Minimal Byzantine Storage

Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin
University of Texas at Austin - Dept. of Computer Science
Email: {jpmartin, lorenzo, dahlin}@cs.utexas.edu

Department of Computer Science
University of Texas at Austin
Austin, Texas 78712

Abstract. Byzantine fault-tolerant storage systems can provide high
availability in hazardous environments, but the redundant servers they
require increase software development and hardware costs. In order to
minimize the number of servers required to implement fault-tolerant stor-
age services, we develop a new algorithm that uses a “Listeners” pattern
of network communication to detect and resolve ordering ambiguities cre-
ated by concurrent accesses to the system. Our protocol requires 3f + 1
servers to tolerate up to f Byzantine faults—f fewer than the 4f + 1
required by existing protocols for non-self-verifying data. In addition,
SBQ-L provides atomic consistency semantics, which is stronger than
the regular or pseudo-atomic semantics provided by these existing pro-
tocols. We show that this protocol is optimal in the number of servers—
any protocol that provides safe semantics or stronger requires at least
3f + 1 servers to tolerate f Byzantine faults in an asynchronous system.
Finally, we examine a non-confirmable writes variation of the SBQ-L pro-
tocol where a client cannot determine when its writes complete. We show
that SBQ-L with non—confirmable writes provides regular semantics with
2f + 1 servers and that this number of servers is minimal.

1 Introduction

Byzantine storage services are useful for systems that need to provide high avail-
ability. These services guarantee data integrity and availability in the presence
of arbitrary (Byzantine) failures. A common way to design such a system is to
build a quorum system. A quorum system stores a shared variable at a set of
servers and performs read and write operations at some subset of servers (a quo-
rum). Quorum protocols define an intersection property for the quorums which,
in addition to the rest of the protocol description, ensures that each read has ac-
cess to the current value of the variable. Byzantine quorum systems enforce the
intersection property necessary for their consistency semantics in the presence
of Byzantine failures.

The number of servers in a Byzantine storage system is a crucial metric since
server failures must be independent. Therefore, to reduce the correlation of soft-
ware failures, each server should use a different software implementation [18].
The first advantage of reducing the number of servers necessary for a service

is the reduction in hardware costs. However, as hardware costs get cheaper in
comparison to software and maintenance costs, the most important benefit of
reducing the number of different servers is the corresponding reduction in de-
velopment and maintenance costs. Furthermore, for large software systems (e.g.
NFS, DNS, JVM) a fixed number of implementations may be available, but
it is expensive or otherwise infeasible to create additional implementations. In
such a situation, a new protocol requiring fewer servers may enable replication
techniques where they were not previously applicable.

To minimize the number of servers, we present a new protocol called Small
Byzantine Quorums with Listeners (SBQ-L). The protocol uses a “Listeners”
pattern of communication to detect and resolve ordering ambiguities when reads
and writes simultaneously access a shared variable.! Whereas existing algorithms
use a fixed number of communication rounds, servers and readers using SBQ-L
exchange additional messages when writes are concurrent with reads. This com-
munication pattern allows the reader to monitor the evolution of the global state
instead of relying on a snapshot. As a result, SBQ-L provides strong consistency
semantics using fewer servers. In particular, Table 1 shows that SBQ-L provides
atomic semantics [9] for generic data using as few as 3f + 1 servers to tolerate
f faults, instead of the 4f + 1 servers that were previously required to provide
even the weaker regular [11] or partial-atomic [17] semantics.

We show that SBQ-L is optimal with respect to the number of servers re-
quired to provide a safe shared variable in the common model of asynchronous
reliable authenticated channels [1,3,11-13]. In particular, we show that any
protocol that tolerates f Byzantine failures and that provides safe or stronger
semantics must use at least 3f + 1 servers. Since SBQ-L can provide atomic
semantics with 3f + 1 servers, it is optimal with respect to this critical metric.

We apply the SBQ-L protocol and our lower bound analysis to compare
protocols for generic data to these for self-verifying data (data that cannot be
undetectably altered, e.g. that are digitally signed). We find that, surprisingly,
SBQ-L performs equally well with generic or self-verifying data. Existing pro-
tocols require more servers for generic data (second column of Table 1). Our
lower bound of 3f + 1 servers applies regardless of whether data is generic or
self-verifying. Therefore our SBQ-L protocol, already optimal for generic data,
cannot be improved by using self-verifying data. This analysis suggests that
the distinction between these two classes of protocols is not as fundamental as
previous results imply.

