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Abstract. Cooperative, peer-to-peer (P2P) services—distributed sys-
tems consisting of participants from multiple administrative domains
(MAD)—must deal with the threat of arbitrary (Byzantine) failures
while incentivizing the cooperation of potentially selfish (rational) nodes
that such services rely on to function. This paper investigates how to
specify conditions (i.e., a solution concept) for rational cooperation in
an environment that also contains Byzantine and obedient peers. We
find that regret-free approaches—which, inspired by traditional Byzan-
tine fault tolerance, condition rational cooperation on identifying a strat-
egy that proves a best response regardless of how Byzantine failures
occur—are unattainable in many fault-tolerant distributed systems. We
suggest an alternative regret-braving approach, in which rational nodes
aim to best respond to their expectations regarding Byzantine failures:
the chosen strategy guarantees no regret only to the extent that such ex-
pectations prove correct. While work on regret-braving solution concepts
is just beginning, our preliminary results show that these solution con-
cepts are not subject to the fundamental limitations inherent to regret
freedom.

1 Introduction

Traditional fault-tolerant distributed computing relies on the assumption that
nodes can be cleanly categorized as correct or faulty; the former can be counted
on to run protocols that guarantee that systems will continue to provide desirable
functionalities despite a limited number of the latter. The rise of cooperative,
peer-to-peer (P2P) systems spanning multiple administrative domains (MAD)
complicates this simple picture. Much evidence suggests that a large number of
peers in MAD services will free-ride (e.g.,[5, 25, 37]) or deviate from the assigned
protocol if it is in their interest to do so (e.g., [1, 37]). To maintain the service,
it is essential to give these peers sufficient incentives to cooperate, and informal
common-sense reasoning about incentives may still leave systems vulnerable to
strategic attacks (e.g., [28, 31, 36]). But what should be the basis for a rigorous
treatment of MAD systems?



There is little controversy about the failure model. It is clear that one cannot
simply assume that every peer will be rational, as in standard game theory: like
other distributed systems, P2P services are susceptible to arbitrary failures.3

And, of course, some peers may simply be happy to run whatever protocol is
assigned to them—similar to correct nodes in traditional distributed systems.
P2P services should hence be designed to function in environments consisting of
a mix of Byzantine, acquiescent,4 and rational (or BAR) participants.

Building a BAR-tolerant system then involves two steps: 1) designing a
Byzantine fault-tolerant protocol and 2) proving that rational peers will cooper-
ate and follow the prescribed protocol. But how does one specify the conditions,
i.e., the solution concept [18], under which rational peers will be willing to co-
operate?

A natural approach is to draw inspiration from traditional Byzantine fault-
tolerant (BFT) computing. In threshold-based BFT, as long as the number of
Byzantine nodes does not exceed a threshold t, the system is guaranteed to
provide its safety properties independent of who the t Byzantine nodes are and
how they behave. Similarly, it is appealing to aim for a notion of equilibrium
in which rational nodes—either unilaterally or as a part of a coalition—cannot
improve their utility by deviating independent of who the t Byzantine nodes
are and of how they behave. This approach, elegantly formalized in the notion
of (k, t)-robustness [3, 4], is in principle very attractive: at equilibrium, peers
will never have reason to regret their chosen strategy, which is guaranteed to
prove a best response to any Byzantine strategy, independent of the identities
of Byzantine nodes.

The main result of this paper is to show that, despite its appeal, a solution
concept that guarantees regret freedom is fundamentally unable to yield non-
trivial equilibria in games (which we name communication games) that capture
three key characteristics of many practical fault-tolerant distributed systems:
(a) to achieve some desired functionality, some nodes need to communicate; (b)
bandwidth is not free; and (c) the desired functionality can be achieved despite
t Byzantine failures.

More, we find that weakening (k, t)-robustness, even considerably, seems un-
likely to help. For example, suppose that, magically, all rational nodes in a com-
munication game knew precisely the identity of all Byzantine nodes (but not
their strategy); or, alternatively, that they knew their strategy (but not their
identities). We find that in both cases a regret-free equilibrium can be achieved
only under very limited circumstances.

These results are not interesting because of their proofs, which are straight-
forward, but because they show that in fault-tolerant distributed systems, condi-

3 Of course, arbitrarily faulty peers too can be modeled as rational peers who follow
an unknown utility function. Unfortunately, doing so does not simplify the problem.

