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Abstract. Cooperation, a necessity for any peer-to-peer (P2P) coop-
erative service, is often achieved by rewarding good behavior now with
the promise of future benefits. However, in most cases, interactions with
a particular peer or the service itself eventually end, resulting in some
last exchange in which departing participants have no incentive to con-
tribute. Without cooperation in the last round, cooperation in any prior
round may be unachievable. In this paper, we propose leveraging altru-
istic participants that simply follow the protocol as given. We show that
altruism is a simple, necessary, and sufficient way to incentivize coopera-
tion in a realistic model of a cooperative service’s last exchange, in which
participants may be Byzantine, altruistic, or rational and network loss
is explicitly considered. By focusing on network-level incentives in the
last exchange, we believe our approach can be used as the cornerstone
for incentivizing cooperation in any cooperative service.
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1 Introduction

Establishing and maintaining cooperation between peers in decentralized ser-
vices spanning multiple administrative domain (MAD) is hard [17, 21]. Because
participants may be selfish and withhold resources unless contributing is in their
best interest, these services must provide sufficient incentives for participants to
contribute. These incentive structures must of course be resilient against buggy
or malicious peers; however, they must also be robust against a more subtle
threat: an overabundance of good will from the unselfish peers who simply fol-
low the protocol run by the service. It is, after all, the unselfishness of correct
peers—as codified in the protocol they obediently follow—that allows selfish
peers to continue receiving service without contributing their fair share. Yet, the
efforts of well-meaning peers alone may be insufficient to sustain the service.
Further, asking these peers to increase their contribution to make up for free-
riders may backfire: even well-meaning peers, if blatantly taken advantage of,
may give in to the temptation of joining the ranks of the selfish, leading in turn
to more defections and to the service’s collapse.



Although real MAD systems include a sizable fraction of correct and unselfish
peers [2], their impact on the incentive structure of MAD services is not well
understood. The BAR model [3] does explicitly account for these peers—they
are the altruistic peers, who, together with the selfish rational peers and the
potentially disruptive Byzantine peers, give the model its acronym—but existing
BAR-tolerant systems have side-stepped the challenge of altruism by designing
protocols that neither depend on nor leverage the presence of altruistic peers.1

This paper asks the following question: Can we leverage the good will of altruistic
nodes and still motivate rational participants to cooperate? We find that not only
is altruism not antithetical to rational cooperation, but that, in a fundamental
way, rational cooperation can only be achieved in the presence of altruism. To
do so, we distill the issue to a rational peer’s last opportunity to cooperate.

The last exchange. Rational peers are induced to cooperate with another peer
(or, more generally, with a service) by the expectation that, if they cooperate,
they will receive future benefit. However, in most cases, interaction with a par-
ticular peer or with the service itself eventually comes to an end. In this last
exchange, rational peers do not have incentive to contribute, as doing so incurs
cost without any future benefit. Unfortunately, rational cooperation throughout
the protocol often hinges on this critical last exchange: the lack of incentive to
cooperate at the end may, in a sort of reverse domino effect, demotivate rational
peers from cooperating in any prior exchange.

Most current systems address this problem in one of three ways (or some
combination of them). Some systems [3, 16] assume that rational peers interact
with the service forever, and thus future incentives always exist; others [13–15]
assume rational peers deviate only if their increase in utility is above a certain
threshold; others, finally, try to threaten rational peers with the possibility of
losing utility if they deviate. For instance, in BAR Gossip [16], peers that do not
receive the data they expect pester the guilty peer by repeatedly requesting the
missing contribution.

Unfortunately, each of these approaches relies on somewhat unrealistic as-
sumptions. Few relationships in life are infinite in length; worse, as we will show
later in this paper, with a lossy network and the possibility of Byzantine peers it
may be impossible to incentivize cooperation even in an infinite-length protocol.
The real possibility of penny-pinching peers can undermine any system that as-
sumes no deviation unless their expected gain is “large enough.” Finally, threats
such as pestering are effective only when they are credible: to feel threatened,
a peer must believe that it will be rational for the other peer to pester. Since
pestering incurs cost for the initiator as well as for the receiver, it is surprisingly
hard to motivate rational peers to pester in the first place. For example, pes-
tering in BAR Gossip is credible only under the rather implausible assumption
that a peer, even when faced with enduring silence, will never give up on an

1 Gossip-based BAR-tolerant streaming protocols [15, 16] do rely on an altruistic
source for seeding the stream but otherwise model the gossiping peers as either
rational or Byzantine.



unresponsive peer and forever continue to attribute a peer’s lack of contribution
to the unreliability of the network [16].