We also examine the distinction between protocols with confirmable writes
and those with non-confirmable writes. Consistency semantics are defined in
terms of conditions that must hold when reads and writes complete; however
the specification for when a write completes is left out of the definition. The
traditional approach defines the completion of the write as the instant when
the writer completes its protocol. We call these protocols confirmable. If instead
write completion is defined in a way that cannot be locally determined by the

! We call this communication model “Listeners” because of its similarity with the
Listeners object-oriented pattern introduced by Gamma et. al. [8].

writer, but writes are still guaranteed to eventually complete, we say that the
resulting protocol is non-confirmable.

The bottom two lines of Table 1 indicate that the SBQ-L protocol can be
modified to be non-confirmable. In that configuration, it can provide regular
semantics for generic data using only 2f + 1 servers instead of the 3f+1 required
in prior work [15]. We again show that our protocol is optimal by proving that
2f + 1 servers are required to provide even safe semantics for non-confirmable
writes. The existence of the SBQ-L protocol shows that this bound is tight.
This result shows that the distinction between confirmable and non-confirmable
protocols is fundamental.

Table 1. Required number of servers and semantics for various protocols for Byzantine
distributed shared memory. New results and improvements over previous protocols are
shown in bold

Required Semantics Existing Protocols SBQ-L Safe Semantics
4f+1, safe [11,12]%,[15]"
conf., generic 4f+1, partial-atomic [17]?| 341, atomic® > 3f+1
3f+1, regular [11],[15]"; servers
conf., self-verifying 3f+1, atomic [12],[5]"% | 3f+1, atomic?
non-conf., generic 3f+1, safe [15] 2f+1, regular? > 2f+1
non-conf., self-verifying 2f+1, regular [15] 2f+1, regular® servers

(1) Does not require reliable channels. (2) Tolerates faulty clients.

Like other quorum protocols, SBQ-L guarantees correctness by ensuring that
reads and writes intersect in a sufficient number of servers. SBQ-L differs from
many traditional quorum protocols in that in a minimal-server threshold con-
figuration, clients send messages to all servers on read and write operations.?
Most existing quorum protocols access a subset of servers on each operation for
two reasons: to tolerate server faults and reduce load. Note that SBQ-L’s fault
tolerance and load properties are similar to those of existing protocols. In partic-
ular, SBQ-L can tolerate f faults, including f non-responsive servers. Although
in its minimal-server configuration it sends read and write requests to all 3f + 1
servers, this number is no higher than the 3f+1 (out of 4f + 1) servers contacted
by most existing protocols. We note that the fact that SBQ-L contacts a large
fraction of servers on each operation is a direct consequence of the minimality
of the number of servers.

The rest of this paper is organized as follows. Section 2 presents our model
and assumptions and reviews the different semantics that distributed shared
memory can provide, Section 3 presents the SBQ-L protocol, and Section 4

2 As described in Section 3, it is possible to use more servers than the minimum and
in this case only a subset of the servers is touched for every read.

proves bounds on the number of servers required to implement these semantics.
In Section 5, we explore practical considerations, including how to tolerate faulty
clients, the trade-offs between bandwidth and concurrency, and how to avoid
live-lock or memory problems during concurrent execution. Section 6 discusses
related work and we conclude in the last section.

2 Preliminaries

2.1 Model

We assume a system model commonly adopted by previous work in which quo-
rum systems are used to tolerate Byzantine faults [1,3,11-13]. In particular, our
model consists of an arbitrary number of clients and a set U of data servers
such that the number n = |U| of servers is fixed. A quorum system @ C 2V is a
non-empty set of subsets of U, each of which is called a quorum.

Servers can be either correct or faulty. A correct server follows its specifi-
cation; a faulty server can arbitrarily deviate from its specification. Following
Malkhi and Reiter [11], we define a fail-prone system B C 2U as a non-empty set
of subsets of U, none of which is contained in another, such that some B € B
contains all faulty servers. Fail-prone systems can be used to describe the com-
mon f-threshold assumption that up to a threshold f of servers fail (in which
case B contains all sets of f servers), but they can also describe more general
situations, such as when some computers are known to be more likely to fail
than others.