4 We originally named these nodes altruistic [6] but have since been made aware [2] of
the risk of confusing such peers (whose irrational generosity is only driven by obe-
dience to the given protocol) with peers who are irrationally generous for arbitrary
reasons. We believe that “acquiescent” better captures our original intentions.



tioning rational cooperation on the expectation of regret freedom may be funda-
mentally too much to ask. Furthermore, the limitations of this approach appear
hard to fix, since they are rooted in the universal quantifiers (e.g., “for all strate-
gies” or “for all sets of t Byzantine nodes”) that are at the very essence of regret
freedom.

The second part of the paper points to a promising research agenda to over-
come this impasse, an approach we call regret braving. Regret braving is mo-
tivated by the observation that rational agents that operate under uncertainty
about the strategy of other players (as is the case when players are Byzantine)
are often willing to cooperate without requiring absolute regret freedom. For
instance, when stock traders buy or sell shares, they are well aware of the pos-
sibility of regretting their actions. Nonetheless, they follow a particular strategy
as long as they cannot improve their utility with respect to their expectation
about their environment—the worth of the traded asset, their comfort with risk,
and what they believe will be the trends in the market—by deviating. Similarly,
we consider solution concepts in which rational nodes aim to best respond to
their expectations regarding Byzantine failures: the chosen strategy guarantees
no regret only to the extent that such expectations prove correct.

We find that regret-braving solution concepts admit simple and intuitive
equilibria for communication games where even the weakened versions of (k, t)-
robustness could not. In particular, we consider two solution concepts: in the
first, rational nodes play a maximin strategy that guarantees the best worst-
case outcome despite any possible Byzantine failure; in the other, rational nodes
assign probabilities to various possible faulty behaviors and aim for a Bayesian
equilibrium. We do not suggest that these solution concepts are the “right” ones
or that they can be directly applied to every BAR-tolerant system; in fact, we
believe that an exciting research opportunity lies in identifying increasingly re-
alistic models for Byzantine failure expectations. What these preliminary results
do show, however, is that regret-braving solution concepts are not subject to the
fundamental limitations inherent to regret freedom.

The paper proceeds as follows. Section 2 formalizes how we model players and
introduces the communication game that we use to compare solution concepts.
Section 3 explores the land of the (regret) free, showing why equilibria that base
rational cooperation on regret freedom are fundamentally hard to achieve. Sec-
tion 4 describes instead the home of the (regret) brave: we discuss two models
of rational beliefs that admit useful equilibria in an instantiation of the commu-
nication game. Section 5 discusses related work, and Section 6 concludes.

2 Model

A communication game models any fault-tolerant system in which communica-
tion is not free and at least some nodes need to communicate in order to achieve
the desired functionality.

Definition 1 A communication game consists of some set of nodes N = {1, . . . , n}
in which



– Communication incurs some cost and does not generate immediate benefit
to the sender,

– Communication incurs some cost to the receiver, and
– Benefit is obtained from functionality that (a) can be achieved in the presence

of up to t < n Byzantine failures and (b) requires communication between
some pair of nodes.

For simplicity, we use the same communication cost γ for both sending and
receiving, and we assume that messages are never lost.

Protocols are strategies played in the communication game, and strategies in-
volve actions drawn from a non-empty, finite set. We refer to the service-assigned
protocol as the assigned strategy. A strategy profile σ = (σx)x∈N assigns a strat-
egy σx to each node x, and Σ denotes the space of all possible strategy profiles
σ that nodes may use. Every strategy profile σ results in some utility Ux(σ)
for every node x. Following common game theory notation, we use (σ′x, σ−x)
to denote the strategy profile in which x plays σ′x and everyone else plays their
component in σ (we also do this for sets of players, e.g., (σ′K , σ−K)), and we drop
redundant parentheses when using a strategy profile as a parameter to a utility
function, e.g., Ux(σ′x, σ−x) vs. Ux((σ′x, σ−x)). We primarily focus on non-trivial
strategy profiles, in which some positive utility is expected for at least one node;
this implies that some communication must occur.

We are interested in systems that include Byzantine, rational, and (option-
ally) acquiescent nodes; each node x belongs to a type θx that falls into one of
these groups. For simplicity, we assume that all rational nodes are of the same
type R, and we ignore acquiescent nodes (who would anyway follow any strat-
egy assigned to them). These assumptions do not affect our impossibility results,
and they simplify the analysis for the positive results in regret braving—which,
as in any game-theoretic analysis, depend on the types of players and solution
concept. Because a Byzantine node may potentially play one of many different
strategies, it is convenient to denote the node’s type using the strategy it plays.
Formally, if some Byzantine node z plays some strategy τz, then we say that
θz = τz; the type space Θ then consists of Σ ∪ {R}.

