of write throughs,
the overall response time of DQ reaches its worst case relative
to the other protocols as indicated by the topmost curve.

Atomic semantics. Although the studied DQ only
supports regular semantics, for completeness, Fig. 6 also
shows the average response time of a DQ variation that
supports atomic semantics [18]. As we described in
Section 3.3, DQ cannot achieve the above performance
improvement if it supports atomic semantics by either
writeback or majority matching. For simplicity, here we only
show the results of the majority matching approach and
assume that there always exists a read quorum with
matching values when a read happens.

Since majority matching requires majority quorums in
both input quorums and output quorums, the Routput size
cannot be optimized to be one. As a result, the read must
contact multiple nodes and the read response time involves
wan delay instead of lan delay. Therefore, the best case
average response time for DQ-Atomic is the same as
majority quorums with atomic semantics:

respDQ�Atomic�Best ¼ w� 2wanþ ð1� wÞ � wan:

Similarly, when reads and writes interleave,

. If w � 0:5, the response time is

respw�0:5
DQ�Atomic�Worst ¼ð1� wÞ � ð2wanþ overlayÞ

þ ð1� wÞ � ðwanþ overlayÞ
þ ð2w� 1Þ � 2wan:

. If w � 0:5, the response time is

respw�0:5
DQ�Atomic�Worst ¼w� ð2wanþ overlayÞ

þ ð1� wÞ � ðwanþ overlayÞ:

Note that the actual read response time is longer than what
we show here because the read might be blocked for a
majority of nodes to get the same value that is not necessary
for regular semantics. If there are always concurrent
updates, the read might be blocked for a long time.

As indicated in Fig. 6, DQ-Atomic performance is at best
the same as the performance of majority quorums. In the
worst case, it has an additional 80-ms latency to coordinate
Qinput and Qoutput. Compared to DQ with regular semantics,
the average response time for DQ-Atomic is at least 40 ms
longer in both the best and worst cases because DQ-Atomic
cannot take advantage of smaller read quorums.
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Experimental evaluation. We have also developed
prototypes for DQ, primary/backup, majority quorum,
ROWA-A, and ROWA protocols. All the prototypes are
built in Java and run on eight Emulab [34] servers. To
simulate the edge service architecture as described in Fig. 2,
we set the “lan” delay between an application client and its
closest edge server to 8 ms; the “overlay” delay among the
edge servers is 80 ms; the “wan” delay between an
application client and other edge servers is 86 ms.

In the rest of this section, we compare the response time
of five protocols under our target workload, the subset of the
TPC-W workload that operates on the user profile. We show
that DQ yields better response time than protocols provid-
ing strong consistency guarantees and competitive response
time to protocols with relaxed consistency guarantees.

Write ratio. We use the TPC-W workload [13] for our
prototype experiments. TPC-W specifies an e-commerce
workload that simulates the activities of a retail bookstore
website. There are three scenarios: browsing, shopping, and
ordering. We are interested in the most popular browsing
scenario, which consists of a mix of 95 percent browsing
interactions, such as searches and product detail displays,
and 5 percent ordering interactions. In particular, we are
interested in the workload on the multiwriter multireader
profile object in this scenario.

We first evaluate the response time by fixing the write
rate to 5 percent, which is the update rate for TPC-W profile
object, i.e., a workload with a low update rate and strong
access locality. Accesses to the profile object consist of
95 percent reads on a customer’s purchase history, credit
information, and addresses and 5 percent writes on a
customer’s shipping address when processing an online
purchase. When the profile is replicated on edge servers, a
customer is routed to the closest edge server to access its
profile information.

As illustrated in Fig. 7, DQ provides at least six times
better read response time than primary/backup and
majority quorum protocols that are used to provide strong
consistency guarantees. DQ yields almost the same read
response time as ROWA and ROWA-A protocols because
it allows most client reads to be processed only at the
client’s closest replicas with only 8-ms RTT while
maintaining the same level of consistency guarantees as

both primary/backup and majority quorum protocols by
running the DQ invalidation protocol between the closest
replica and the rest of replicas in the system. Note that
response times of all prototypes are higher than the
underlying minimum network delays due to experimental
variation and untuned code.