Our contributions. We model the last-exchange problem as a finite-round
game between two peers, P1 and P2; neither peer expects to interact with the
other beyond this exchange. We assume P1 holds a contribution (e.g., some
information) that is of value to P2; however, contributing yields no expectation of
further benefit for P1. We are interested in studying whether P2 can nonetheless
induce a selfish P1 to contribute by threatening to pester it if P1 fails to do so.
Pestering is an attractive threat because it is simple and does not require the
involvement of a third party. We want to determine whether it can be made a
credible threat under realistic system assumptions, unlike in BAR Gossip [16].
In each round, P1 is given a choice whether to contribute or not; in response,
P2 may pester P1. Peers communicate through a lossy channel and therefore do
not necessarily share the same view of the ongoing game. For instance, P1 may
have contributed, but P2 may not have received the contribution.

We show that, without requiring implausible network assumptions or the
specter of never-ending pestering, the presence of altruistic peers is both nec-
essary and sufficient to make pestering a credible threat and motivate rational
peers to contribute. In particular:

– We prove that there exists no equilibrium strategy where rational peers
contribute if all peers are either rational or Byzantine—even if we allow for
an infinite number of pestering rounds.

– We show that the presence of altruistic peers is sufficient to transform pes-
tering into a credible threat. Intuitively, if rational peers have sufficiently
high beliefs that they may be interacting with an altruistic peer, they are
motivated to pester, making it in turn preferable for rational peers to con-
tribute.

The fraction of altruistic peers sufficient to sustain rational contribution de-
pends on several system parameters, including the probability of network loss,
the fraction of Byzantine peers in the system, and the behavior that rational
peers expect from altruistic and Byzantine peers. Exploring this space through
a simulator we find that:

– Altruistic peers make rational cooperation easy to achieve under realistic
conditions. In particular, we find that even if less than 10% of the population
is altruistic, rational peers are incentivized to cooperate in a system where
the network drops 5% of all packets and Byzantine peers make up over 50%
of the remainder of the population.

– Prodigal altruistic peers do harm rational cooperation: if altruistic peers
contribute every time they are pestered, then we cannot always achieve ra-
tional cooperation; when we do, it requires an implausibly high fraction of
altruistic peers. This is good news: the less foolishly generous is the altruistic
behavior sufficient to incentivize rational contribution, the more feasible it
is to design systems with a sustainable population of altruistic peers.



– The uncertainty introduced by network loss is both a bane and a boon. On
the one hand, it significantly complicates the analysis of a peer’s optimal
strategy because each peer does not know what the other has observed.
On the other, it lowers the threshold for rational cooperation by leaving
open some possibility that the other peer may be altruistic, even when the
observed behavior suggests otherwise.

Organization of paper. After presenting in Section 2 the game theoretic frame-
work used to analyze the last exchange problem, we show in Section 3 that ra-
tional cooperation is impossible in the absence of altruistic peers. We proceed
to derive, in Section 4, conditions under which altruism is sufficient to elicit
rational cooperation in the last exchange and, in Section 5, use simulations to
study the implications of these conditions on the design of cooperative services.
We discuss related work in Section 6 before concluding in Section 7. Because of
space limitations, we omit proofs or provide proof sketches of most of our results;
detailed proofs can be found in a companion technical report [23].

2 Formalizing the last exchange problem

We consider cooperative services that can be modeled as a collection of peer-
to-peer pairwise exchanges, in which two players P1 and P2 communicate over
unreliable channels. In particular, we focus on the last exchange between P1 and
P2; we are interested in studying under which conditions P2 can induce a selfish
P1 to contribute with the threat of pestering.

We model this last exchange as a (T + 1)-round stochastic sequential game,
which is similar to a repeated game except that it allows players’ payoffs to
change. This flexibility is critical to model the intuition that P2 benefits from
P1’s contribution only the first time P2 receives it. In each round, P1 moves first
by choosing between two actions: contribute (denoted by c) or do nothing (n).
P2 follows by choosing between two actions: pester (p) or do nothing (n). Since
our analysis of the game often relies on the number of rounds remaining rather
than on the round number, we think of the game as starting with round T and
ending with round 0.