We focus on environments in which neither trusted hardware nor trusted
third-parties are used to monitor communication. Although a trusted mediator
is useful [11, 24, 39], it is often impractical or even infeasible to provide one, and
in practice few cooperative systems leverage trusted hardware to prove commu-
nication. We express this reality in the following assumption:

Assumption 2 A node that sent a message m cannot unilaterally prove that it
sent m.

3 Byzantine Regret Freedom in Communication Games

In BFT systems, safety properties hold regardless of how Byzantine failures
occur. Ideally, one would like rational cooperation to be achieved under sim-
ilarly strong guarantees. (k, t)-robustness [3, 4] is an elegant solution concept



that captures this attractive intuition. A (k, t)-robust equilibrium is completely
impervious to the actions of Byzantine nodes: rational nodes will never have to
second-guess their decision even if the identities and strategies of the Byzantine
nodes become known. Specifically, (k, t)-robustness offers two key properties.
The first, t-immunity [3], captures the intuition that nodes following a strategy
profile should not be adversely affected by up to t Byzantine failures.

Definition 3 A strategy profile σ is t-immune if, for all T ⊆ N such that |T | ≤
t, all strategy profiles τ , and x /∈ T ,

Ux(σ−T , τT ) ≥ Ux(σ)

Note that t-immunity is not equivalent to Byzantine fault-tolerance, as t-immunity
does not specify that a strategy profile σ must provide any sort of desirable safety
or liveness properties despite t faults. In fact, any σ, fault-tolerant or not, is t-
immune if it specifies actions so bad that Byzantine nodes, playing anything
other than σ, cannot hurt a player’s utility.

The second, k-resilience [3], addresses the possibility of collusion: a k-resilient
strategy guarantees that a coalition of size at most k cannot deviate in a way
that benefits every member.5

Definition 4 A strategy profile σ∗ is k-resilient if, for all K ⊆ N such that
|K| ≤ k, there exists no alternate strategy profile σ′ such that for all x ∈ K,

Ux(σ′K , σ
∗
−K) > Ux(σ∗)

The (k, t)-robustness solution concept is the combination of t-immunity, k-resilience,
and regret freedom with respect to Byzantine failure: regardless of how Byzantine
failures occurs, (k, t)-robustness guarantees that no coalition of at most k nodes
can ever do better than following the equilibrium strategy.

Definition 5 A strategy profile σ∗ is a (k, t)-robust equilibrium if σ∗ is t-
immune and, for all (a) K,T ⊆ N such that K ∩ T = ∅, |K| ≤ k, and |T | ≤ t,
and (b) strategy profiles τ , there does not exist an alternate strategy profile σ′

such that for all x ∈ K,

Ux(σ′K , τT , σ
∗
−{K∪T}) > Ux(σ∗−T , τT )

3.1 (k, t)-robustness Is Infeasible in Communication Games

We show that the very property that makes (k, t)-robustness so appealing—
regret freedom regardless of how Byzantine failures occur—makes it infeasible
in many real-world systems. The reason, fundamentally, is that communication

5 Abraham et al. also define a strong version of collusion resilience in which there must
not exist a deviation in which even one coalition member can do better [3, 4]. We
focus on the weak version as Abraham et al. do in [4]. Since any strongly k-resilient
equilibria is (weakly) k-resilient, our impossibility results hold in both versions.



always incurs cost but could potentially yield no benefit if one is communicating
with a Byzantine node. In other words, a rational node may realize in hindsight
that it could have reduced its costs without affecting its benefits by avoiding all
communication with Byzantine nodes, thus improving its utility. As any node
can be Byzantine, this implies that the only possible (k, t)-robust equilibrium is
one in which no node communicates.

Theorem 6 There exist no non-trivial (k, t)-robust equilibria in any communi-
cation game.

Proof. Consider some non-trivial (k, t)-robust strategy σ∗. There must exist
some node x which, with positive probability α under σ∗, sends a message
to some other node z before receiving any other messages. Suppose that z is
Byzantine. Since σ∗ is (k, t)-robust, x must not be able to do better with some
alternate strategy, regardless of who has failed and what a failed node will do.
In particular, for all alternate strategies σ′x for x and Byzantine strategies τz for
z, it must be that

Ux(σ∗−z, τz) ≥ Ux(σ′x, τz, σ
∗
−{x,z}) (1)