Fig. 8 is the sensitivity graph illustrating how the
overall read and write response time changes as we vary
the write rate. The response time is the average read and
write response time over a 2-hour period. As writes
dominate the workload, DQ’s response time approximates
that of the majority quorum protocol and becomes higher
than those of primary/backup and ROWA. The main
reason is that DQ clients, following the same procedure as
the majority quorum protocol, need to obtain the latest
timestamp from a read quorum before sending the write to
a write quorum in Qinput. Two round trips are required for
both the majority quorum protocol and DQ while only one
round trip is needed for primary/backup and ROWA
protocols. The additional trip to obtain the timestamp prior
to performing the actual write increases the average
response times of both DQ and the majority quorum
protocol compared with ROWA protocol.

Access locality. In this section, we evaluate response
time when some portion of client requests are routed to
replicas other than the client’s default closest one. Under
normal circumstances, requests are routed to the client’s
closest server. But, the unavailability of the closest replica or
the geographical movement of the client can sometimes
result in the requests being routed to distant replicas.

Fig. 9 illustrates protocols’ response times at our target
5 percent write rate and 90 percent access locality (i.e.,
10 percent of client requests are sent to distant replicas and
90 percent of client requests are sent to the client’s closest
replica). The 90 percent access locality is a pessimistic
measure for Internet edge servers given typical network
failure rate is well below 10 percent and the majority of users
do not travel frequently. DQ outperforms both primary/
backup and majority quorum protocols for this workload
while preserving the same consistency level even in cases
where client requests are directed to distant replicas. Note
that ROWA-A protocol yields the optimal response time at
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the cost of serving reads with potentially inconsistent data
when requests are directed to the distant replicas.

In the DQ protocol, the response time of reads at distant
replicas is higher than the normal response time experienced
when reading from the closest one. As the access locality
varies, the overall response time changes accordingly. Fig. 10
indicates the relationship between the access locality and the
overall read and write response time of five protocols. The
response time is the average read and write response time
over a 2-hour period. DQ suffers when access locality is low
because both reads and writes need to contact replicas in
both input and output quorum systems. But, DQ’s response
time keeps improving as the access locality becomes higher.
The majority quorum and primary/backup protocols are not
affected by the access locality because neither protocol is
designed to take advantage of the access locality in the edge
service environment. This graph suggests that when the
access locality is 70 percent or higher, DQ should be
preferred over primary/backup or majority quorum proto-
cols for replication systems that require low response time
and strong consistency guarantees.

4.2 Availability

In this section, we provide analytical models to evaluate the
availability of the DQ protocol in comparison with other
popular replication protocols.

We define the availability ðavÞ as the number of client
requests successfully processed by the system over the total
number of requests submitted to the system during a given
time period. A request is rejected by the system when target
consistency semantics cannot be satisfied [35] or if insuffi-
cient servers are available to process requests. In the context
of this discussion, systems are required to provide regular
semantics [18]. For example, if more than half of the servers
are unavailable in Qinput of a DQ system or in a majority
quorum system, a client write will be rejected because the
system can no longer guarantee that a later read can always
retrieve the value of this write.

The availability of read hit is the availability of a read
quorum in Qoutput avðRoutputÞ. Read miss not only needs to
contact a read quorum inQoutput but also needs to renew from
a read quorum in Qinput. Suppose each server participates

both in Qinput and Qoutput, then the availability of read miss is
the minimum of the availability of a read quorum in
Qoutput avðRoutputÞ and the availability of a read quorum in
Qinput avðRinputÞ. Since the volume leases are normally short,
we conservatively assume that availability of read is
dominated by read miss, i.e., minðavðRoutputÞ; avðRinputÞÞ.
The write availability has similar results. The availability of
write suppress is the availability of a write quorum in
Qinput avðWinputÞ. The write through needs to contact a write
quorum Woutput in Qoutput besides the write quorum in
Qinput Winput. Similarly, we conservatively assume the avail-
ability of write is dominated by write through, i.e.,
minðavðWoutputÞ; avðWinputÞÞ.

