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Abstract. We present two OBDD based model checking algorithms for
the verification of Nash equilibria in finite state mechanisms modeling
Multiple Administrative Domains (MAD) distributed systems with pos-
sibly colluding agents (coalitions) and with possibly faulty or malicious
nodes (Byzantine agents). Given a finite state mechanism, a proposed
protocol for each agent and the maximum sizes f for Byzantine agents
and q for agents collusions, our model checkers return Pass if the pro-
posed protocol is an ε-f -q-Nash equilibrium, i.e. no coalition of size up
to q may have an interest greater than ε in deviating from the proposed
protocol when up to f Byzantine agents are present, Fail otherwise. We
implemented our model checking algorithms within the NuSMV model
checker: the first one explicitly checks equilibria for each coalition, while
the second represents symbolically all coalitions. We present experimen-
tal results showing their effectiveness for moderate size mechanisms. For
example, we can verify coalition Nash equilibria for mechanisms which
corresponding normal form games would have more than 5×1021 entries.
Moreover, we compare the two approaches, and the explicit algorithm
turns out to outperform the symbolic one. To the best of our knowl-
edge, no model checking algorithm for verification of Nash equilibria of
mechanisms with coalitions has been previously published.

1 Introduction

Cooperative services are increasingly popular distributed systems in which nodes
(agents) belong to Multiple Administrative Domains (MAD). Thus in a MAD
distributed system each node owns its resources and there is no central authority
owning all system nodes. Examples of MAD distributed systems include Internet
routing [13,23], wireless mesh routing [18], file distribution [8], archival storage
[19], cooperative backup [2,9,17].
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In traditional distributed systems, nodes may deviate from their specifications
(Byzantine nodes) because of bugs, hardware failures, faulty configurations, or
even malicious attacks. In MAD systems, nodes may also deviate because their
administrators are rational, i.e. selfishly intent on maximizing their own bene-
fits from participating in the system (selfish nodes). For example, selfish nodes
may change arbitrarily their protocol if that is at their advantage. Byzantine-
Altruistic-Rational (BAR) protocols provide a realistic model for MAD systems.

Showing that a protocol P for a MAD distributed system satisfies a given
specification ϕ entails two tasks. First, we need to show that P satisfies the
given property when all rational nodes follow the protocol exactly. Second, we
need to show that all rational nodes do, in fact, follow the protocol exactly.

As for the first task, well known model checking techniques (e.g. see [6] for a
survey) are available to verify that a system satisfies a given property despite
the presence of a limited number of Byzantine nodes. It suffices, as usual, to
model Byzantine nodes with nondeterministic automata.

As for the second task, this is usually accomplished by proving that no rational
agent has an incentive in deviating from the proposed protocol. This is done by
proving that the proposed protocol is a Nash equilibrium (e.g. see [13,4]).

A symbolic model checking algorithm to automatically verify that a given
protocol is a Nash eaquilibrium for a given MAD distributed system has been
presented in [20]. However the model checker presented in [20] only addresses
the case in which agents do not collude. On the other hand, it is well known
from game theory that coalitions of agents may have an advantage in deviating
even when no single agent may get any advantage by deviating alone (e.g. see
[15]). For example, this is the case for the gossip protocol presented in [16] which
is a Nash equilibrium when agents do not collude (no coalitions) and instead is
no longer a Nash equilibrium when large enough coalitions are allowed.

The above state of affairs motivates the goal of this paper: designing a model
checking algorithm to verify if a given protocol is a Nash equilibrium for a MAD
distributed system when coalitions up to a given size are allowed.

Our contribution. In Sect. 2 we show how a MAD distributed system with
coalitions of players can be modeled as a Coalition Schema, that is a suitable
synchronous product of Finite State Machines. This framework extends Finite
State Mechanisms presented in [20] which do not account for coalitions.

In Sect. 3 we define the game induced by a Coalition Schema, and in Sect. 4 we
give a formal definition of the property we want to verify: ε-f -q-Nash. Intuitively,
a mechanism is ε-f -q-Nash if no coalition of size up to q of rational agents has an
interest greater than ε > 0 (along the lines of, e.g. [12,14]) in deviating from the
proposed protocol when there are at most f Byzantine agents (along the lines of
[11]). Sufficient conditions to verify ε-f -q-Nash property are given in Theor. 1.

In Sect. 5 we present a verification algorithm that given a coalition schema
Q, our desired precision δ > 0 and (ε, f , q) as above, returns: Pass if the given
mechanism is indeed a (ε + δ)-f -q-Nash equilibrium for Q, Fail otherwise.

From a mathematical point of view, given a coalition schema Q and a coalition
Q, we can build a mechanism MQ in which the coalition is just one of the
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agents. As a consequence, a first approach (that we call explicit) to verify that a
mechanism is ε-f -q-Nash consists of adapting the symbolic algorithm in [20] to
check that MQ is a Nash equilibrium for all Q, such that 0 < |Q| ≤ q. If Q has
n players, following this approach entails calling O(nq) times a variation of the
algorithm in [20] (more specifically,

∑q
k=1

(
n
k

)
).

To overcome this exponential growth, we propose an alternative approach
(that we call symbolic) by extending the algorithm in [20] so as to represent
symbolically (i.e. using OBDDs [3]) all mechanisms MQ, where Q is a coalition
of size at most q. We implemented our algorithm on top of NuSMV [22] using
ADDs (Arithmetic Decision Diagrams) [10] to manipulate real valued rewards.

Finally, in Sect. 6 we present experimental results showing effectiveness of
our verification algorithm on moderate size mechanisms. For example (Tab. 1
in Sect. 6), within 30 hours using 5GB of RAM we can verify Nash equilibria
for mechanisms with 16 agents and coalitions of size up to 2 (i.e. 136 possible
coalitions). This corresponds to find Nash equilibria for 136 games each with a
normal form of more than 5 × 1021 entries.