The set of clients of the service is disjoint from U and clients communicate
with servers over point-to-point channels that are authenticated, reliable, and
asynchronous. We discuss the implications of assuming reliable communication
under a Byzantine failure model in detail in our previous work [15]. Initially, we
restrict our attention to server failures and assume that clients are correct. We
relax this assumption in Section 5.1.

2.2 Consistency Semantics

Consistency semantics define system behavior in the presence of concurrency.
Lamport [9] defines the three semantics for distributed shared memory listed
below. His original definitions exclude concurrent writes, so we present extended
definitions that include these [17].

Using a global clock, we assign a time to the start and end (or completion) of
each operation. We say that an operation A happens before another operation B
if A ends before B starts. We then require that all operations be totally ordered
using a relation — (serialized order) that is consistent with the partial order
of the happens before relation. In this total order, we call write w the latest
completed write relative to some read r if w — r and there is no other write w'
such that w — w' Aw' — r. We say that two operations 4 and B are concurrent
if neither A happens before B nor B happens before A. The semantics below
hold if there exists some relation — that satisfies the requirements.

— safe semantics guarantee that a read r that is not concurrent with any write
returns the value of the latest completed write relative to r. A read concur-
rent with a write can return any value.

— regular semantics provide safe semantics and guarantee that if a read r is
concurrent with one or more writes, then it returns either the latest com-
pleted write relative to r or one of the values being written concurrently
with 7.

— atomic semantics provide regular semantics and guarantee that the sequence
of values read by any given client is consistent with the global serialization
order (—).

The above definitions do not specify when the write completes. The choice
is left to the specific protocol. In all cases, the completion of a write is a well-
defined event. We will begin by considering only protocols in which the writer
can determine when its write has completed (confirmable protocols). We later
relax this requirement in Section 3.2 and show that the resulting protocols with
non-confirmable writes require fewer servers.

3 The SBQ-L Protocol

Figure 1 presents the f-threshold > SBQ-L confirmable client protocol for generic
data. The initial values of the protocol’s variables are shown in Figure 2.

In lines W1 through W6, the Write() function queries a quorum of servers in
order to determine the new timestamp. The writer then sends its timestamped
data to all servers at line W8 and waits for acknowledgments at lines W9 and
W10. The Read() function queries an access set [4] of servers in line R2 and
waits for messages in lines R3 to R13. An unusual feature of this protocol is
that servers send more than one reply if writes are in progress. For each read in
progress, a reader maintains a matrix of the different answers and timestamps
from the servers (answers[]1[1). The read decides on a value at line R13 once
the reader can determine that a quorum of servers vouch for the same data item
and timestamp, and a notification is sent to the servers at line R14 to indicate
the completion of the read. A naive implementation of this technique could result
in the client’s memory usage being unbounded; instead, the protocol only retains
at most f + 1 answers from each server.

This protocol differs from previous Byzantine quorum system (BQS) proto-
cols because of the communication pattern it uses to ensure that a reader receives
a sufficient number of sound and timely values. A reader receives different values
from different servers for two reasons. First, a server may be faulty and supply
incorrect or old values to a client. Second, correct servers may receive concurrent
read and write requests and process them in different orders.

3 We describe the more general quorum SBQ-L protocols in the extended technical
report [14].

W1 Write(D) {

W10
Wit }

R1 (D,ts) =
R2
R3
R4

R5
R6
R7
R8
R9
R10
R11

R12
R13

R14
Ri15
R16 }

send (QUERY_TS) to all servers

receive answer (TS, ts) from server isvr set ts[isvr] := ts

wait until the £s[] array contains g., answers.

maz_ts := maz{ts[]}

ts := min{t € T. : maz_ts < t Alast_ts < t}

// ts € T. is larger than all answers and previous timestamp
last_ts :=ts

send (STORE, D, ts) to all servers.

receive answer (ACK,ts) from server i

wait until q,, servers have sent an ACK message

Read() {
send (READ) to g, servers.
loop {
receive answer (VALUE,D, ts) from server s
// (possibly more than one answer per server)
if ts > latest[s].ts then latest[s] := (D, ts)
if s € S: // we call this event an “entrance”
S: =S U {s}
T := the f + 1 largest timestamps in latest[]
for all isvr, for all jtime ¢ T, delete answer[isvr, jtime]
for all isvr,
if latest[isvr].ts € T
then answer[isvr, latest[isvr].ts] := latest[isvr]
if ts € T then answer[s, ts] := (D, ts)
} until 3D, ts, W = |W| > quw A (Vi: i € W : answer[i, ts] = (D, ts))
// i.e., loop until g, servers agree on a (D,ts) value
send (READ_COMPLETE) to all servers
return (D, ts)