Suppose τz is the strategy in which z “crashes” immediately, i.e., z never
sends any messages. Let σ′x be the strategy in which x does everything in σ∗x,
except x sends nothing to z. By Assumption 2, x cannot prove that it commu-
nicated with z; it thus follows that (σ′x, τz, σ

∗
−{x,z}) has the same functionality

as (σ∗−z, τz) and is indistinguishable to any node in N \ {x, z}. Clearly, if z fol-
lows τz, x can do better by never communicating with z; x’s outcome will not
change (since z never communicates with anyone), and x’s communication costs
are lower. Formally,

Ux(σ′x, τz, σ
∗
−{x,z}) = Ux(σ∗−z, τz) + αγ > Ux(σ∗−z, τz)

which directly contradicts inequality (1). ut

More broadly, Theorem 6 suggests that it may be hard to build non-trivial
(k, t)-robust equilibria for any game where a player’s actions incur cost. Indeed,
in all the games for which Abraham et al. derive (k, t)-robust equilibria [3, 4],
a node’s utility depends only on the game’s outcome (e.g., in a secret-sharing
game based on Shamir’s scheme, utility depends on whether a node can learn
the secret) and is independent of how much communication is required to reach
that outcome.

Discussion. (k, t)-robustness promises regret freedom simultaneously along two
axes: who the Byzantine nodes are and how they behave. Theorem 6 suggests that
this may be too strong to require in practice. But what if we only require regret
freedom along only one axis? If we know exactly who the Byzantine nodes are,
but not how they will behave, can we achieve regret freedom in communication
games? What if we do not know who is Byzantine, but we know their strategy?



3.2 What If We Know Who Is Byzantine?

Let us assume that we know exactly who all the Byzantine players are before the
game begins. This may already appear a strong assumption, but it is necessary,
since if the identity of even one Byzantine node were unknown, Theorem 6 would
still apply. We show that, even with this strong assumption, a solution concept
that is regret-free with respect to the strategies of Byzantine nodes is possible
only to the extent that it defines away the problem: the only possible equi-
libria are those in which rational nodes communicate only among themselves,
completely excluding Byzantine nodes from the system. Furthermore, we show
that many interesting communication games do not yield a regret-free equilib-
rium even if one takes the drastic step of excluding Byzantine nodes: specifically,
communication games in which Byzantine nodes may take actions that can affect
a rational node’s utility by more than the cost of sending a single message have
no regret-free equilibrium, even if the identity of all Byzantine nodes are known
a priori.

We first define the equivalent of t-immunity (Definition 3) and (k, t)-robustness
(Definition 5) for a fixed set T of Byzantine nodes.

Definition 7 A strategy profile σ is T -strategy-immune if for all strategy profiles
τ and x /∈ T ,

Ux(σ−T , τT ) ≥ Ux(σ)

Definition 8 A strategy profile σ∗ is (k, T )-strategy-robust with respect to T ⊆
N iff σ∗ is T -strategy-immune and for all K ⊆ N \ T such that |K| ≤ k and all
Byzantine strategies τ , there does not exist some σ′ such that for all x ∈ K,

Ux(σ′K , τT , σ
∗
−(K∪T )) > Ux(σ∗−T , τT )

A (k, T )-strategy-robust equilibrium need only be a best response to the specified
set T of Byzantine nodes. The following theorem shows that no (k, T )-strategy-
robust equilibrium is possible unless rational nodes “blacklist” all nodes in T .

Theorem 9 In a communication game, there does not exist any (k, T )-strategy-
robust equilibrium σ∗ where any x /∈ T communicates with any z ∈ T .

Proof. Similar to proof of Theorem 6 (see [42]). ut

Although Theorem 9 does not rule out all (k, T )-strategy-robust equilib-
ria, Theorem 10 proves that these equilibria, which must be regret-free for any
Byzantine strategy, only exist in limited circumstances.

Theorem 10 No communication game can yield a (k, T )-strategy-robust equi-
librium for any set T ⊆ N of Byzantine nodes if for some x /∈ T and some
z ∈ T , (a) x has at least one opportunity to send a message to z and (b) for any
strategy profile σ, there exist two Byzantine strategies τz and τ ′z such that τz and
τ ′z are the same until x’s first opportunity to communicate with z and

Ux(σ−z, τz)− Ux(σ−z, τ
′
z) > γ



We omit the straightforward proof for lack of space (see [42]): in essence, if
there exists a Byzantine strategy in which a rational node may gain by inter-
acting with Byzantine nodes, then ignoring Byzantine players may not prove, in
hindsight, an optimal strategy.