Moreover, we compare explicit and symbolic approach performances. To this
aim, we note two facts. First, our symbolic approach involves the introduction
of auxiliary variables to properly perform the maximin computations required
by our algorithm. Second, real valued nodes in ADDs make usual OBDD sub-
tree sharing less effective. As a result, even if the symbolic approach should be
asymptotically better, the explicit implementation outperforms the symbolic one
in mechanisms we deal with, both in running time and memory usage (Tabs. 1
and 2 in Sect. 6).

Related works. Design of mechanisms for rational agents has been widely
studied (e.g. [23,21,5]) as well as the impact of collusions (e.g. [15]). Design
methods for BAR protocols have been investigated in [1,16,7,11] .

We differ from such works since our focus here is on automatic verification of
Nash equilibria for finite state BAR systems rather than on designing principles
for them. The paper closer to ours is [20] where a symbolic algorithm for checking
Nash equilibria in mechanisms has been presented. We note however that [20]
does not address coalitions.

Summing up, to the best of our knowledge, no model checking algorithm for
the automatic verification of Nash equilibria of finite state mechanisms with
coalitions has been previously proposed.

2 Coalitions Model

In this section, we present our framework to model protocols. Finite state proto-
cols are modeled via Finite State Mechanisms, which suitably extend the usual
definition of the synchronous parallel composition of finite state transition sys-
tems. The notion of Coalition Schema (Sect. 2.2) extends the definition of Mech-
anism in [20] by specifying the reward function and the discount factor for each
possible coalition (i.e. for each subset of players). Indeed, a Coalition Schema
represents a class of Mechanisms (Sect. 2.3).
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2.1 Basic Notions

We denote with B the set {0, 1} of boolean values (0 for false and 1 for true).
We denote with [n] the set {1, . . . , n}. The set of subsets of X (with cardinality
at most k) will be denoted by P(X) (Pk(X)).

We denote an n-tuple of objects (of any kind) in boldface, e.g. x. Unless
otherwise stated we denote with xi the i-th element of the n-tuple x, x−i

the (n − 1)-tuple 〈x1, . . . , xi−1, xi+1, . . . , xn〉, and with 〈x−i, b〉 the n-tuple
〈x1, . . . , xi−1, b, xi+1, . . . , xn〉. Given a set Q ⊆ [n], we denote the tuple 〈xj〉j∈Q

with xQ and the tuple 〈xj〉j �∈Q with x−Q.

2.2 Coalition Schema

Definition 1 (Coalition Schema). An n players (agents) coalition schema Q
is a tuple 〈S, I, A, B, T , h, β〉 which elements are defined as follows.

S = 〈S1, . . . , Sn〉 is an n-tuple of nonempty finite sets (of local states). The
state space of M is the set (of global states) S =

∏n
i=1 Si.

I = 〈I1, . . . , In〉 is an n-tuple of nonempty sets (of local initial states) s.t.
Ii ⊆ Si. The set of global initial states is I =

∏n
i=1 Ii.

A = 〈A1, . . . , An〉 is an n-tuple of nonempty finite sets (of local actions). The
set of global actions (i.e. n-tuples of local actions) is A =

∏n
i=1 Ai. The set of

i-opponents actions is A−i =
∏n

j=1,j �=i Aj .
B = 〈B1, . . . , Bn〉 is an n-tuple of functions s.t., for each i ∈ [n], Bi : S×Ai×

Si → B. Function Bi models the transition relation of agent i, i.e. Bi(s, a, s′) is
true iff agent i can move from (global) state s to (local) state s′ via action a. We
require Bi to be serial (i.e. ∀s ∈ S ∃a ∈ Ai ∃s′ ∈ Si s.t. Bi(s, a, s′) holds) and
deterministic (i.e. Bi(s, a, s′) ∧ Bi(s, a, s′′) implies s′ = s′′). We write Bi(s, a)
for ∃s′ Bi(s, a, s′). That is, Bi(s, a) holds iff action a is allowed in state s for
agent i.

T = 〈T1, . . . , Tn〉 is an n-tuple of functions s.t., for each i ∈ [n], Ti : S×Ai →
B. We require Ti to satisfy the following properties: 1) Ti(s, a) implies Bi(s, a);
2) (nonblocking) for each state s ∈ S there exists an action a ∈ Ai s.t. Ti(s, a)
holds.

h : P([n])×S ×A → R is a function that for each set Q ⊆ [n], for each state
s and action a, gives the reward h(Q, s, a) for the coalition Q.

β : P([n]) → R is a function returning for coalition Q ⊆ [n] a value β(Q) ∈
(0, 1). We call β(Q) the discount factor of coalition Q.

The transition relation Bi models the underlying behavior for agent i, that is all
possible behaviors of a Byzantine agent or possible choices of a rational one. On
the other hand, function Ti models the prescribed behavior (proposed protocol)
for agent i, i.e. the behavior of obedient (or altruistic, following [1,16]) agents.
For any set Y of Byzantine and rational players such that all players not in Y
are altruistic, the dynamic of the system is modeled by the transition relation
BTQ given in the following definition.
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Definition 2. Let Q = 〈S, I, A, T , B, h, β〉 be an n players coalition schema.
We define BTQ : P([n]) × S × A × S → B as follows: BTQ(Y, s, a, s′) =∧n

i=1 BTi(Y, s, ai, s
′
i), where

BTi(Y, s, ai, s
′
i) =

{
Bi(s, ai, s

′
i) if i ∈ Y

Bi(s, ai, s
′
i) ∧ Ti(s, ai) otherwise.