While doing nothing has neither cost nor benefit, P1 incurs a cost sc in every
round in which it contributes and a cost rp in every round in which it is pestered;
P2 incurs a cost rc in every round it receives a contribution and a cost sp in every
round it pesters P1. A non-Byzantine P2 starts off being destitute, i.e., P2 does
not have P1’s contribution. A destitute P2 receives a one-time benefit bc � rc+sp
the first time it receives P1’s contribution; now no longer destitute, P2 gains no
further benefit from receiving further copies of the contribution.

Network loss, signals, and utilities. To model the unreliable channel through
which P1 and P2 communicate, we adopt from game theory the concept of private
signals: for every action a played by some player, both players privately observe
some (possibly different) resulting signal. Specifically, let ρ, 0 < ρ < 1, be the
rate of network loss, which we assume to be common knowledge. When Pi plays



a, Pi observes a, and its peer P−i observes a with probability 1 − ρ and n
otherwise. Thus, players do not always observe their peer’s actions accurately
and cannot rely on their peer accurately observing their own actions.

The sequence of signals observed by Pi until round t defines Pi’s history hti.
At the beginning of the game, hT1 is the empty sequence; hT2 consists instead of
the signal sT1 corresponding to P1’s action in round T . In round k < T , hk1 is
obtained by appending to P1’s prior history hk+1

1 the pair of signals observed by
P1 in round k+1: hk1 = (hk+1

1 , sk+1
1 , sk+1

2 ). Similarly for P2, hk2 = (hk+1
2 , sk+1

2 , sk1).
P1 and P2’s utilities are defined with respect to the signals they observe:

u1(C, P̂ ) = −
(
|P̂ |rp + |C|sc

)
u2(P, Ĉ) = H[|Ĉ| − 1]bc −

(
|P |sp + |Ĉ|rc

)
where C and P̂ are the sets of rounds in which P1 respectively contributed and
observed P2 pester; P and Ĉ are the sets of rounds in which P2 respectively
pestered and observed P1 contribute; and H[n] is the unit step function.2

Strategies, types, beliefs, and equilibrium. All players are assigned an
initial strategy, i.e., the protocol. The strategy that a player ultimately follows,
however, depends on the player’s type:

– Byzantine (B): These players play an arbitrary strategy.
– Altruistic (A): These players follow the strategy assigned to them initially.
– Rational (R): These players follow a strategy only if deviating unilaterally

from it does not increase their utility.

As noted earlier, our game is stochastic: the payoffs of a non-Byzantine
P2 change depending on whether P2 is destitute (and wants P1 to contribute)
or not (and wants P1 to do nothing). For convenience, we abuse notation and
introduce two additional types, D and ¬D, to characterize the state of a non-
Byzantine player P2, depending on whether or not it is destitute. Note that if
P1 contributes, a P2 of type D will observe c, and hence change to type ¬D,
with probability 1− ρ.

We are interested in finding strategies in which a rational players is not able
to deviate and increase its utility ex-ante, i.e., in expectation over its peers’
types and strategies. Determining whether a given strategy is a rational player’s
best response, however, is complicated in our game because, while each player
knows its own type, it does not know for certain the type of its peer. Instead,
Pi starts with initial beliefs µi(θ) representing the probabilities that Pi assigns to
the statement that its peer P−i is of type θ. We assume that, for all i ∈ {1, 2},
µi(θ) equals an initial value µ(θ), which is common knowledge, and that the
beliefs of a rational Pi’s evolve based on the history hti it has observed; we use
µi(θ|hti) to denote Pi’s conditional beliefs.

For a given set of beliefs, a rational player’s strategy σR,i depends on the
specific strategy that it expects its peer to adopt—which, in turn, depends on
the peer’s type. A rational player expects an altruistic Pi’s strategy σA,i to be