Theorem 10—unlike Theorem 6—provides conditions under which no (k, t)-
strategy-robust equilibria exist, whether trivial or not. Since (k, t)-strategy-robust
equilibria are a superset of (k, t)-robust equilibria, it naturally follows from The-
orem 10 that no (k, t)-robust equilibria exist under the same conditions.

3.3 What If We Know How Byzantine Nodes Behave?

Let us now consider a solution concept that assumes that the strategy played by
every Byzantine node is known a priori and yields equilibria that are regret-free
with respect to who the Byzantine nodes are.

Definition 11 The strategy profile σ∗ is a (k, t, τ)-type-robust equilibrium iff σ∗

is t-immune and for all K,T ⊆ N such that K ∩ T = ∅, |K| ≤ k, and |T | ≤ t,
there does not exist some σ′ such that for all x ∈ K,

Ux(σ′K , τT , σ
∗
−(K∪T )) > Ux(σ∗−T , τT )

Despite the strong assumption on which they rely, (k, t, τ)-type-robust equi-
libria are impossible to achieve for many Byzantine behaviors. In particular, it
follows immediately from Theorem 6 that no such equilibrium is possible if the
known Byzantine strategy calls for any Byzantine node to crash at the very
beginning of the game.

Theorem 12 There exist no non-trivial (k, t, τ)-type-robust equilibria in the
communication game in which a Byzantine node z, following τz, crashes at the
beginning of the game.

Proof. Same as proof of Theorem 6. ut

In general, it is possible to show (see [42]) that non-trivial (k, t, τ)-type-
robust equilibria are impossible whenever there is a point in the known Byzantine
strategy after which a Byzantine node becomes “unresponsive,” i.e., the node’s
behavior becomes independent of how the game has been played so far (e.g., the
node crashes or starts flooding all other nodes with messages).

4 Dealing with Byzantine Failures through Regret
Bravery

Finding a single strategy that is a best response against all possible Byzantine
strategies or all possible t-sized subsets of Byzantine nodes (or both) appears
fundamentally hard: regret-free solution concepts, for which rational cooperation
depends on finding such a strategy, seem unlikely to provide a viable theoretical
framework for many BAR-tolerant systems.



Regret bravery, the alternative we explore in this section, explicitly forgoes
seeking a“universal” best response. Instead, it makes rational cooperation de-
pendent on identifying a strategy that is a best response to the Byzantine be-
havior that rational nodes expect to be exposed to. Before we proceed to look at
examples of regret-braving equilibria, we answer some natural questions.

Is aiming for a best response towards only a subset of all possible Byzantine
behaviors in effect abdicating the general claims (and benefits) of Byzantine fault
tolerance? No. Any BAR-tolerant protocol, independent of the underlying so-
lution concept, must be a strategy that guarantees Byzantine fault tolerance.
The choice of a solution concept is not about fault tolerance; rather, it specifies
under which conditions rational nodes will be willing to follow a given strat-
egy, fault-tolerant or not. Regret-braving solution concepts are motivated by the
observation that rational nodes may be willing to cooperate even without the
guarantee that the considered strategy will, in all circumstances, prove to be a
best response.

Do regret-braving solution concepts limit how Byzantine node can behave? No
more than a threshold t on the number of Byzantine faults limits a system to
experience, in reality, more than t faults. Regret braving asks rational nodes to
build a model of expected Byzantine behavior, but of course Byzantine nodes are
in no way bound to follow that model. If Byzantine behavior does not match the
expectation of rational nodes, then a regret-braving equilibrium strategy may
not, in hindsight, prove to be a best response.

What is the right set of expectations when it comes to Byzantine behavior? It
all depends on the application being considered. We discuss below two concrete
examples inspired by approaches (maximin and Bayes equilibria) that have been
extensively studied in the economics literature, but we do not claim that these
solution concepts model “realistic” expectations for all distributed systems. For
example, the maximin approach produces a best response to the expectation that
the system always includes exactly t Byzantine nodes, when it may instead often
be reasonable to expect that the actual number of Byzantine faults will be lower.6

Indeed, we believe that the challenge of finding equilibrium strategies under more
flexible solution concepts is an extremely exciting research opportunity.

Regret Braving the Quorum Communication Game. To show the via-
bility of regret-brave solution concepts in a communication game, we consider
a concrete communication game: a quorum game, which models protocols, such
as secret-sharing [39], replicated state machines [27], and terminating reliable
broadcast [22] in which functionality is achieved if and only if some subset of
nodes (a quorum) work together.