Given that the size of a quorum is qs, the total replication
size is n, and the per-server independent failure probability
is p, the availability of the quorum is

avquorum ¼
Xn�qs

i¼0

n

qs
ð1� pÞqsþipn�qs�i:

The availability of the DQ system can be expressed as

avDQ ¼ð1� wÞ �min avðRoutputÞ; avðRinputÞ
� �

þ w�min avðWinputÞ; avðWoutputÞ
� �

:

Similarly, we derive the availability models of other
quorum systems as the following:

avROWA ¼ð1� wÞ � ð1� pnÞ þ w� ð1� pÞn
avROWAA ¼ 1� pn

avMajority ¼
Xn�1
2 þ1

i¼1

n
n�1

2 þ i
ð1� pÞ

n�1
2 þi � pn�1

2 þ1�i

avGrid ¼ð1� p
ffiffi
n
p
Þ
ffiffi
n
p
� w� 1� ð1� pÞ

ffiffi
n
p
� p

ffiffi
n
p� � ffiffinp

:

Note that the ROWA-A protocol does not provide
regular semantics, because it allows servers without the
latest update to return stale data. Therefore, in order to
compare the availability of ROWA-A with the other
protocols to satisfy the same consistency requirements, we
model the availability of ROWA-A protocol by altering the
ROWA-A protocol to avoid returning stale data. In
particular, we assume there is an oracle in each server
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who always knows if an object is stale or not. When a server
that only has stale data receives a read request, it will reject
the request. The client will retry the read request by
contacting other servers. Only when all available servers are
stale will we consider the request a failure. Therefore, the
availability of the ROWA-A without staleness is

avROWAAð0 stalenessÞ ¼ 1� pn � ð1� wÞ � ð1=nÞ � w� p
� ð1� pn�1Þ:

Figs. 11 and 12 illustrate the unavailability of DQ in
comparison with other protocols in log scale. The unavail-
ability is computed as 1� av. An unavailability of 10�i

corresponds to the availability of i 9’s. Our simple model
assumes a per-server failure probability p ¼ 0:01 and that
failures (including server crashes and network failures) are
independent. Read and write rates are defined as 1� wandw.
This simple model is intended to illustrate the properties of
the systems, not to model any realistic environment.

Fig. 11 illustrates the systems’ unavailability as we vary
the write ratio and fix the number of replicas to 15 (in both
Qinput and Qoutput). Therefore, for DQ input quorum systems
and ROWA protocols, the read quorum size is 1 and the
write quorum is 15; for output quorum systems and other
majority quorums, the read quorum size is 7 and the write
quorum is 8. The key result is that DQ’s availability tracks
that of the majority quorum. Note that the DQ’s availability
measurement is pessimistic because a read can proceed
without contacting any read quorum in Qinput if the read
quorum in Qoutput holds valid volume and object leases; this
effect may mask some failures that are shorter than the
volume lease duration. Note that the ROWA-A protocol
provides excellent availability by allowing reads to return
arbitrarily stale data to clients. When our experiments allow
no stale reads in ROWA-A protocol, it yields poor avail-
ability that is several orders of magnitude worse than other
quorum-based protocols and our DQ protocol.

Fig. 12 illustrates the systems’ unavailability as we vary
the number of replicas and fix the write ratio at 25 percent.
It shows that the unavailability of DQ has similar
behavior as the majority quorum system. The availability
of quorum-based protocols, including DQ, improves as
the total number of servers increases. The availability of

ROWA and ROWA-A with no stale reads is insensitive to
the number of servers in the system.