2 H[n] = 0 if n < 0; else H[n] = 1.



identical to the initially assigned protocol and a rational player to follow σR,i
(assuming that it is a best response). If Pi is Byzantine, however, its strategy
σB,i can in principle be arbitrary, significantly complicating the task of iden-
tifying a rational player’s best response ex-ante. We address this difficulty by
restricting the beliefs that a rational player can hold vis-à-vis Byzantine behav-
iors. In particular, we assume that a rational player does not expect to be able
to influence σB,i through its actions, i.e., a rational player expects to observe
a Byzantine peer Pi do nothing in round t with some probability βti ≥ ρ that
does not depend on Pi’s current history hti. Thus, rational players, instead of
considering an arbitrary σB,i, best-respond to this expected Byzantine strategy
σ̄B,i. While this restriction sacrifices the generality of Byzantine behavior, it
models the reasonable distrust that a rational player is likely to harbor towards
a Byzantine peer’s threats and promises. If Pi is not Byzantine, however, the
expectation is that its strategy will depend on its observed history hti; we use
σθ,i(a|hti) to denote the conditional probability that a is played by Pi of type θ
given hti.

Formally, let σi = (σ̄B,i, σA,i, σR,i) denote the strategies that a rational
player expects Pi to adopt, depending on Pi’s type; σ = (σ1, σ2) denote the
strategy profile that describes the (expected) strategies for P1 and P2; and
µ = (µ1, µ2) denote the belief profile that describes the beliefs µ1 and µ2 held by
a rational P1 and P2. We are interested in perfect Bayes equilibrium: a strategy
profile and set of beliefs (σ∗, µ∗) such that for all i ∈ {1, 2}, µ∗i (θ|hti) is computed
using Bayes rule whenever hti is reached via a signal that may be observed with
positive probability; and for all histories hti and strategies σ′R,i:

E(σ∗R,i,σ
∗
−i)[ui|hti] ≥ E(σ′R,i,σ

∗
−i)[ui|hti]

where E(σR,i,σ
∗
−i)[ui|hti] is a rational Pi’s expected utility from playing σR,i

with beliefs µ∗i , with both strategy and beliefs conditional on hti, while its peer
P−i plays σ∗−i. To lighten the already substantial notation, we drop σ̄B,i and
σA,i from our expressions whenever it is obvious what these strategies are.

We assume that all players are limited to actions in the strategy space. This
can be accomplished in practice if actions outside of the strategy space generate
a proof of misbehavior [3, 9] and if the associated punishments (e.g., financial
penalties) are sufficient to deter rational players. Finally, we assume that a ra-
tional P1 does not try to avoid pestering by severing its network connection: if
losing a fraction of bandwidth from pestering is undesirable, disconnecting and
losing all of it is even less desirable.

3 The need for altruism

Altruism is not only sufficient to incentivize cooperation, it is necessary. In this
section, we assume that there is no altruism, and we show that, as a result,
rational players never pester or contribute.

Theorem 1 There exists no equilibrium in which rational P1 and P2 respec-
tively contribute and pester.



Proof. (Sketch) Suppose such an equilibrium (σ∗, µ∗) exists. Then there exists
some rounds tc and tp such that P1 and P2 contribute and pester, respectively,
with some positive probability for the last time. However, a rational P1 never
contributes after round tp since P1 incurs cost by contributing, yet there is no
further threat of pestering; thus, tc ≥ tp.3 On the other hand, a rational P2 only
pesters until round tc + 1 since P2 incurs cost by pestering with no chance of
further contribution from P1; thus tp > tc. Contradiction.

Theorem 1 only holds when the game lasts for a finite number of rounds.
When there exists no bound on the number of rounds, a weaker, yet in practice
still crippling, result holds. We summarize the main result here; the model of
the infinitely-repeated game, which generalizes the finitely-repeated model, and
details of the results can be found in the companion technical report [23].

Theorem 2 In the infinitely-repeated game, suppose a non-destitute P2 always
prefers to do nothing and rational players expect that there exists some positive
fraction of Byzantine peers that either (a) when playing as P1, never contributes;
or (a) when playing as P2, plays the same strategy played by a destitute rational
P2. Then there exists no pure equilibrium in which rational P1 and P2 respec-
tively contribute and pester.4

Proof. (Sketch) If some Byzantine P2 pesters as if playing the destitute ratio-
nal strategy, despite P1’s contributions, then P1’s belief that P2 is Byzantine
eventually grows arbitrarily close to 1. Similarly, if a Byzantine P1 never con-
tributes despite P2’s incessant pestering, then P2 becomes increasingly certain
P1 is Byzantine. It can be shown that a player’s belief in its peer being Byzantine
eventually grows sufficiently high such that the expected utility of contributing
(in the first case) or pestering (in the second) is lower than that of doing nothing.
By showing a bound of the number of rounds in which a rational P1 contributes
or P2 pesters, it follows, using an argument similar to the finitely-repeated game,
that this bound must be 0.

