
Consistency, Availability, and Convergence

Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin

Department of Computer Science, The University of Texas at Austin

Technical Report (UTCS TR-11-22)

Abstract
We examine the limits of consistency in fault-tolerant distributed storage systems. In particular,

we identify fundamental tradeoffs among properties of consistency, availability, and convergence, and
we close the gap between what is known to be impossible (i.e. CAP) and known systems that are
highly-available but that provide weaker consistency such as causal. Specifically, in the asynchronous
model with omission-failures and unreliable networks, we show the following tight bound: No consis-
tency stronger than Real Time Causal Consistency (RTC) can be provided in an always-available,
one-way convergent system and RTC can be provided in an always-available, one-way convergent
system. In the asynchronous, Byzantine-failure model, we show that it is impossible to implement many
of the recently introduced fork-based consistency semantics without sacrificing either availability or con-
vergence; notably, proposed systems allow Byzantine nodes to permanently partition correct nodes from
one another. To address this limitation, we introduce bounded fork join causal semantics that extends
causal consistency to Byzantine environments while retaining availability and convergence.

∗All correspondence should be addressed to: E-mail: princem@cs.utexas.edu; Address: Prince Mahajan, 1 University
Station, #C0500, Austin, TX 78712-0233; Telephone: 512.366.0512



1 Introduction
In this paper, we examine the limits of consistency in fault-tolerant distributed storage systems. We identify
fundamental tradeoffs between the safety property of consistency and the liveness properties of availability
and convergence, where consistency constrains the order that reads and writes may appear to occur, avail-
ability requires reads and writes to complete, and convergence requires connected nodes to observe one
another’s updates.

In asynchronous systems with omission failures and unreliable networks, we close the gap between what
is known to be impossible (i.e. CAP [10, 17, 40]) and known systems that are highly-available but provide
weaker consistency such as causal [1, 4, 18, 23, 29, 36, 39]. In particular, we show the following tight bound:

• No consistency stronger than real time causal (RTC) consistency, a strengthening of causal consis-
tency, can be provided in an always-available, one-way convergent system.
• RTC can be provided in an always-available, one-way convergent system.

An always available system allows reads and writes to complete regardless of which messages are lost and
a one-way convergent system guarantees that if node p can receive from node q, then eventually p’s state
reflects updates known to q.

In systems that can suffer Byzantine failures, we do not establish a tight bound, but we come close. First,
we show the following lower bound:

• No system in which nodes can be Byzantine can enforce fork causal or stronger consistency in an
always-available, one-way convergent system.

Notice that this result rules out always-available and convergent implementations of many recently proposed
fork-X semantics [6, 8, 26, 27, 31, 35]. In these systems, a faulty node can cause correct nodes to become
permanently partitioned in that forked correct nodes cannot observe each other’s writes.

Second, we show that, fortunately, it is not necessary to sacrifice liveness to have sensible, well-defined
consistency semantics despite Byzantine failures:

• Bounded fork join causal can be provided to correct nodes in an always available, one-way convergent
system with an arbitrary number of Byzantine nodes.

Fork causal [30] and bounded fork join causal (BFJC) are weakenings of causal consistency that deal with
Byzantine nodes. The basic idea is to treat inconsistent writes by a Byzantine node as concurrent writes by
multiple virtual nodes. BFJC limits the number of forks accepted from a faulty node and thus bounds the
number of virtual nodes needed to represent each faulty node.

In addition to the four specific results above, a central contribution of this paper is the formalization of the
convergence property and the CAC trade-offs. The trade-offs between consistency and availability are well
known [10, 17, 40], but absent a convergence requirement, there exist many semantics that (1) are stronger
than causal consistency, (2) are always available to reads and writes, and (3) “feel” somehow “artificial” or
“less useful” than causal. Convergence eliminates these artificial strengthenings by formalizing a natural
requirement for many systems—that writes by one node become visible to others.

In the rest of this paper, we first define the CAC (consistency, availability, and convergence) properties
(Section 2). Then we explore the CAC trade-offs in omission- and Byzantine-fault tolerant systems (Sec-
tion 3 and Section 4). Finally we discuss the implications of CAC theory and results (Section 5), summarize
related work (Section 6), and conclude (Section 7).

2 Consistency, Availability, and Convergence (CAC)
In this section, we define the CAC properties: consistency, availability, and convergence more carefully. We
first state our assumptions about the environment and the implementation.

1



We assume an asynchronous model with an unreliable network: messages may be delayed for an arbitrary
but finite duration, reordered, or dropped. Likewise, local clocks at different nodes may run at different
speeds. We assume a classical memory system at each node whose state is not affected by reads as opposed
to a quantum memory system whose state might change on reads [15]. We assume that an implementation
orders operations and is oblivious to the actual values being written to objects and that reads return values
written by write operations. Therefore to avoid ambiguity [15], when discussing the result of a read, our
formalism focuses on the write operation that wrote the value that the read returns.

2.1 Consistency
Consistency restricts the order in which reads and writes appear to occur. Formally, a consistency semantics
is a test on an execution—if the test for consistency C passes on an execution e, we say e is C-consistent.

An execution comprises of a set of nodes and a sequence of read and write operations at each node. We
abstract the details of an execution and model read and write operations as follows:

Write = (nodeId, objId, value, startTime, endTime)
Read = (nodeId, objId, writeList, startTime, endTime)

For a read operation the writeList is a list of write operations that produced the values a read returns. Note
that we permit a read operation to return multiple results, which, as we discuss below, provides a clean way
to handle logically concurrent updates without making restrictive assumptions about conflict resolution.