4.3 Communication Overhead

This section analyzes DQ’s communication overhead in
terms of the number of message exchanges required to
process a client request. To simplify the model, the study
assumes the costs of all message types are equal. In addition
to notation used in the previous section, we introduce
jRinputj to represent the size of a read quorum in Qinput.
When a Qoutput server sends an object or renews a volume
lease from a read quorum in Qinput, we use jRinputj to
indicate the number of messages sent by the Qoutput server
(one message to each server of theQinput read quorum).msgr
and msgw denote number of message exchanges when
processing a read and a write, respectively. Our model
targets the average number of message exchanges, which is
calculated as msgr � ð1� wÞ þmsgw � w.

A read hit requires msgreadHit ¼ 2jRoutputj messages
because a client sends to and receives from each server of
a Qoutput read quorum one message. But, for a read miss, each
participating Qoutput server that needs to renew the volume
lease or the object sends a renewal request, receives a
renewal reply, and responds with an renewal acknowl-
edgment to a read quorum in Qinput, which requires 3jRinputj
messages in addition to the 2jRoutputj messages. When all
servers of the Qoutput read quorum need to renew their local
volume leases or the object, the total message cost is
msgreadMiss ¼ 2jRoutputj þ 3jRoutputj � jRinputj. A write suppress
requires msgwriteSuppress ¼ 2ðjRinput þWinputjÞ messages be-
cause it retrieves the highest timestamp from a Qinput read
quorum and performs the write on a Qinput write quorum.
But, a write through requires additional 2jWinputj � jWoutputj
messages because of invalidations and acknowledgments
between a Qinput write quorum and a Qoutput write quorum.
The total number of messages required for a write through is
msgwriteThrough ¼ 2ðjRinput þWinputj þ jWinputj � jWoutputjÞ.

Therefore, the average number of message exchanges for
DQ when workload consists of only consecutive reads
followed by consecutive writes (or vice versa) is

msgDQ�best ¼ w�msgwriteSuppress þ ð1� wÞ �msgreadHit:
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Fig. 11. Unavailability versus write ratio ðnumber of replicas ¼ 15Þ. Fig. 12. Unavailability versus number of replicas when fixing write ratio

to 25 percent.



When the workload consists of only interleaving reads and
writes, the average number of messages required is

msgw<0:5
DQ�worst ¼w�msgwriteThrough þ w�msgreadMiss

þ ð1� 2wÞ �msgreadHit

and

msgw�0:5
DQ�worst ¼ð1� wÞ �msgwriteThrough þ ð2w� 1Þ

�msgwriteSuppress þ ð1� wÞ �msgreadMiss:

The average number of messages required in other
protocols is given as follows:

msgROWA ¼ 2w� nþ 2ð1� wÞ;
msgMajority ¼msgGrid ¼ 2w� jrqj þ jwqjð Þ þ 2ð1� wÞ � jrqj:

We first examine the case where both Qinput and Qoutput

systems of DQ are configured the same as in the
previous study, i.e., read and write quorums of Qinput

include a majority of servers and the read quorum size of
Qoutput is one.

Figs. 13 and 14 show the average number of messages
required to process a client request in log scale. As
illustrated in Fig. 13, in the worst case where the write
ratio is at 50 percent, DQ can have high communication
overhead as reads and writes interleave with each other. In
this case, most reads are read misses and most writes are
write throughs, which involve both Qinput and Qoutput in
processing requests. However, DQ’s overhead should be
comparable to other approaches in practice. First, work-
loads that DQ is designed to support are dominated by
reads. Consecutive reads are likely to benefit from having
objects cached on Qoutput servers, i.e., the target workloads
have a large number of read hits. Second, the design of DQ
allows us to vary the Qoutput size to meet read performance
goals while varying the Qinput size to balance overhead
versus availability goals. As shown in Fig. 14, once we fix
Qinput at a moderate size while letting the Qoutput size grow,
the communication overhead yielded by DQ is at the same
level as the majority quorum without requiring many read

hits in the workload.