Fig.1. Confirmable SBQ-L client protocol for the f-threshold error model

variable initial value notes
Quw [%m] Size of the write quorum
ar [%f*—l} Size of the read quorum
T, Set of timestamps for client ¢|The sets used by different clients are disjoint
last_ts 0 Largest timestamp written by a particular server
latest[] A vector storing the largest timestamp received from each
server and the associated data
answer[][] 0 Sparse matrix storing at most f+ 1 data and timestamps
received from each server
S 0 The set of servers from which the reader has received an
answer

Fig. 2. Client variables

Traditional quorum systems use a fixed number of rounds of messages but
communicate with quorums that are large enough to guarantee that intersections
of read and write quorums contain enough answers for the reader to identify
a value that meets the consistency guarantee of the system. Rather than using
extra servers to disambiguate concurrency, SBQ-L uses extra rounds of messages
when servers and clients detect writes concurrent with reads. Intuitively, other
protocols take a “snapshot” of the situation. The SBQ-L protocol looks at the
evolution of the situation in time: it views a “movie”.

SBQ-L’s approach uses more messages than some other protocols. Other
than the single additional READ_COMPLETE message sent to each server at
line R14, however, additional messages are only sent when writes are concurrent
with a read.

Figure 1 shows the protocol for clients. Servers follow simpler rules: they
only store a single timestamped data version, replacing it whenever they receive
a STORE message with a newer timestamp. When receiving a read request, they
send the contents of this storage. Servers in SBQ-L differ from previous protocols
in what we call the Listeners communication pattern: after sending the first
message, the server keeps a list of clients who have a read in progress. Later, if
they receive a STORE message, then in addition to the normal processing they
echo the contents of the store message to the “listening” readers — including
messages with a timestamp that is not as recent as the data’s current one but
more recent than the data’s timestamp at the start of the read. This listening
process continues until the server receives a READ_COMPLETE message from
the client indicating that the read has completed.

This protocol requires a minimum of 3f + 1 servers and provides atomic
semantics with confirmable writes. We prove its correctness in the next section.
Theorem 2 of Section 4 shows that 3f + 1 is the minimal number of servers for
confirmable protocols. In Section 5.1 we show how to adapt this protocol for
faulty clients.

3.1 Correctness

Traditional quorum protocols abstract away the notion of group communication
and only concern themselves with contacting groups of responsive servers. In-
stead, our protocol specifies to which group of servers the messages should be
sent and waits for acknowledgments from some quorum of servers within this
access group. The read protocol relies on the acknowledged messages for safety,
but it also potentially relies on the messages that are still in transit, for liveness.
Because the channels are reliable, we know that these messages will eventually
reach their destination.

Theorem 1. The confirmable f-threshold SBQ-L protocol provides atomic se-
mantics.

Lemma 1 (Atomicity). The confirmable threshold SBQ-L satisfies atomic se-
mantics, assuming it is live.

The SBQ-L protocol guarantees atomic semantics, in which the writes are
ordered according to their timestamps. To prove this, we show that (1) after a
write for a given timestamp ts; completes, no read can return a value with an
earlier timestamp and (2) after a client ¢ reads a timestamp ts;, no later read
can return a value with an earlier timestamp.

(1) Suppose a write for timestamp ts; has completed; then [%f“] servers
have acknowledged the write. At least ["%fﬂ] of these are correct. In the worst
case, all the remaining servers can return the same stale or wrong reply to later
reads. However there are only [%f_l] of them so they cannot form a quorum.

(2) Suppose that at some global time t;, some client ¢ reads timestamp
ts;. That means that [%f“} servers returned a value indicating that this
timestamp has been written, and again at least ["‘T’UAW of these are correct:
the remaining servers are too few to form a quorum. |

Lemma 2 (Liveness). All functions of the confirmable threshold SBQ-L even-
tually terminate.

For space reasons, we refer the reader to our extended technical report [14]
for the proof of this lemma.

3.2 Non-Confirmable Protocol

If a protocol defines the write completion predicate so that completion can be
determined locally by a writer and all writes eventually complete, we call the pro-
tocol confirmable. This definition is intuitive and therefore implicitly assumed in
most previous work. These protocols typically implement their Write () function
so that it only returns after the write operation has completed.