We write BT for BTQ when Q is understood from the context.

2.3 Mechanism

Coalitions are subsets of players that together act as a single rational player. This
means that all players in a coalition aim at maximizing the coalition reward. This
leads to the definition of mechanism (with coalitions).

Definition 3 (Mechanism). A mechanism M is a pair 〈Q, P 〉, where Q is an
n players coalition schema, and P = {Q1, . . . , Qm} is a partition of [n] (thus
each Qi is a coalition).

Remark 1. We can recover the definition of mechanism in [20] as a particular
case of Def. 3, when all coalitions are singletons, i.e. P = {{1}, . . . , {n}}, hi(s, a)
= h({i}, s, a) is the reward of player i and βi = β({i}) is the discount factor of
player i.

Remark 2. Given an n players mechanism M = 〈Q, P 〉, where P is
{Q1, . . . , Qm}, there exists an equivalent m players mechanism M̂ with only sin-
gleton coalitions. The mechanism M̂ is defined as follows: M̂ = 〈Q̂, P̂ 〉, where P̂

= {{1}, . . . , {m}} and the coalition schema Q̂ = 〈Ŝ, Î, Â, T̂ , B̂, ĥ, β̂〉 is defined
as follows. The set of players of Q̂ is [m]. The set of states is Ŝ = 〈Ŝ1, . . . , Ŝm〉,
where Ŝi =

∏
j∈Qi

Sj . The set of initial states is Î = 〈Î1, . . . , Îm〉, where
Îi =

∏
j∈Qi

Ij . The set of actions is Â = 〈Â1, . . . , Âm〉, where Âi =
∏

j∈Qi
Aj . If

s = 〈s1, . . . , sn〉 ∈ S then ŝ = 〈sQ1 , . . . , sQm〉 ∈ Ŝ. If a = 〈a1, . . . , an〉 ∈ A then
â = 〈aQ1 , . . . , aQm〉 ∈ Â. The underlying behavior of player i is B̂i(ŝ, aQi , s

′
Qi

)
=

∧
j∈Qi

Bj(s, aj , sj). The proposed protocol for player i of Q̂ is T̂i(ŝ, aQi)
=

∧
j∈Qi

Tj(s, aj). The discount and reward functions for player i of Q̂ are:
β̂({i}) = β(Qi) and ĥ({i}, ŝ, â) = h(Qi, s, a).

Since our goal is checking that a given protocol is a Nash equilibrium with
respect to any coalition of size at most q, we will be working, most of the time,
using coalition schemas (Def. 1) rather than mechanisms (Def. 3). Finding a
way (Sect. 5) to effectively represent coalition schemas is indeed one of our main
contributions.

Without loss of generality, in what follows, we focus on mechanisms M =
〈Q, P 〉, with at most one coalition of size greater than 1. That is, partitions
P have the form {Q, {j1}, . . . , {jm−1}}, with |Q| ≥ 1. By abuse of notation,
we denote such kind of partitions with the set of players Q ⊆ [n] forming the
non-singleton coalition.
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Example 1 (Case Study 1). This case study presents a very simple scenario in-
spired by peer-to-peer streaming services. Ideally, n ∈ N agents have to col-
laborate to broadcast information in order to maintain a high-quality service.
When an agent broadcasts information, it incurs a cost c ∈ R. All agents have a
profit g ∈ R if they collaborate and the number of collaborative agents exceeds
a threshold pn, where p ∈ (0, 1) is a real parameter. Otherwise the reward is 0.
The set Si of agent i local states is {0, 1}. The underlying behavior Bi of each
agent i ∈ [n] is depicted in Fig. 1: each agent in state 0 may choose whether
to broadcast information (action broadcast which corresponds to the proposed
protocol Ti) or do nothing (action sleep).

�������	0
broadcast

��

sleep

��
�������	1

reset
��

Fig. 1. Underlying behavior Bi for agent i

Following the intuition that members of a coalition may broadcast information
only to each other, the reward for a coalition Q is g|Q| if at least pn agents (out
of n) and at least r|Q| (r ∈ (0, 1)) agents in the coalition have performed action
broadcast. This last condition models the fact that a large enough number of
agents must collaborate inside the coalition to maintain a high-quality service.

Codifying action broadcast with 1 and sleep with 0, we give the following
formal definition of the reward function h (in state 1, 0 and 1 both codify action
reset). Defining f(Q, s, a) as:

f(Q, s, a) =

{
g|Q| if (

∑
i∈[n] si ≥ pn) ∧ (

∑
i∈Q si ≥ r|Q|)

0 otherwise

the reward function h is h(Q, s, a) = f(Q, s, a) − c
∑

i∈Q s̄iai.

3 Coalition Schemas as Games

A coalition schema Q induces a game that has all feasible paths as possible
outcomes. The set of feasible paths depends on the BTQ transition relation
given in Def. 2. As a consequence, it depends on a set of players Y that may
behave accordingly to the underlying behavior, whereas agents not in Y follow
the proposed protocol. The set Y models both Byzantine and rational agents.

In the rest of this section, we assume an n players coalition schema Q =
〈S, I, A, T , B, h, β〉 and a set of agents Y ⊆ [n] to be given.

Paths. A path in (Q, Y ) (or simply a path when (Q, Y ) is understood from
the context) is a (finite or infinite) sequence π = s(0)a(0)s(1) . . . s(t)a(t)s(t +
1) . . . where, for each t, s(t) is a global state, a(t) is a global action and
BT (Y, s(t), a(t), s(t + 1)) holds. The length |π| of a path π is the number of
global actions in π. If π is infinite we write |π| = ∞.