Definition 13 A (synchronous) quorum game is an infinitely-repeated commu-
nication game where

6 A worst-case attitude is actually not uncommon when designing fault-tolerant sys-
tems, even for benign failures. For instance, non-early stopping protocols for syn-
chronous terminating reliable broadcast always run for t + 1 rounds, even in execu-
tions that experience no failures.



– There are at least 3 nodes (n ≥ 3).
– The game repeats indefinitely. In every round, for each y ∈ N , a node x 6= y

decides whether to send a message (“contribute”) or not (“snub”) to y.
– At the end of the round, every x ∈ N simultaneously (1) observes who con-

tributed to it and (2) receives its payoff.7 x incurs a cost of γ for each node
x contributes to and for each node that contributes to x; x incurs no cost
for snubbing or being snubbed. x realizes a positive benefit of b > 2nγ in any
round where q other nodes (a quorum) contribute to x.8

– The total payoff is the δ-discounted sum of each individual round’s payoff,
where 0 < δ < 1.

δ-discounting is a commonly-accepted way of handling utility in infinite-
horizon games [18]. This models the reality that earning benefit (incurring cost)
now is better (worse) than doing so later.9

We consider two concrete regret-braving solution concepts for the quorum
game. In the first, rational nodes best-respond to fearing the worst, i.e., they
follow a maximin strategy with respect to Byzantine failures.

Definition 14 The strategy profile σ∗ is a k-resilient t-maximin equilibrium iff
for any coalition K ⊆ N such that |K| ≤ k, there does not exist an alternate
strategy profile σ′ such that for all x ∈ K,

min
T⊆N\K:
|T |≤t

min
τ
Ux(σ′K , τT , σ

∗
−(K∪T )) ≥ min

T⊆N\K:
|T |≤t

min
τ
Ux(σ∗−T , τT )

and for some y ∈ K, the inequality is strict.

In the second, rational nodes weigh the probabilities of various Byzantine
failures; an equilibrium is thus these probabilities—known as beliefs in game
theory parlance—and the strategy profile that is an expected best response given
these beliefs. A set of beliefs µ = {µx}x∈N is, for each node, a probability
distribution over sets of nodes and their types—whether they are rational, or
Byzantine and playing a particular strategy. We use µx((R−T , τT )|RK) to denote
a rational node x’s belief that all nodes z ∈ T are Byzantine and of type (i.e.,
playing strategy) τz and all nodes w /∈ T are rational (i.e., of type R), given
that there is some K (the coalition) in which x ∈ K and all y ∈ K are rational.

Definition 15 The strategy profile/belief tuple (σ∗, µ∗) is a k-resilient Bayes
equilibrium iff for all K ⊆ N such that |K| ≤ k, there does not exist an alternate

7 In game theory parlance, the game is a simultaneous game; in distributed systems,
synchronous.

8 Technically, the quorum size is q + 1: q other nodes and the node itself (we assume
that it costs nothing for a node to contribute to itself). For simplicity, we will simply
say that the quorum size is q.

9 For example, it is often preferable to have a dollar now rather than later, since money
can be invested and can earn interest in the meantime.



strategy profile σ′ such that for all x ∈ K,∑
T⊆N\K

∑
τ

µ∗x((R−T , τT )|RK)Ux(σ′K , τT , σ
∗
−(K∪T ))

≥
∑

T⊆N\K

∑
τ

µ∗x((R−T , τT )|RK)Ux(σ∗−T , τT )

and for some y ∈ K, the inequality is strict.

In both definitions, we extend previous work that uses regret-brave solu-
tion concepts [6, 29, 30, 41] by explicitly considering collusion, which prior work
avoided by either considering collusion a Byzantine failure or making informal
arguments on the basis of experimental results. For simplicity, we use k-resilience
(Definition 4); however, we could have used any notion of collusion resilience, as
this choice is orthogonal to how rational participants view Byzantine peers.

An example of a t-maximin equilibrium. We prove a k-resilient t-maximin equi-
librium in the quorum game. Although we argue that communication always
has cost and the quorum game does not explicitly model communication that
coalition members may perform to coordinate, our proof implicitly assumes that
the coalition can coordinate its actions. Thus, our results hold even if we aug-
mented the game to allow coalition members to coordinate via cheap talk [13,
17].