If instead a protocol’s write completion predicate depends on the global state
in such a way that completion cannot be determined by a client although all
writes still eventually complete, then we call the protocol non-confirmable. Non-
confirmable protocols cannot provide blocking writes. The SBQ protocol [15], for
example, is non-confirmable: writes complete when a quorum of correct servers
have finished processing the write. This completion event is well-defined but
clients cannot determine when it happens because they lack the knowledge of
which servers are faulty.

The confirmable SBQ-L protocol of Section 3 requires at least 3f + 1 servers.
This number can be reduced to 2f + 1 if the protocol is modified to become
non-confirmable. The non-confirmable protocol is presented and proven correct
in the extended technical report [14].

4 Bounds

In this section, we prove lower bounds on the number of servers required to
implement minimal consistency semantics (safe semantics) in confirmable pro-
tocols. The bound is 3f + 1 and applies to any fault-tolerant storage protocol

because the proof makes no assumption about how the protocol behaves. This
lower bound not only applies to quorum protocols such as SBQ-L, but also
to any other fault-tolerant storage protocol, even randomized ones. Also, the
bounds hold whether or not data are self-verifying. Since the SBQ-L protocol of
the previous section meets this bound, we know it is tight.

In previous work, protocols using self-verifying data often require f fewer
servers than otherwise [11, 15]. It was not known until now whether self-verifying
data make a fundamental difference or if protocols using only generic (i.e. non-
self-verifying) data could be made to perform as well. Although we show that
self-verifying data has no impact on the minimal number of servers, they may
be useful for other properties such as the number of messages exchanged or the
ability to restrict access to the shared variables.

4.1 Confirmable Safe Semantics

Theorem 2. In the authenticated asynchronous model with Byzantine failures
and reliable channels, no live confirmable protocol can satisfy the safe semantics
for distributed shared memory using 3f servers.

To prove this impossibility we show that under these assumptions any proto-
col must violate either safety or liveness. If a protocol always relies on 2f + 1 or
more servers for all read operations, it is not live. But if a live protocol ever relies
on 2f or fewer servers to service a read request, it is not safe because it could
violate safe semantics. We use the definition below to formalize the intuition
that any such protocol will have to rely on at least one faulty server.

Definition 1. A message m is influenced by a server s iff the sending of m
causally depends [10] on some message sent by s.

Definition 2. A reachable quiet system state is a state that can be reached by
running the protocol with the specified fault model and in which no read or write
18 in progress.

Lemma 3. For all live confirmable write protocols using 3f servers, for all sets
S of 2f servers, for all reachable quiet system states, there exists at least one
execution in which a write is only influenced by servers in a set S’ such that
S'CS.

By contradiction: suppose that from some reachable quiet system state all pos-
sible executions for some writer are influenced by more than 2f servers. If the
f faulty servers crash before the write then the writer can only receive mes-
sages that are influenced by the remaining 2 f servers and the confirmable write
execution will not complete. |

Note that this lemma can easily be extended to the read protocol.

Lemma 4. For all live read protocols using 3f servers, for all sets S of 2f
servers, for all reachable quiet system states, there exists at least one execution
in which a read is only influenced by servers in a set S’ such that S' C S.

Thus, if there are 3f servers, all read and write operations must at some
point depend on 2f or fewer servers in order to be live. We now show that if we
assume a protocol to be live it cannot be safe by showing that there is always
some case where the read operation fails.

Lemma 5. Consider a live read protocol using 3f servers. There exist erecu-
tions for which this protocol does not satisfy safe semantics.

Informally, this read protocol sometimes decides on a value after consulting
only with 2f servers. We prove that this protocol is not safe by constructing a
scenario in which safe semantics are violated.

Because the protocol is live, for each write operation there exists at least one
execution e, that is influenced by 2f or fewer servers (by Lemma 3). Without
loss of generality, we number the influencing servers 0 to 2f — 1. Immediately
before the write e,,, the servers have states ag ...ass_1 (“state A”) and immedi-
ately afterwards they have states bg...b2s_1,a2¢...asz5_1 (“state B”). Further
suppose that the shared variable had value “A” before the write and has value
“B” after the write. If the system is in state A then all reads should return the
value A; in particular this holds for the reads that influence fewer than 2f + 1
servers. Consider such a read whose execution we call e. Execution e receives
messages that are influenced by servers f to 3f — 1 and returns a value for the
read based on messages that are influenced by 2f or fewer servers; in this case,
it returns A. Lemma 4 guarantees that execution e exists.