In order to extract the t-th global state and the t-th global action from a
given path π, we define π(s)(t) = s(t) and π(a)(t) = a(t). To extract actions of
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a set of players Q of size q, we denote with π
(a)
Q (t) the q-tuple of actions aQ(t)

at stage t of the set of agents Q and with π
(a)
−Q(t) the actions a−Q(t) at stage t

of all agents not in Q.
For each set of agents Q ⊆ [n], the value of a path π is v(Q, π) =

∑|π|−1
t=0 β(Q)th

(
Q, π(s)(t), π(a)(t)

)
. Note that for any path π and set of agents

Q ⊆ [n] the path value v(Q, π) is well defined also when |π| = ∞ since the series∑∞
t=0 β(Q)th

(
Q, π(s)(t), π(a)(t)

)
converges for all β(Q) ∈ (0, 1).

Given a path π and a non-negative integer k ≤ |π| we denote with π |k the
prefix of π of length k, i.e. the finite path π|k = s(0)a(0)s(1) . . . a(k−1)s(k) and
with π|k the tail of π, i.e. the path π|k = s(k)a(k)s(k +1) . . .s(t)a(t)s(t+1) . . ..

We denote with Pathk(s, Y ) the set of all feasible paths of length k starting
at s, when Y is the set of rational/Byzantine agents. Formally, Pathk(s, Y ) =
{π | π is a path in (Q, Y ) and |π| = k and π(s)(0) = s}. Since we aim to verify
that a given protocol is robust with respect to all coalitions of size at most q
and all sets of Byzantine agents of size at most f , we introduce the notation
Pathk(s, f, q) to denote the set of all paths of length k feasible with respect to
all sets of Byzantine agents of cardinality at most f and all coalitions of size at
most q. Formally, Pathk(s, f, q) =

⋃
|Z|≤f,0<|Q|≤q,Z∩Q=∅

Pathk(s, Z∪Q). Unless
otherwise stated, in the following we omit the subscript or superscript horizon
when it is ∞. For example we write Path(s, Y ) for Path∞(s, Y ).

Let W ⊆ [n] be a set of agents. A path π in (Q, Y ) is said to be W -altruistic if
for all t < |π|, and for all i ∈ W , Ti(π(s)(t), π(a)

i (t)) holds. Note that if W∩Y = ∅,
all paths in Pathk(s, Y ) are W -altruistic, that is, agents in W behave accordingly
to the proposed protocol.

Strategies. As usual in a game theoretical setting, we need to distinguish a
player actions (i.e. local actions) from those of its opponents. More in general,
we need to distinguish actions of players in a coalition Q from those of players
not in Q. This leads to the notion of strategy.

A strategy σ for a coalition Q is a (finite or infinite) sequence of actions tuples
for the set of players Q. The length |σ| of σ is the number of actions tuples in
σ (thus if |σ| = 0, the strategy is empty). Let σ = a0 . . . at . . . be a strategy for
coalition Q. We denote with σ(t) the t-th action in σ, that is at. Strategy σ agrees
with a path π (notation π �Q σ) if |σ| = |π| and for all t < |σ|, σ(t) = π

(a)
Q (t).

Given a path π, the strategy (of length |π|) for a coalition Q associated to π will
be denoted by σ(π, Q) = π

(a)
Q (0)π(a)

Q (1) . . . π
(a)
Q (t) . . ..

For any set of agents Y ⊆ [n] the set of Y -feasible strategies of length k for
a coalition Q in state s is: Stratk(s, Q, Y ) = {σ(π, Q) | π ∈ Pathk(s, Y )}. Our
definition of feasible strategy essentially corresponds to the usual one in multi-
stage games: global states implicitly represent the sequence of actions in previous
periods, i.e. histories. In contrast with the game theoretical model, histories are
partitioned into a finite number of equivalence classes, represented as mechanism
states.

As for paths, a strategy σ ∈ Stratk(s, Q, Y ) is said to be Q-altruistic if Q∩Y =
∅. If σ = a0a1 . . . ak−1akak+1 . . ., we use the notations σ|k= a0a1 . . . ak−1 and
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σ|k= akak+1 . . . to denote, respectively, the k-prefix and the tail of σ. The set
of paths that agree with a set of strategies Σ for a coalition Q is defined as
Path(s, Q, Y, Σ) = {π ∈ Pathk(s, Y ) | ∃σ ∈ Σ. k = |σ| ∧ π �Q σ }. When Σ is
the singleton {σ}, we simply write Path(s, Q, Y, σ).

Given a set of Byzantine agents Z ⊆ [n] \ Q, the guaranteed outcome (or the
value) of a strategy σ in state s for coalition Q is the minimum value of paths that
agree with σ. Formally: v(s, Q, Z, σ) = min{v(Q, π) | π ∈ Path(s, Q, Z ∪ Q, σ)}.
The value of a state s at horizon k for coalition Q is the guaranteed outcome
of the best strategy of length k starting at state s. Formally: vk(s, Q, Z) =
max{v(s, Q, Z, σ) | σ ∈ Stratk(s, Q, Z ∪ Q)}. The guaranteed outcome of the
proposed protocol in a state s at horizon k for coalition Q is the outcome of the
worst Q-altruistic strategy of length k starting at state s. Formally, uk(s, Q, Z)
= min{v(s, Q, Z, σ) | σ ∈ Stratk(s, Q, Z)}.

The finite horizon value of a state can be effectively computed by using a
dynamic programming approach (Prop. 1). This is one of the main ingredients
of our verification algorithm (Sect. 5). We omit proofs because of lack of space.