Theorem 16 Let the strategy profile σ∗ be defined as follows: any x ∈ N fol-
lowing σ∗x contributes to some y 6= x iff x and y have always contributed to each
other in the past and x has been snubbed by at most t different nodes. σ∗ is a
k-resilient t-maximin equilibrium if q = n− t− 1, k ≤ q, and

b

γ
≥ max

(
1 + δ2

δ2
(n− 1),

1

1− δ
(t+ k) + 1

)
(2)

Proof. (Sketch)10 Since q = n−t−1, a rational node needs the cooperation of all
other rational nodes to achieve a quorum; as k ≤ q, a coalition cannot achieve
a quorum by itself.11 Consider some coalition K of size at most k. It can be
easily verified that, given the conditions above, a coalition member x ∈ K never
snubs a cooperative, non-coalition node y /∈ K following σ∗. Intuitively, suppose
x snubs y in some round r and y is not Byzantine. If t Byzantine nodes snub
every node at least once by round r, y, having observed t + 1 snubs, will then
snub every node in round r + 1. This causes all non-coalition nodes to follow
suit and snub in round r+ 2. It follows that all members of K, including x, will
only receive up to k − 1 < q other contributions for the remainder of the game
starting from round r + 2. As this is not enough to achieve a quorum, such a

10 See [42] for the full details.
11 Recall that a node needs q other nodes to contribute in order to achieve a quorum.



deviation results in the loss of benefit for the remainder of the game and is thus
not worthwhile for K given the above conditions.

However, coalition members have an additional possible deviation: they may
choose to help each other save on receiving extraneous contributions (stemming
from the fault-tolerant nature of the quorum game, nodes typically send and
receive contributions from more than q members) by “snubbing” one another
without threat of punishment.

Suppose that nodes in K play such an alternate strategy σ′K in which some
nodes in K snub, for the first time, some x ∈ K in round r. Then Byzantine
nodes may also snub x, making it impossible for x to achieve a quorum in round
r. Specifically, by deviating, x may

– lose the benefit b it would have normally gained from playing σ∗,
– save at most (t + 1)γ from not receiving contributions from t + 1 members

(the reason why x did not achieve a quorum and lost benefit), and
– save at most kγ from not contributing to other coalition members.

Therefore, as compared to σ∗K , σ′K loses x at least b − (t + k + 1)γ in utility.
However, in all subsequent rounds, x could save on contributing to

– Byzantine nodes that snubbed x in round r, saving at most tγ per round (in
the worst case, the Byzantine nodes still continue to contribute to x), and

– coalition members, saving at most kγ per round.

This implies that x saves at most δ/(1− δ)(t+ k)γ in utility over all subsequent
rounds.

Thus, in order for σ′K to be worthwhile for x, it must be the case that

−b+ (t+ k + 1)γ +
δ

1− δ
(t+ k)γ > 0

which is never satisfied given inequality (2). ut

An example of a Bayesian equilibrium. One advantage of using the t-maximin
solution concept is its simplicity: because we need only consider the worst possi-
ble case, t-maximin equilibria are simple to analyze. Unfortunately, although a
rational node playing a t-maximin equilibrium may receive a safe, steady amount
of utility, Byzantine failures are unlikely to always occur in the worst possible
way, and a rational node willing to take a risk and deviate from the prescribed
strategy may be able to do better in expectation.

In the remainder of this section, we demonstrate that the Bayesian approach
provides flexibility in how Byzantine nodes are modeled by rational nodes by
demonstrating a simple example of a k-resilient Bayes equilibrium. Our goal
is to simply illustrate the existence of Bayesian equilibria, not to derive tight
bounds for when these equilibria exist. Thus, for simplicity of exposition, we
use simple beliefs, optimistic bounds about the utility earned by deviating, and
pessimistic bounds about the utility earned by cooperating.



Theorem 17 Define the strategy profile σ∗ such that any x ∈ N , following σ∗x,
contributes to any y 6= x iff x and y have always contributed to each other in the
past and x has been snubbed by at most t peers, where t is some constant.

Let τ be defined as the random t-crash strategy: in any given round, a node
z playing τz has some positive probability ρ of crashing. Define the set of beliefs
µ∗ such that for all subsets K ⊆ N such that |K| ≤ k and all y ∈ K,

– µ∗y((R−T , τT )|RK) = 0 for any T such that |T | 6= t, and
– µ∗y((R−T1

, τT1
)|RK) = µ∗y((R−T2

, τT2
)|RK) > 0 for any T1, T2 ⊆ N \K such

that |T1| = |T2| = t.

Then (σ∗, µ∗) is a k-resilient Bayes equilibrium if q = n− t− 1, k ≤ q, and

b

γ
≥ n+ t− 1

ρtδ2(1− δ)
n− k

n− k − t
+ n− t− 1 (3)

Proof. Fix some rational node x and some coalitionK, where x ∈ K and |K| ≤ k.
We optimistically assume a rational node that deviates in round r only loses
utility if t nodes crash on or before round r, which occurs with probability at
least ρt.