Now consider what happens if execution e were to occur when the system is
in state B. Suppose also that servers f to 2f — 1 are faulty and behave as if their
states were ay...azs_1. This is possible because they have been in these states
before. In this situation, states A and B are indistinguishable for execution e
and therefore the read will return A even though the correct answer is B.

O

The last two lemmas show that in the conditions given, no read protocol can
be live and safe. O

4.2 Non-Confirmable Safe Semantics

For non-confirmable protocols, the minimum number of servers for safe semantics
is 2f + 1 instead of 3f + 1 for confirmable protocols. We refer the reader to the
extended technical report [14] for the proof.

Theorem 3. In the reliable authenticated asynchronous model with Byzantine
failures, no live protocol can satisfy the safe semantics for distributed shared
memory using 2f servers.

5 Practical Considerations

In the next subsections we show how to handle faulty clients, quantify the number
of additional messages, experimentally measure the effect of additional messages,
discuss the protocol latency, and show an upper bound on memory usage.

5.1 Faulty Clients

The protocols in the previous two sections are susceptible to faulty clients in two
ways: (1) faulty clients can choose not to follow the write protocol and prevent
future reads from terminating or (2) faulty clients can violate the read protocol
to waste server resources. We extend the protocol to address these issues below.

Liveness. Faulty writers can prevent future read attempts from terminating by
making sure that no quorum of servers has the same value (a poisonous write),
for example by sending a different value to each server. All reads will then fail
because they cannot gather a quorum of identical answers.

Poisonous writes can be prevented if clients sign their writes and servers
propagate among themselves the write messages they receive. This modification
ensures that the servers will reach a consistent state, it is described in more
detail in the extended technical report [14].

Resource Exhaustion. A faulty reader can neglect to notify the servers that
the read has completed and force the server to continue that read operation for-
ever. The cause of the problem is that readers can cause a potentially unbounded
amount of work at the servers (the processing of a nonterminating read request)
at the cost of only constant work (a single faulty read request).

This attack can be rendered impractical by removing the imbalance in the
protocol, forcing the readers to contact the servers periodically. The resulting
protocol is always safe and relies on good network behavior for liveness. It is
described in more detail in the extended technical report [14].

5.2 Additional Messages

SBQ-L’s write operation requires 3n messages in the non-confirmable case and
4n messages in the confirmable case, where n is the number of servers, regard-
less of concurrency. This communication is identical to previous results: the
non-confirmable SBQ protocol [15] uses 3n messages and the confirmable MR
protocol [11] requires 4n messages.

The behavior of the SBQ-L read operation depends on the number of con-
current writes. Other protocols (both SBQ and MR) exchange a maximum of
2n messages for each read. SBQ-L requires up to 3n messages when there is
no concurrency. In particular, step R14 adds a new round of messages. Addi-
tional messages are exchanged when there is concurrency because the servers

echo all concurrent write messages to the reader. If ¢ writes are concurrent with
a particular read then that read will use 3n + cn messages.

Even in the case of concurrency, the additional messages do not impact la-
tency as severely as one may fear because most of them are asynchronous and
unidirectional. The SBQ-L protocol will not wait for 3n+cn message roundtrips.

In order to experimentally test the overhead of the extra messages used to
deal with concurrency in SBQ-L, we construct and test a simple prototype. These
experiments are described in detail in the technical report [14]. We find that
increasing concurrency has a measurable but modest effect on the read latency.

5.3 Maximum Throughput

A goal of a BQS architecture is to support a high throughput for a low system
cost. Two factors affect system cost: (1) the number of different servers n and (2)
the required power of these servers, dictated by the load factor and the desired
throughput. The load factor [16] is defined as “the minimal access probability
of the busiest server, minimizing over the strategies”, where the strategy is the
algorithm used to pick a quorum.

SBQ-L has a load factor of 5~ (n + [%f“]) if only non-confirmable writes
are supported and 5-(n + [%’CH}) if confirmable writes are also supported,
assuming that reads and writes occur with equal frequency. Other protocols [5,
11,13] have a better asymptotic load factor, but either have a higher load factor
for small values of n or cannot function using as few servers as SBQ-L.