Proposition 1. Let Q = 〈S, I, A, T , B, h, β〉 be an n players coalition schema,
s ∈ S, and Q, Z ⊆ [n] such that Z ∩ Q = ∅. The state values at horizon k for
coalition Q can be computed as follows:

v0(s, Q, Z) = u0(s, Q, Z) = 0;
vk+1(s, Q, Z) = max

aQ∈AQ

min
a−Q∈A−Q

{ h(Q, s, 〈aQ, a−Q〉) + β(Q) vk(s′, Q, Z) |

BT (Z ∪ Q, s, 〈aQ, a−Q〉, s′)};
uk+1(s, Q, Z) = min

aQ∈AQ

min
a−Q∈A−Q

{ h(Q, s, 〈aQ, a−Q〉) + β(Q) uk(s′, Q, Z) |

BT (Z, s, 〈aQ, a−Q〉, s′)}

.

Example 2. In the Coalition Schema described in Ex. 1, a rational player may
deviate from the proposed protocol if it thinks that the service is compromised
because the number of Byzantine agents is larger than (1− p)n. In such a case a
rational player choose the action sleep, which ensures a reward 0, rather than the
action broadcast, which leads to the negative reward c

∑
k∈N

β2k. A coalition Q
may deviate by using the following strategy: some agents broadcast information
to other coalition members only, and some agents do not broadcast anything.
In such a case, threshold r|Q| of collaborative agents is required to guarantee
the service for coalition members. As a consequence, the coalition Q deviates
whenever �r|Q|� < |Q|. As expected, if all agents are in the coalition, the protocol
is not Nash, but the reward of each agent increases (the well known price of
anarchy phenomenon[15]).

4 Verifying Coalition Nash Equilibria

In this section, we introduce the notion of ε-f -q-Nash coalition schema, in or-
der to verify protocol robustness with respect to coalitions of colluding players.
Theor. 1 gives sufficient conditions to check that a coalition schema is ε-f -q-Nash
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and, together with Prop. 1, it proves the correctness of our verification (Alg. 1
in Sect. 5).

In [20] it is introduced a notion of ε-f -Nash equilibrium for a mechanism.
Intuitively, a mechanism M is ε-f -Nash, if, as long as the number of Byzantine
agents is no more than f (e.g. see [11]), no rational agent has an interest greater
than ε (e.g. see [12,14]) in deviating from the proposed protocol in M. ε-f -q-
Nash extends this notion by requiring that no coalition of rational agents of size
at most q has an interest greater than ε in deviating from the proposed protocol.

Definition 4 (ε-f-q-Nash). Let Q = 〈S, I, A, T , B, h, β〉 be an n players coali-
tion schema. Let 0 �= q ∈ [n], f ≤ n − q, ε > 0 and Q ⊆ [n] be a coalition with
0 < |Q| ≤ q.

The coalition schema Q is ε-f -Nash for coalition Q iff ∀Z ∈ Pf([n] \ Q),
∀s ∈ I, we have:

u(s, Q, Z) + ε ≥ v(s, Q, Z).

Q is ε-f -q-Nash if it is ε-f -Nash for all coalitions Q such that 0 < |Q| ≤ q.

In general, Nash equilibria for infinite-horizon games cannot be verified by only
looking at finite strategies, since they are not necessarily limits of equilibria of the
corresponding finite horizon games (e.g. see [14], or Ex. 1 in [20] for an example
in mechanism scenario). However, if we assume that agents cannot distinguish
between small variations (ε) in their payoffs, then we can verify Nash equilibria
for infinite-horizon games by only looking at long enough finite strategies. This
has motivated the introduction of ε-Nash equilibria for infinite-horizon games
and also motivates Def. 4. Indeed, our definition of ε-0-1-Nash yields the usual
definition of ε-Nash equilibria (e.g., see Sect. 4.8 of [14]). We observe that the
notion of ε-f -1-Nash is equivalent to the notion of ε-f -Nash in [20]. Thus if a
mechanism is ε-f -q-Nash for q ≥ 1, it is also ε-f -Nash.

ε-f -q-Nash property cannot be verified using finite approximations if for some
Q, Z, s, | vk(s, Q, Z) − uk(s, Q, Z) | converges to ε (see Ex. 2 in [20]). However
we may get arbitrarily close to this result as stated by the following theorem.

Theorem 1. Let Q = 〈S, I, A, T , B, h, β〉 be an n players coalition schema.
Let 0 �= q ∈ [n], f ≤ n − q, ε > 0 and δ > 0. Furthermore, for each coalition Q,
such that 0 < |Q| ≤ q let:

1. MQ = max{|h(Q, s, a)| | s ∈ S′ and a ∈ A′}.
2. E(Q, k) = 5 β(Q)k MQ

1−β(Q) .
3. Δ(Q, k) = max{vk(s, Q, Z) − uk(s, Q, Z) | s ∈ I, Z ∈ Pf ([n] \ Q)}.
4. ε1(Q, k) = Δ(Q, k) − 2E(Q, k) .
5. ε2(Q, k) = Δ(Q, k) + 2E(Q, k).

Let k be such that for all coalitions Q such that 0 < |Q| ≤ q, 4E(Q, k) < δ holds.
Then we have:

1. If for all Q ∈ Pq([n]) ε ≥ ε2(Q, k) > 0 then Q is ε-f -q-Nash.
2. If there is Q ∈ Pq([n]) such that 0 < ε ≤ ε1(Q, k) then Q is not ε-f -q-Nash.

Of course in such a case a fortiori Q is not 0-f -q-Nash.
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3. If for all Q ∈ Pq([n]), ε1(Q, k) < ε and there exists Q′ ∈ Pq([n]) s.t. ε <
ε2(Q′, k) then Q is (ε + δ)-f -q-Nash.