It can be easily verified that by following σ∗, each member of K, including
x, earns no less than

1

1− δ
(b− 2(n− 1)γ) (4)

in utility, since x can achieve a quorum even if every Byzantine node crashes, so
the “worst” that happens is x achieves a quorum in every round while incurring
cost from communication from everyone.

Suppose that x snubs some node y /∈ K. Since the probability that a node is
rational is uniform across all (non-coalition) nodes, y is rational with probability
at least 1 − t/(n − k), and with probability at least ρt, y will observe t other
nodes snub it by round r. y then snubs everyone starting in round r + 1, all
non-coalition nodes snub everyone starting in round r + 2, and x earns at most
0 in every round starting from round r + 2. Otherwise, we assume x earns the
maximum round payoff b− qγ. Thus, deviating is worthwhile only if

ρt
(

1− t

n− k

)
(1 + δ)(b− qγ) +

(
1− ρt

(
1− t

n− k

))
1

1− δ
(b− qγ)

exceeds expression (4). This never holds given inequality (3).
Otherwise, suppose that x ∈ K “snubs” its peer y ∈ K to save on y’s

communication costs. Again, y, with probability at least ρt, will not achieve a
quorum if all t nodes crash on or before round r. However, unlike before, y only
loses benefit for one round; we otherwise assume that it earns the maximum
round payoff b− qγ. Thus, deviating as a coalition is worthwhile only if

ρt
δ

1− δ
(b− qγ) + (1− ρt) 1

1− δ
(b− qγ) >

1

1− δ
(b− 2(n− 1)γ)

which never holds given inequality (3). ut



5 Related Work

Outside of (k, t)-robustness [3, 4], Eliaz [16] also defined a solution concept which
is effectively (1, t)-robustness. Gradwohl [20] explored regret-free equilibria with
t arbitrary or colluding nodes in leader election and random sampling games.
Our results still apply to the solution concepts used in these papers. Moscibroda
et al. [34] use an approach similar to t-maximin to consider worst-case Byzantine
behavior in the context of a computer virus propagation model.

Coalitions have been studied in depth in the game theory literature. Aumann
[9] proposed a notion of collusion resilience which is the basis for k-resilience.
Berheim et al. [12], Moreno et al. [33], Einy et al. [15], among others, have
proposed weaker solution concepts that only consider deviations that are self-
enforcing, meaning that there does not exist an even more profitable deviation
for a sub-coalition within the coalition. All of these notions are complementary
to regret-brave equilibria and can be used as a part of a regret-brave solution
concept.

Our results are similar in spirit to previous work in mechanism design [14,
19, 21, 26, 35, 38] where mechanisms that incentivize nodes to reveal their true
preferences or types for every possible realization of types are found to be often
impossible or heavily restricted. Others [14, 35] found positive results by using
Bayesian solution concepts instead of dominant ones. Mookherjee et al. [32]
define conditions in which Bayesian incentive-compatible mechanisms can be
replaced by equivalent dominant-strategy mechanisms.

Maximin strategies have been previously explored in conjunction with adver-
sarial or possibly irrational agents. Alon et al. [7] quantify how, in a two-player
zero-sum game, the payoff of playing a mixed maximin strategy is affected by an
adversary who can choose its actions based on some information about its peer’s
realized strategy. Tennenholtz [40], extending the work of Aumann et al. [8, 10],
explores how maximin strategies can approximate the payoff of a Nash equi-
librium when a rational node may not want to rely on the rationality of its
peers.

6 Conclusion

Distributed systems that span multiple administrative domains must tolerate
the possibility that nodes may be Byzantine, rational, and (possibly) acquies-
cent. To formally reason about such services, we need a solution concept that
provides rigorous guarantees for rational cooperation without sacrificing real-
world applicability. This paper argues that solution concepts based on regret
freedom, despite their intuitive correspondence to the traditional guarantees of
fault-tolerant distributed computing, are unlikely to provide the basis for a vi-
able theoretical framework for real-world systems. In particular, we believe that
any practical solution concept should be able to admit equilibria in games where
a rational node’s payoff is not based simply on the outcome but also on the
cost of the actions required to achieve said outcome. While our discussion here



has focused on communication costs, other costs should be included, such as
the computational costs discussed in the recent work of Halpern and Pass [23].
We believe that regret-brave solution concepts provide a rigorous and realistic
framework for games that account for these costs.
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