4 Altruism to the rescue

We now show that altruism is sufficient to incentivize rational peers to, respec-
tively, pester and contribute by constructing a cooperative strategy profile and
proving that it is an equilibrium. We start by specifying the altruistic strategy:

– σA,1: P1 contributes during round T . During round t < T , P1 contributes,
only if pestered, with probability (1 − α)/(1 − ρ)2, where α is a known
parameter such that 0 < (1− α)/(1− ρ)2 ≤ 1.5

3 Recall that we count rounds in reverse.
4 We can also show there exist no mixed equilibria that put positive probability on a

finite number of histories. We leave other mixed strategies to future work.
5 Hence, if P2 pesters an altruistic P1 during round t, P2 expects to observe a contri-

bution in round t− 1 with probability 1− α.



– σA,2: For any round t > 0, P2 pesters if and only if P2 is destitute.

In practice, all players are initially given the altruistic strategy. Although we
cannot guarantee that a rational P1 will follow σA,1, we can (and will) prove
that, under the expectation that its peer P−i of type θ plays σθ,−i,

6 a rational
Pi will play the following rational strategy :

– σR,1: During round t, P1 contributes if and only if t >
⌈
sc/((1− ρ)2rp)

⌉
−

1 (i.e., if being pestered is sufficiently expensive to overcome the cost of
contributing), P1 observes pestering (for round t < T ), and P1’s belief that
P2 is destitute exceeds some threshold µ̄t1.

– σR,2: Same as σA,2.

In a perfect Bayes equilibrium, whether a rational player deviates or not
depends on its beliefs for all histories, both those on and off the equilibrium path.
In our desired equilibrium, almost every history has some positive probability
of being observed: a rational P2 expects that an altruistic P1 contributes with
positive probability (if P2 pestered); destitute P2 always pester; and, as a result
of network loss, doing nothing is always observable with positive probability from
either player. Thus, for most histories, Bayes rule can be applied to calculate a
rational player’s beliefs. For those histories that are not observed with positive
probability, beliefs can be assigned which support the rational strategy as an
equilibrium strategy. The details, omitted here for lack of space, can be found
in the companion technical report [23].

Generally, there may exist multiple strategies that result in a cooperative
equilibrium. We believe that our rational strategy represents a sensible design
point: incentivizing a rational P1 to contribute in every round would require
P1 to start with an unrealistically low belief in P2 being Byzantine. Fortunately,
this is unnecessary: we show in Section 5 that the rational strategy results in
P1 often contributing multiple times.

4.1 When does a rational P2 pester?

Intuitively, P2 pesters only if it is destitute and it believes that P1 is sufficiently
altruistic (and thus willing to contribute, even in the final rounds).

Lemma 3 If a rational P2 has received a contribution, P2 does nothing.

Proof. (Sketch) If P2 already has the contribution, P2 receives no further benefit
from receiving another contribution. In fact, pestering and receiving another
contribution only incurs cost.

6 Thus, all our lemmas and theorems should be prefaced by “In our cooperative equi-
librium. . . ”.



Theorem 4 A rational, destitute P2 pesters in round t > 0 if its belief µ2(A|ht2)
that P1 is altruistic is such that:

µ2(A|ht2) >
sp

αt−1(1− α)(bc − rc) + (1− αt−1)sp
(1)

Proof. (Extended sketch) By contradiction. Consider some equilibrium (σ∗, µ∗)
in which a rational, destitute P2 does nothing in round t despite holding beliefs
µ2(A|ht2) that satisfies condition (1). Construct an alternate rational strategy
σ′R,2 in which P2 instead pesters in round t; if P2 receives a contribution in
round t− 1, then P2 does nothing for the remainder of the game; if it does not,
σ′R,2 and σ∗R,2 are identical for the remaining rounds.