Proof. The proof skeleton is essentially the following: first, we show that values
of path prefixes converge to the path values, i.e. v(Q, π |k) → v(Q, π). Then,
we show that values of strategy prefixes converge to the strategy values, i.e.
v(s, Q, Z, σ|k) → v(s, Q, Z, σ), and finally we show that state values are limits of
their finite approximations, i.e. vk(s, Q, Z) → v(s, Q, Z). Bounds in convergence
proofs give us the effective test to check if a mechanism is ε-f -q-Nash.

5 Verification Algorithms

Resting on Theor. 1 in this section we present our algorithm (Alg. 1) to verify
that a given protocol is ε-f -q-Nash.

Alg. 1 is implemented on top of the NuSMV [22] model checker. Since states
(s), actions (a) and sets of agents (Q, Z) are finite, we can represent them with
boolean arrays. We represent boolean functions (such as the transition relations
T , B and BTQ) using OBDDs [3] and real valued functions (such as coalition
rewards λs Q Z. ut(s, Q, Z) and λs Q Z. vt(s, Q, Z)) using ADDs (Arithmetic
Decision Diagrams) as implemented in the CUDD [10] package.

As usual in OBDD based computations, we represent functions with the ex-
pressions defining them. For the sake of clarity, we will present Alg. 1 using a set
theoretic notation for sets, predicates and functions over sets, but for example
statements in lines 2, 5, 7, and 11 have to be interpreted as ADD manipulations.

The algorithm first computes the number of iterations k needed to reach
the precision threshold desired by the user (line 1). Then, for each iteration t
from 0 to k, it computes the state value vt(s, Q, Z) and the proposed protocol
guaranteed outcome ut(s, Q, Z) using Prop. 1 (lines 2–10). After computing state
values, Alg. 1 finds the ADD representing the maximum difference between state
values and the guaranteed outcome of the proposed protocol as a function of Q.
This is the Δ(Q) in line 11, representing the best gain that a coalition Q may
have in deviating from the proposed protocol. This corresponds to point 3 of
Theor. 1. Then in line 12, ε1(Q) and ε2(Q) are computed as in points 4 and 5
of Theor. 1 respectively. Finally, lines 13–15 determine which statement among
1–3 of Theor. 1 holds.

Verifying that a coalition schema Q is ε-f -q-Nash requires checking that the
hypotheses in statements 1-3 of Theor. 1 hold for all coalitions of size at most q.
The number of such coalitions is

∑q
j=1

(
n
j

)
. We implement two versions of Alg. 1

– in the explicit version, the loop in lines 3-10 is performed
∑q

j=1

(
n
j

)
times

in order to compute state values ut(s, Q, Z) and vt(s, Q, Z) for any possible
coalition Q of size at most q. This is almost equivalent to build the single
player mechanism MQ for each coalition Q and to run (a variation of) the
single player verification algorithm presented in [20] with MQ as input;

– in the symbolic version, all computations are parametric with respect to all
mechanisms MQ: in such a case, line 3 has to be read as a logical predicate
rather that an iterative for loop.



Model Checking Coalition Nash Equilibria in MAD Distributed Systems 541

Algorithm 1. CheckNash. Checking if a mechanism is ε-f -q-Nash.
Input: mechanism Q, int f , int q, double ε, δ
Output: (Fail) or (Pass with a threshold)
1: Let k be such that ∀Q 0 < |Q| ≤ q ⇒ [4 E(Q, k) < δ]
2: v0(s, Q, Z)← 0, u0(s, Q, Z)← 0, where s ∈ S, Q ∈ Pq([n]) and Z ∈ Pf ([n] \Q)
3: for all Q ∈ Pq([n]) \ {∅} do
4: for t = 1 to k do
5: vt(s, Q, Z)← max

aQ∈AQ

min
a−Q∈A−Q

[hi(Q, s, 〈aQ, a−Q〉) + β(Q)vt−1(s′ , Q,Z)],

6: where BT (Q∪Z,s, 〈aQ, a−Q〉, s′), s ∈ S, Q ∈ Pq([n]) and Z ∈ Pf ([n] \Q)

7: ut(s, Q, Z)← min
aQ∈AQ

min
a−Q∈A−Q

[hi(Q,s, 〈aQ, a−Q〉) + β(Q)ut−1(s′, Q, Z)],

8: where BT (Z,s, 〈ai, a−i〉, s′), s ∈ S, Q ∈ Pq([n]), and Z ∈ Pf ([n] \Q)
9: end for

10: end for
11: Δ(Q)← max{vk(s, Q, Z) − uk(s, Q,Z) | s ∈ I,Z ∈ Pf ([n] \Q)}, Q ∈ Pq([n])
12: ε1(Q)← Δ(Q)− 2E(Q), ε2(Q)← Δ(Q) + 2E(Q), with Q ∈ Pq([n])
13: if (∃Q ∈ Pq[n] [ε < ε1(Q)]) return (Fail)
14: if (∀Q ∈ Pq[n] [ε2(Q) < ε]) return (Pass with ε)
15: else return (Pass with (ε + δ))

Symbolic approach should be asymptotically better. However it requires the
introduction of auxiliary state and action variables for maximin computations
required by Alg. 1 in lines 5 and 7, which turns out to be much more involved
and slower. Moreover, ADDs make usual OBDD memory compression via sharing
much less effective. As experimental results show in Sect. 6, in our moderate size
mechanisms the explicit implementation outperforms the symbolic one, both in
running time and in memory usage.

6 Experimental Results

In order to assess effectiveness of our Nash verifier we present experimental
results on its usage on two meaningful and scalable case studies inspired by
cooperative services. Case study 1 shown in Ex. 1 is designed to be as simplest
as possible, in order to test our verification tool on mechanism with a number of
agents as greater as possible. In Sect. 6.1 case study 2 is presented, describing a
slightly more complex scenario. Finally, Sect. 6.2 describes experimental settings
and assesses tool performances.