A detailed comparison of cost to meet throughput goals depends on hardware
costs, software costs and throughput goals and is outside of the scope of this
paper. In general, when adding a server is expensive compared to buying a faster
server, protocols such as SBQ-L that limit n may be economically attractive even
if they increase the load factor.

5.4 Live Lock

The behavior of the protocol under heavy load must be described precisely to
ensure the protocol remains live. In SBQ-L, writes cannot starve but reads can,
if an infinite number of writes are in progress and if the servers always choose
to serve the writes before sending the echo messages.

When serving a write request while a read is in progress, servers queue an
echo message. The liveness of both readers and writers is guaranteed if we require
servers to send these echoes before processing the next write request. A read will
therefore eventually receive the necessary echoes to complete even if an arbitrary
number of writes are concurrent with the read.

Another related concern is that of latency: can reads become arbitrarily slow?
In the asynchronous model, there is no bound on the duration of reads. However,
if we assume that writes never last longer than w units of time and that there
are c¢ concurrent writes, then in the worst case (taking failures into account)
reads will be delayed by no more than min(cw, nw). This result follows because

in the worst case, f servers are faulty and return very high timestamps so that
only one row of answer[][] contains answers from correct servers. Also, in the
worst case each entrance (line R6) occurs just before the monitored write can
be read. The second term is due to the fact that there are at most n entrances.

5.5 Buffer Memory

In SBQ-L, readers maintain a buffer in memory during each read operation
(the answer [][] sparse matrix). While other protocols only need to identify a
majority and as such require n units of memory, the SBQ-L protocol maintains a
short history of the values written at each server. As a result, the read operation
in SBQ-L requires up to n(f + 1) units of memory: the set 7' contains at most
f + 1 elements (line 8) and the answer[][] matrix therefore never contains
more than n columns and f + 1 rows (lines 9 and 12). In a system storing more
than one shared variable, if multiple variables are read in parallel then each
individual read requires its own buffer of size n(f + 1).

6 Related Work

Although both Byzantine failures [7] and quorums systems [6] have been studied
for a long time, interest in quorum systems for Byzantine failures is relatively
recent. The subject was first explored by Malkhi and Reiter [11,12]. They re-
duced the number of servers involved in communication [13], but not the total
number of servers; their work exclusively covers confirmable systems.

In previous work we introduced non-confirmable protocols that require 3f+1
servers (2f + 1 for self-verifying data) [15]. In the present paper we expand on
that work and reduce the bound to 2f + 1 for generic data and provide regular
semantics instead of safe by using Listeners. We also prove lower bounds on the
number of servers for these semantics and meet them.

Bazzi [3] explored Byzantine quorums in a synchronous environment with
reliable channels. In that context it is possible to require fewer servers (f + 1 for
self-verifying data, 2f + 1 otherwise). This result is not directly comparable to
ours since it uses a different model. We leave as future work the application of
the Listeners idea of SBQ-L to the synchronous network model.

Bazzi [4] defines non-blocking quorum system as a quorum system in which
the writer does not need to identify a live quorum but instead sends a message
to a quorum of servers without concerning himself with whether these servers
are responsive or not. According to this definition, all the protocols presented
here use non-blocking quorum systems.

Several papers [4,13,16] study the load of Byzantine quorum systems, a
measure of how increasing the number of servers influences the amount of work
each individual server has to perform. A key conclusion of this previous work is
that the lower bound for the load factor of quorum systems is O(\/LE) Our work
instead focuses on reducing the number of servers necessary to tolerate a given
fault threshold (or fail-prone system).

Phalanx [12] builds shared data abstractions and provides a locking service,
both of which can tolerate Byzantine failure of servers or clients. It requires
confirmable semantics in order to implement locks. Phalanx can handle faulty
clients while providing safe semantics using 4f + 1 servers.

Castro and Liskov [5] present a replication algorithm that requires 3f + 1
servers and, unlike most of the work presented above, can tolerate unreliable
network links and faulty clients. Their protocol uses cryptography to produce
self-verifying data and provides linearizability and confirmable semantics. It is
fast in the common case. Our work shows that confirmable semantics cannot be
provided using fewer servers. Instead, we show a non-confirmable protocol with
2f + 1 servers. In the case of non-confirmable semantics, however, it is necessary
to assume reliable links.