Consider P2’s difference in expected utility between playing σ∗R,2 and σ′R,2.
There are three cases. If P1 is Byzantine, the expected difference in utility be-
tween σ∗R,2 and σ′R,2 is sp. If P1 is rational, it can be shown that P2 has a better
chance of receiving a contribution in the future if P2 pesters now (versus doing
nothing); hence, if P2 is destitute starting from ht2, then the expected difference
in utility between σ∗R,2 and σ′R,2 is at most sp. Finally, if P1 is altruistic, then
the expected utility, starting from P2’s turn in round t − 1, of playing σ∗R,2 or
σ′R,2 is the same; let V (A, t − 1) represent this utility. The expected difference
in utility between σ∗R,2 and σ′R,2 when facing an altruistic P1 is then

sp − (1− α)(bc − rc − V (A, t− 1))

It can be shown that pestering an altruistic P1 until P2 gets the contribution or
t = 0 is in P2’s best interest; thus, for i < t, V (A, i) ≤ −sp + (1− α)(bc − rc) +
αV (A, i− 1), where V (A, 0) = 0. Solving the recursion and using condition (1)
we find that the expected difference in utility between σ∗R,2 and σ′R,2 is at most

sp − µ2(A|ht2)(αt−1(1− α)(bc − rc) + (1− αt−1)sp) < 0

This implies that P2 prefers to play σ′R,2 over σ∗R,2. Contradiction.

4.2 When does a rational P1 contribute?

It is obvious that P1 never contributes when the threat of pestering does not
offset the cost of contributing.

Lemma 5 P1 does nothing for rounds t ≤ τ , where

τ =

⌈
1

(1− ρ)2
sc
rp

⌉
− 1 (2)

The next two results limit when P1 contributes. Even after it contributes, if
P1 is unsure whether or not P2 is still destitute, a combination of several factors
(a highly lossy network that may have dropped the contribution, a high cost



for being pestered, enough rounds to make pestering a sufficiently costly threat)
may induce P1 to contribute again, without being pestered.

Lemma 6 gives a condition under which P1 contributes only if a non-Byzantine
P2 is known to be destitute. It follows in Theorem 7 that, after the first round,
P1 contributes only if pestered in the prior round.

Lemma 6 Let t < T be the current round, where

T <
1− ρ+ ρ2

ρ2(1− ρ)2
sc
rp

(3)

If P1 contributed in the past and has not been pestered since, then P1 does nothing
in round t.

Theorem 7 Let t < T be the current round, and suppose that P1 observed
nothing from P2 in round t+ 1. Then P1 does nothing in round t if (3) holds.

Proof. (Sketch) By contradiction. Consider some round t in which P1 contributes
despite having done nothing and observed P2 do nothing in round t + 1 (if
P1 contributed, Lemma 6 holds). It can be shown that since (1) P1’s belief in
P2 being destitute is strictly non-decreasing when observing P2 do nothing and
(2) the number of expected pesters decreases with the number of remaining
rounds, P1 increases its utility by contributing in round t + 1 instead of round
t. Contradiction.

We now consider the conditions under which P1 actually contributes. In every
round, P1 must make a choice:

– Pay the cost of contributing now (sc), hoping to stop a non-Byzantine
P2 from pestering in the future. The savings are a function of the remaining
rounds and the beliefs about P2.

– Delay contributing, at the risk of being pestered (with cost at most (1−ρ)rp),
hoping to glean more about P2’s type.

Procrastination has its lure. Since we are considering strategies where a non-
Byzantine P2 always pesters (minus the last round) whereas a Byzantine P2 may
not, every additional signal can drastically affect P1’s expected utility and pos-
sibly save P1 the cost of contributing. Moreover, doing nothing now does not
preclude P1 from contributing in the future. Yet, we find that if P1 has suffi-
ciently strong belief that P2 is destitute, procrastination is something best put
off until tomorrow: for every round sufficiently removed from the end of the
game, there exists a belief threshold above which contributing yields a higher
expected utility for P1.

Theorem 8 Let ht1 be the history of P1 in round t, where τ < t ≤ T and τ is
defined by condition (2). A rational P1 contributes if its belief that P2 is destitute
exceeds some threshold µ̄t1 ≤ 1. In particular, if µ1(D|ht1) ≥ µ̄t1, P1 contributes;
otherwise, P1 does nothing.



Proof. (Extended sketch) By induction on t. The base case, t = τ + 1, is simple:
since P1 never contributes after round τ + 1, we can calculate the threshold at
which P1 prefers to contribute. For the inductive step, we assume the theorem
holds for all t, τ < t ≤ t0; we prove t = t0+1 by contradiction. If a threshold does
not exist, there must be some belief µ∗(D|ht1) in which P1 prefers to contribute
and higher beliefs in which P1 prefers to do nothing. It can be shown that we
can always find a belief µ′1(D|(h′1)t), arbitrarily close to µ∗(D|ht1) from above,
such that:

– P1 does nothing in round t; and
– P1 plays the same actions in subsequent rounds after observing the same

non-empty sequence of signals as if P1 had started with belief µ∗(D|ht1).