6.1 Case Study 2

In this case study we present a slightly more complex and subtle scenario. We
are given a set J = {0, . . . , m − 1} of m jobs and a set T = {0, . . . , t − 1} of t
tasks. Function η : J → P(T ) defines for each job j the set of tasks η(j) needed
to complete j, and function ι : T → P(J ) defines for each task t the set of jobs
ι(t), for which t is needed.
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Each agent i ∈ [n] is supposed to work (proposed protocol) on a given sequence
of (not necessarily distinct) tasks Ti = 〈τ(i, 0), . . . , τ(i, α(i) − 1)〉 starting from
τ(i, 0) and returning to τ(i, 0) after task τ(i, α(i) − 1) has been completed. An
agent may deviate from the proposed protocol by not executing the task. This
behavior models many typical scenarios in cooperative services.

An agent incurs a cost w by working towards the completion of its currently
assigned task. A job is completed if for each task it needs there exists at least one
agent that has completed that task. In such a case, each of such agents receives
a reward. At the end of each round a fixed capital C is equally divided among
completed jobs. The reward for a job is in turn equally divided among all agents
that executed a task needed to complete the job. Note that even if two (or more)
agents have completed the same task all of them get a reward. Finally, we set
the reward for a coalition Q to be the sum of its component rewards.

Note that, in this scenario, a coalition may deviate from the proposed protocol
in the following way: if two or more players in the coalition are assigned to the
same task, it is sufficient that only one of them works. Moreover, if there is a
large enough number of Byzantine players, jobs completion is not guaranteed.
This may induce a rational player not to work, in order to avoid the cost w.

6.2 Results

In this section we summarize the experimental results we obtain by running the
Nash verification algorithm Alg. 1 in both its implementations (i.e. explicit and
symbolic) on our case studies.

Results on Case Study 1. We instantiate the class of mechanisms related to
our first case study by fixing p = 3

4 , g = 4 and r = 1
2 . We then perform our

experiments both with the explicit and the symbolic implementation of Alg. 1,
by increasing the number of agents n, the coalition maximum size q and the
Byzantine agents maximum number b. We set for all coalitions Q, β(Q) = 0.5.

Results are in Tab. 1. Column meanings in Tab. 1 are as follows. Columns
n, q, b show the number of agents, the maximum coalition size, and the maximum
number of Byzantine agents. Column Nash shows the final verification outcome.
In particular, note that the Pass result, in our experiments, always means Pass
with ε (case 1 of Theor. 1). Column CPU expl (resp., symb) shows the compu-
tation time in seconds for the explicit (resp. symbolic) implementation. Column
Mem expl (resp., symb) shows the RAM used by the explicit (resp. symbolic)
implementation in MBs. Column BDD expl (resp., symb) shows the number
of OBDD/ADD nodes used by the explicit (resp. symbolic) implementation. Fi-
nally, column |Pq([n])| shows the number iterations needed by line 3 of Alg. 1,
i.e. |Pq([n]) \ {∅}|.

Note that “N/A” entries denotes that the corresponding experiment exceeded
the available resources, either w.r.t. RAM (needed more than 8 GB) or time
(needed more than 3 days). In all experiments we take ε = 0.1 and accuracy
δ = 0.05. With such settings the value k in line 1 of Alg. 1 turns out to be at
most 15 in all our experiments.
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Table 1. Experiments run for the case study of Sect. 1 on a 64-bit Dual Quad Core 3
GHz Intel Xeon Linux PC with 8 GB of RAM

n q b Nash
CPU
expl

CPU
symb

Mem
expl

Mem
symb

BDD
expl

BDD
symb

|Pq([n])|
9 1 3 Pass 2.88e+01 2.82e+03 7.43e+01 1.63e+02 2.59e+05 8.25e+05 9

9 1 4 Fail 3.03e+01 5.87e+03 7.41e+01 1.63e+02 5.36e+05 7.77e+05 9

9 2 3 Pass 9.26e+01 1.79e+04 7.65e+01 1.64e+02 5.66e+05 1.16e+06 45
9 2 4 Fail 1.33e+02 3.01e+04 7.54e+01 1.66e+02 2.92e+05 1.67e+06 45

9 3 0 Fail 1.31e+01 7.73e+02 6.97e+01 1.62e+02 3.91e+05 5.31e+05 129

9 4 0 Fail 2.25e+01 2.22e+03 7.27e+01 1.63e+02 4.54e+05 3.87e+05 255
9 5 0 Fail 4.14e+01 6.20e+03 7.61e+01 1.63e+02 5.21e+05 9.30e+05 381

9 6 0 Fail 7.90e+01 1.03e+04 7.68e+01 1.64e+02 5.95e+05 1.18e+06 465

9 7 0 Fail 9.01e+01 1.52e+04 7.69e+01 1.63e+02 7.97e+05 1.25e+06 501

9 8 0 Fail 8.24e+01 1.52e+04 7.69e+01 1.64e+02 7.39e+05 1.45e+06 510
9 9 0 Fail 8.42e+01 1.58e+04 7.69e+01 1.64e+02 4.55e+05 1.45e+06 511

10 2 3 Pass 2.16e+02 9.21e+04 7.82e+01 5.41e+02 5.79e+05 2.63e+06 55

10 2 4 Fail 2.70e+02 1.61e+05 8.05e+01 5.45e+02 5.54e+05 3.66e+06 55

11 2 3 Pass 5.97e+02 N/A 8.47e+01 N/A 9.90e+05 2.32e+06 66
16 2 5 Fail 1.07e+05 N/A 4.48e+03 N/A 7.97e+07 N/A 136