Although the DQ protocol is described in terms of two
quorum systems, Qinput and Qoutput, a Qinput server can
physically be on the same server as a Qoutput server.
Therefore, the overall communication overhead could be
less than shown here because some messages become local.

5 RELATED WORK

This paper is an extended version of [36] in which we
introduced the DQ algorithms. In this version, we provide
detailed proofs of the correctness of the ADQ algorithm and
the full protocol with volume leases. We also present more
evaluation results including analytical evaluation of the
response time and availability of DQ by comparing with
other popular protocols.

In the ROWA protocol family, the “read-one” property
yields excellent read availability and response time. But,
this class of protocols has limited write availability and
response time because writes cannot complete if any of the
replicas are unavailable. ROWA-A protocols [14], [15], [16]
yield better write availability and response time by allowing
writes to be propagated to other replicas asynchronously.
But, they are only suitable for weakly consistent replication
because they cannot guarantee that reads will always return
the data modified by the latest completed write. A variation
of ROWA [20] performs writes synchronously on the
available replicas to provide better consistency, but it
requires membership protocols to maintain the consistent
view of active members.

Quorum-based protocols [26], [27], [37], [21] can
tolerate network partitions as long as connected replicas
can form a quorum to process reads/writes. However,
most quorum systems’ read response time and availability
are worse than those of ROWA-A or primary backup-
based protocols because reads usually need to query a
larger set of servers. Therefore, they are not desirable to
handle a read-dominated workload, e.g., a workload from
interactive online applications.

Some quorum-based techniques use lightweight nodes,

such as ghosts [38], to help form quorums for processing
requests. When propagating a write, a replica only sends to
these nodes the timestamp and object ID of the write. Our
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Fig. 13. Communication overhead versus write ratio (number of

replicas= 15).
Fig. 14. Communication overhead versus the number of replicas.



DQ invalidation protocol shares the idea in terms of

replacing writes with invalidations when propagating to

some replicas. However, our use of invalidations also

allows us to reduce the future message propagation to

other replicas.
As another approach for highly available consistent data

replication, state machine replication [39], [40] relies on

various agreement protocols to achieve linearizability [41]

while tolerating benign or Byzantine faults in different

system models. In essence, as Li et al. [42] illustrate,

agreement protocols such as Paxos [43] and PBFT [44] are

actually elaborations on majority quorum systems. A varia-

tion of the state machine replication approach such as [45]

leverages a ring reliable multicast protocol instead of Paxos-

like protocols to provide certain consistency guarantees for

replication systems built upon it. To provide linearizability

under network partitions, the replication system built on such

a group communication protocol needs to block reads and

writes until the node becomes a member of the primary

partition. This approach introduces at least approximately

half the token rotation time delay on average to deliver a

message, which is not desirable for edge services where edge

servers communicate in a WAN. Although the read liveness

can be improved by allowing reads in nonprimary partitions,

doing so only provides serializability and does not provide

regular semantics or any staleness guarantees. In addition,

this class of techniques may have degraded performance in a

WAN because it must run the membership protocol to

include/exclude certain replicas when they are mistakenly

considered as crashed/recovered due to slow WAN links.
Traditional cache invalidation protocols [29], [19] are

primarily used in the client-server model where the single

server hosts the objects and clients keep cached copies.

Those protocols assume that an object always has a home

location that can grant leases to cached copies, but this

single centralized server may hurt availability.

6 CONCLUSIONS

This paper has presented DQ replication, a novel data

replication algorithm designed to support Internet edge

services. Through both analytical and experimental evalua-

tions, we demonstrate that this replication protocol offers

nearly ideal trade-offs among high availability, good perfor-

mance, and strong consistency under the target workloads.
Several important issues will be addressed in our future

work. It will be interesting to configure both Qinput and

Qoutput to optimize other metrics. For example, we can

configure the read quorum size in Qoutput to be larger than

one to avoid time-outs on invalidations. We can also

configure Qinput as a grid quorum system [46] to reduce the

overall system load.
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