It follows that P1’s expected utility of playing action at1 followed by the op-
timal strategy σ∗ with either belief µ∗1(θ|ht1) or µ′1(θ|(h′1)t) must be equal; let
V (at1, θ) be this expected continuation utility. By Lemmas 3 and 6, we know
that V (at1,¬D) = 0. Given belief µ∗1(θ|ht1), P1 prefers to contribute; given belief
µ′1(θ|ht1), P1 prefers to do nothing. This implies that

−sc ≥ µ∗1(D|ht1)(V (n,D)− ρV (c,D)) + µ∗1(B|ht1)(V (n,B)− V (c,B))

−sc < µ′1(D|(h′1)t)(V (n,D)− ρV (c,D)) + µ′1(B|(h′1)t)(V (n,B)− V (c,B))

Using these conditions, the fact that P1 is never better off contributing to a
Byzantine P2 (i.e., V (n,B)− V (c,B) + sc ≥ 0), and Lemma 6, we can derive a
contradiction.

4.3 The rational strategy is an equilibrium strategy.

Theorem 9 Assume an altruistic Pi plays the altruistic strategy σA,i. Let T be
constrained by condition (3) and condition (1) hold in all rounds but the last
one. Then the rational strategy is an equilibrium strategy.

Proof. By Lemmas 3 and 5 and Theorems 4, 7, and 8.

5 Characterizing the equilibrium

To understand the implications of Section 4 on the design of cooperative services,
we explore, through simulation, the parameter space for which our cooperative
equilibrium holds. We ask the following questions:

1. What fraction of altruistic peers suffices to motivate P2 to pester?
The shaded areas in Figure 1 show (for different rates of network loss, different
initial beliefs about the likelihood of P1 being Byzantine, and different worth of
receiving a contribution) the fraction of altruistic peers that suffices to trigger
P2’s pestering, as a function of the probability ((1−α)/(1−ρ)2) that an altruistic
P1 will contribute if pestered (P1’s generosity). We assume that P2 believes an
altruistic P1 follows the altruistic strategy; a Byzantine P1 never contributes;
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Fig. 1: Sufficient initial beliefs for a rational P2 in its peer P1 being altruistic to
incentivize P2 to pester (y-axis, shaded area) for varying amounts of altruistic
generosity (x-axis). Simulation run with sp = 1, T = 20.
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Fig. 2: Left: the belief thresholds of P1’s beliefs; solid lines represent ρ = 0.05;
dotted lines represent ρ = 0.25. Right: the maximum number of times P1 con-
tributes for each of these thresholds. Simulation run with sc/rp = 2, T = 20.

and a rational P1 only contributes in round T . This is a conservative estimate on
the fraction of altruistic peers sufficient to motivate P2; in practice, the actual
amount is likely to be lower than we report. As expected, for a given level of
generosity, it is easier to incentivize P2 if the value of the contribution increases
and the likelihood of P1 being Byzantine decreases. Given a highly lossy network,
P2 is also more willing to continue pestering, as it is more willing to attribute
to network loss its failure to receive a contribution.

2. How are P1’s beliefs and the rate of network loss affecting P1’s
willingness to contribute? P1 may contribute only if its belief that P2 is
destitute is above a certain threshold. We show in Figure 2 how that threshold
changes over the course of a game in which T = 20. For six configurations,
obtained by taking the cross product of two rates of network loss and three



different probabilities that a Byzantine P2 will pester, we plot the belief threshold
and report the number of times that P1 contributes. For a given round, we
assign P1 some initial belief that P2 is destitute and construct the game tree to
determine whether that initial belief is sufficient to motivate P1 to contribute
in that round; we use binary search to approximate the threshold value. As
expected, when the game has only few rounds left and the cost from being
pestered is not enough to overcome the cost of contributing, there is no threshold
above which P1 contributes. Note also that increasing ρ increases the belief
threshold required to convince P1 to contribute (as it reduces the expected threat
from pestering) but also makes P1 more likely to contribute when pestered,
since past contributions are more likely to have been dropped. Also, the belief
threshold increases as the likelihood of a Byzantine P2 pestering decreases, since
it becomes more in P1’s interest to delay contribution, waiting to see whether
P2 will pester. However, when P1 observes pestering, its belief that P2 is destitute
increases, and P1 becomes more more willing to contribute. Finally, decreasing
the relative cost of contributing (sc/rp) has an obvious effect on P1’s likelihood
to contribute (not shown).