Attiya, Bar-Noy and Dolev [2] implement an atomic single-writer multi-
reader register over asynchronous network, while restricting themselves to crash
failures only. Their failure model and writer count are different from ours. When
implementing finite-size timestamp, their protocol uses several rounds. The sim-
ilarity stops there, however, because they make no assumption of network re-
liability and therefore cannot leverage unacknowledged messages the way the
Listeners protocol does.

7 Conclusion

We present two protocols for shared variables, one that provides atomic seman-
tics with non-confirmable writes using 2 f + 1 servers and the other that provides
atomic semantics with confirmable writes using 3f + 1 servers. In the reliable
asynchronous communication model when not assuming self-verifying data, our
protocols reduce the number of servers needed by previous protocols by f. Addi-
tionally, they improve the semantics for the non-confirmable case. Our protocols
are strongly inspired by quorum systems but use an original communication pat-
tern, the Listeners. The protocols can be adapted to either the f-threshold or
the fail-prone error model.

The more theoretical contribution of this paper is the proof of a tight bound
on the number of servers. We show that 3f + 1 servers are necessary to provide
confirmable semantics and 2f 4+ 1 servers are required otherwise.

Several protocols [5,11,12,15,18] use digital signatures (or MAC) to reduce
the number of servers. It is therefore surprising that we were able to meet the
minimum number of servers without using cryptography. Instead, our protocols
send one additional message to all servers and other additional messages that
only occur if concurrent writes are in progress.

Since our protocols for confirmable and non-confirmable semantics are nearly
identical, it is possible to use both systems simultaneously. The server side of
the protocols are the same, therefore the servers do not need to be aware of
the model used. Instead, the clients can agree on whether to use confirmable
or non-confirmable semantics on a per-variable basis. The clients that choose

non-confirmable semantics can tolerate more failures: this property is unique to
the SBQ-L protocol.

Acknowledgments

The authors thank Jian Yin and Mike Kistler for several interesting conversa-
tions and Alison Smith and Maria Jump for helpful comments on the paper’s
presentation.

References

1.

10.
11.
12.

13.

14.

15.

16.
17.

18.

L. Alvisi, D. Malkhi, E. Pierce, and R. Wright. Dynamic Byzantine quorum sys-
tems. In Proceedings of the International Conference on Dependable Systems and
Networks, June 2000.

H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing
systems. Journal of the ACM (JACM) Volume 42, pages 124-142, 1995.

R. A. Bazzi. Synchronous Byzantine quorum systems. In Proceedings of the siz-
teenth annual ACM symposium on Principles of distributed computing, pages 259—
266, 1997.

R. A. Bazzi. Access cost for asynchronous Byzantine quorum systems. Distributed
Computing Journal volume 14, Issue 1, pages 41-48, January 2001.

M. Castro and NB. Liskov. Practical Byzantine fault tolerance. In Proceedings
of the Third Symposium on Operating Systems Design and Implementation (OSDI
’99), New Orleans, USA, pages 173-186, February 1999.

S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned net-
work: a survey. ACM Computing Surveys (CSUR) Volume 17, Issue 3, pages
341-370, September 1985.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Technical Report MIT/LCS/TR-282, 1982.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, October 1994. ISBN 0-201-63361-2.

L. Lamport. On interprocess communications. Distributed Computing, pages 77—
101, 1986.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
pages 203-213, 1998.

D. Malkhi and M. Reiter. Secure and scalable replication in phalanx. In Proc.
17th IEEFE Symposium on Reliable Distributed Systems, West Lafayette, Indiana,
USA, Oct 1998.

D. Malkhi, M. Reiter, and A. Wool. The load and availability of Byzantine quo-
rum systems. In Proceedings 16th ACM Symposium on Principles of Distributed
Computing (PODC), pages 249-257, August 1997.

J-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. Technical Re-
port TR-02-38, University of Texas at Austin, Department of Computer Sciences,
August 2002.

J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum systems. In
Proceedings of the International Conference on Dependable Systems and Networks,
pages 374-383, June 2002.

M. Naor and A. Wool. The load, capacity, and availability of quorum systems.
SIAM Journal on Computing, 27(2):423-447, 1998.

E. Pierce and L. Alvisi. A recipe for atomic semantics for Byzantine quorum
systems. Technical report, University of Texas at Austin, Department of Computer
Sciences, May 2000.

R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to improve fault
tolerance. In Proceedings of the 18th Symposium on Operating Systems Principles
(SOSP ’01), October 2001.