18 2 4 N/A N/A N/A N/A N/A N/A N/A 171

Results on Case Study 2. We instantiate the class of mechanisms related to
our second case study as follows. First of all, we take the number n of agents to
be greater than or equal to the number t of tasks. Second, we take the number
m of jobs to be equal to t. Third, we define η(j) (i.e. the set of tasks needed to
complete job j) as follows: η(j) = {j, (j+1) mod t}. That is, each job requires two
tasks and each task participates in two jobs. We take as task sequence for agent
i the sequence Ti = 〈(i−1) mod t, . . . , t−1, 0, 1, . . . , ((i−1) mod t)−1〉. In other
words, all agents consider tasks with the same order (namely 〈0, . . . , t−1〉). The
only difference is that agent i will start its task sequence from task (i−1) mod t.
We set for all coalitions Q, β(Q) = 0.5. Finally, in order to ease computations
we set the cost of working on a task w = 1440 and the capital to be divided
among completed jobs C = 4320n. With the above settings we have the following
parameters to be instantiated: n (number of agents), m (number of jobs), q
(number of agents in a coalition).

Tab. 2 shows our experimental results on verification of the ε-f -q-Nash prop-
erty for our case study. Column meanings in Tab. 2 are the same of Tab. 1, with
the only addition of column m showing the number of jobs.

In all experiments we take ε = 0.1 and accuracy δ = 0.01. With such settings
the value k in line 1 of Alg. 1 turns out to be at most 27 in all our experiments.

Experimental Results Summary. From Tab. 1 and 2 we see that we can ef-
fectively handle moderate size mechanisms. Such mechanisms correspond indeed
to quite large games. In fact, given a finite horizon k, an n players mechanism
can be seen as a game which outcomes are n-tuples 〈σ1, . . . , σn〉 of strategies of



544 F. Mari et al.

Table 2. Experiments run for the case study of Sect. 6.1 on a 64-bit Dual Quad Core
3 GHz Intel Xeon Linux PC with 8 GB of RAM

n m q b Nash
CPU
expl

CPU
symb

Mem
expl

Mem
symb

BDD
expl

BDD
symb

|Pq([n])|
4 2 2 0 Pass 1.40e+00 2.74e+00 8.82e+01 8.70e+01 3.99e+05 9.05e+04 10

4 2 4 0 Pass 2.45e+00 4.78e+00 8.82e+01 8.68e+01 8.53e+04 1.14e+05 15

5 2 3 2 Fail 3.92e+01 2.12e+02 1.14e+02 1.14e+02 2.49e+05 9.27e+05 25
5 2 5 0 Pass 1.36e+01 5.12e+01 1.07e+02 1.14e+02 5.74e+05 6.22e+05 31

6 2 3 3 Fail 3.33e+02 5.71e+03 1.27e+02 1.87e+02 7.57e+05 1.95e+06 41

6 2 6 0 Pass 8.67e+01 7.61e+02 1.25e+02 1.29e+02 5.68e+05 8.99e+05 63
6 3 1 3 Pass 2.55e+03 4.15e+04 2.57e+02 6.50e+02 2.44e+06 8.19e+06 6

6 3 1 4 Fail 3.43e+03 5.87e+04 2.71e+02 8.70e+02 2.69e+06 9.77e+06 6

6 3 2 3 Pass 8.96e+03 1.70e+05 2.62e+02 1.70e+03 2.88e+06 1.90e+07 21

6 3 2 4 Fail 1.04e+04 2.01e+05 2.95e+02 1.75e+03 3.59e+06 4.56e+06 21
6 3 3 0 Fail 1.23e+03 5.80e+03 1.79e+02 3.64e+02 1.85e+06 4.60e+06 41

6 3 4 0 Fail 1.88e+03 1.11e+04 1.79e+02 5.11e+02 2.03e+06 6.66e+06 56

6 3 5 0 Fail 2.20e+03 1.56e+04 1.81e+02 5.27e+02 2.12e+06 6.76e+06 62

6 3 6 0 Fail 2.28e+03 1.70e+04 1.81e+02 5.34e+02 1.93e+06 9.50e+06 63

length k, where σi is the strategy played by agent i. If the underlying behavior
of agent i allows two actions for each state, then there are 2k strategies available
for agent i. This would yield a game which normal form has 2kn entries. In the
coalition schemas used in Tab. 1, each agent can choose at least among fib(k)
(the k-th Fibonacci number) strategies. With n players this yields a normal form
game with fib(k)n entries. If we look at coalitions of size j we have to consider(
n
j

)
games of size fib(k)n. Since we are considering coalitions of size up to q we

are indeed looking at
∑q

j=1

(
n
j

)
games of size fib(k)n. For example, with horizon

k = 20 and n = 6 the rows in Tab. 2 with q = 2 entail checking Nash equilibria
for 21 games each of size fib(19)6 = 41816 ≈ 5 × 1021.

For both our case studies, the explicit implementation (in the sense of Sect. 5)
outperforms the symbolic one both in RAM and computation time. In particular
note that in Tab. 1, for n = 9, b = 0, q ∈ [3, 9] the number of coalition grows but
the symbolic algorithm does not take any advantage of this.

7 Conclusions

We presented two algorithms based on symbolic model checking for verification of
Nash equilibria in finite state mechanisms modeling MAD distributed systems
with coalitions. The first algorithm, explicitly checks Nash equilibria for any
possible coalition within a given size, while the second symbolically represents
all coalitions. An experimental comparison shows that the explicit one performs
better. Moreover, our experiments show effectiveness of the presented algorithms
for moderate size mechanisms. For example, we can handle mechanisms which
corresponding normal form games would have more than 5 × 1021 entries.
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Future research work include: investigation of more efficient algorithms in
order to handle larger size mechanisms, exploiting symmetries in the definition
of the mechanism.
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