3. Too much generosity? An intriguing conclusion from Figure 1 is that
altruistic generosity can make it much harder to motivate P2 to pester. The
reason is that the more generous altruistic peers are, the easier it is for a rational
P2 to determine, from observed signals, whether P1 is altruistic or not, which
in turn affects whether P2 continues to pester. Figure 1 shows the effects that
an altruistic peer’s generosity has on cooperation. For higher levels of altruistic
generosity, we can only guarantee cooperation if such generosity is offset by a
high ρ or bc − rc. Altruistic generosity becomes a more obvious discriminant if
a Byzantine P1 never contributes, but it becomes less conspicuous with higher
rates of network loss, which affects the observed generosity from P2’s perspective.
As expected, P2 is more willing to pester given a more valuable contribution.

6 Related work

Incentive-compatible systems and protocols. There has been much work
in incentive-compatible systems (e.g., [3, 4, 13, 14, 16, 20]). None of these systems
assume the existence of altruistic players, and only a few [3, 16, 20] consider
Byzantine peers. Our techniques can be applied to many of these systems. For
example, BAR Gossip [16], FOX [14], and PropShare [13] can use altruism to
incentivize key exchange. Our technique can be used towards implementing BAR
Gossip’s “fair-enough” exchange and may provide insight into the larger fair
exchange problem [11, 19]. Finally, rational secret sharing [10] faces a similar
problem to the last exchange. However, without a pestering mechanism, our
work is not directly applicable.

Irrationality in incentive-compatible protocols. Eliaz [7] proposed the gen-
eralization of Nash equilibrium to scenarios where some number of peers may be
Byzantine. Aiyer et al. [3] generalized this to the BAR model, which introduced
the possibility of altruistic peers and on which our model is based. Abraham et



al. [1] describe (k, t)-robust equilibrium, a solution concept in which a rational
player does not deviate despite the possibility of collusion by groups up to size
k and up to t “irrational” agents that may play any strategy. Similarly, Martin
[18] introduces an equilibrium concept in which rational players do not devi-
ate regardless of Byzantine or altruistic players’ actions. Our work differs from
previous work by showing the need for altruism to address a key problem in
cooperative services and considering real-world issues such as network costs and
lossy links. Vassilakis et al. [22] study how altruism affects content sharing in
P2P services at the application level. Their approach complements our own; we
focus on network-level incentives and issues (such as lossy links) that motivate
participants to actually send the content they share at the application level.
Their work does not address Byzantine participants.

Game-theory. There has been extensive work that has covered imperfect knowl-
edge, private signaling, and the use of altruism in game theory. The use of al-
truism to achieve cooperation in the finitely-repeated prisoner’s dilemma game
was first proposed by Kreps et al. [12]. It was shown that reputations could be
maintained even when there was imperfect observation of actions [8]. Cripps et
al. later showed that, under certain conditions, reputations cannot be maintained
forever unless the action played by the irrational player was part of a rational
player’s equilibrium strategy [5, 6]. None of the previous work consider both the
possibility of Byzantine and altruistic players. Many of them also assume that
actions or their corresponding signals can either be observed at least publicly [5,
8], if not perfectly [12]. More importantly, the focus of this work is the existence
(or nonexistence) of equilibrium under general conditions. We focus on the ap-
plication of theory to a specific problem and a realistic model that we believe to
be applicable to many distributed protocols.

7 Conclusion

Despite the presence of altruistic peers in real-world MAD systems, little at-
tention has been given to their role in establishing rational cooperation. In this
paper, we take the first step in understanding their function by showing that
altruism is necessary and sufficient to motivate rational cooperation in the cru-
cial last exchange between MAD peers. Our results suggest that, while a small
fraction of altruistic peers is sufficient to spur rational peers into action even in
systems with a large fraction of Byzantine peers, overly generous altruistic peers
can irreparably harm rational cooperation.
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