The startTime and endTime fields indicate the real time at which an operation starts and finishes.
Note that in an asynchronous system, this absolute global time is not visible to the nodes but our model
includes it so that we can reason about semantics such as linearizability [21] and real time causal, which
restrict legal orderings to be consistent with real-time clocks. Note that we assume serial execution at each
node so that one operation at a node ends before the next one starts.

We say that a consistency semantics Cs is stronger than another consistency semantics Cw iff the set
of executions accepted by Cs is a subset of the set of executions accepted by Cw (ECS ⊂ ECW where
EC denotes the set of executions accepted by a consistency semantics C). We say that two consistency
semantics are incomparable iff neither of them is stronger.

Causal consistency. An execution is causally consistent if there exists a directed acyclic graphG, called a
HB (happens before) graph, containing a read/write vertex for each read/write operation in e and edges that
impose a partial order ≺G (precede) on these vertices such that G satisfies the following consistency check:

CC1 Serial ordering at each node. The ordering of operations at any node is reflected in G. Specifi-
cally, if v and v′ are vertices corresponding to operations by the same node, then v.startT ime <
v′.startT ime⇔ v ≺G v′.

CC2 A read returns the latest preceding concurrent writes. For any vertex r corresponding to a read
operation of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that
have not been overwritten by another write of objId that both follows w and precedes r:
w ∈ r.wl⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId = r.objId))

Note that our definition separates consistency from conflict resolution for dealing with conflicting, concur-
rent writes to the same object. Some systems implement a conflict resolution algorithm to pick a winner (e.g.,
highest-node-ID wins) or to merge conflicting writes (e.g., combining concurrent creation of differently-
named files in the same directory) [1, 4, 18, 22, 23, 29, 41]. Instead, the definition above models the funda-
mental causal-ordering abstraction shared by all these approaches without attempting to impose a particular
conflict resolution strategy—logically concurrent writes are returned to the reader, which can then apply
any standard and application-specific conflict resolver to pick a winner or merge concurrent writes in a layer
over the consistency algorithm [12, 30].

Real-time-causal consistency. An execution e is said to be real time causally consistent (RTC) if its HB
graph satisfies the following check in addition to the checks for causal consistency:

2



CC3 Time doesn’t travel backward. For any operations u, v: u.endT ime < v.startT ime⇒ v 6≺G u.

RTC is not a new semantics. Although we are the first one to formally define RTC, it appears that most
systems that claim to enforce causal consistency actually enforce the stronger RTC semantics, sometimes
modified to support a system-specific conflict resolution policy [1, 4, 18, 22, 23, 29, 30, 41]. This observation
should not be surprising—it would indeed be strange for a practical implementation to order an operation
that occurred later in real time before an earlier operation.

2.2 Availability
Availability, informally, refers to an implementation’s ability to ensure that read and write operations com-
plete. The availability of an implementation is defined by describing the environment conditions (network,
local-clocks etc) under which all issued operations complete. An implementation is always available if for
any workload, all reads and writes can complete regardless of which messages are lost and which nodes can
communicate.

2.3 Convergence
Informally, convergence refers to an implementation’s ability to ensure that writes issued by one node are
observed by others. Convergence can be formally defined by describing the set of environment conditions
(network, local-clocks etc) under which nodes can observe each other’s writes.

We formalize convergence to expose the fundamental trade-off between safety (consistency) and liveness
(availability and convergence). In particular, a challenge with defining stronger consistency as accepts fewer
executions is that systems that fail to propagate information among nodes may technically have very strong
consistency and availability. For example, a system could completely eliminate communication among
nodes and have each read of an object return the latest write of the object by the reader; or a gossip-based
causal consistency system could restrict its nodes to only send or receive messages if the sequence number
of the node’s last write is evenly divisible by 100. Each of these semantics is technically stronger than
causal consistency and is still always available for reads and writes; yet, each of these semantics also feels
“artificial” or less useful than causal. Convergence allows us to understand this trade-off.

A simple convergence property is eventual consistency. One common definition requires that if a system
stops accepting writes and sufficient communication occurs, then the system reaches a state in which for any
object o, a read of o would return the same value at all nodes. This formulation defines a weak convergence
property; for example, it makes no promises about intervals in which some nodes are partitioned from others.

One-way convergence. To maximize liveness, we would like to say that any subset of connected nodes
should converge on a common state. For example, we want to model the anti-entropy approach used in
systems like Bayou [36] and Dynamo [12].

We therefore define one-way convergence. The basic idea is that any pair of nodes s and d can converge
with two steps of one-way communication: first s sends updates to d, next d sends updates to s, and then
both nodes would read the same values for all objects.

The full definition is a little more complicated because it explicitly states that additional communication
between s and d should not prevent convergence. First, we define an intermediate state where d has received
whatever updates it needs from s. The defining property of this state is that, once d is in it, it suffices for d
to send updates to s for d and s to converge to a common state.

DEFINITION 2.1. Semi-pairwise converged. We say that machine s has semi-pairwise converged with ma-
chine d iff s and d are in a state such that if they issue no writes and communicate with no other nodes, then
eventually d will send a set of messages such that if s receives these messages, then subsequent reads of the
same object by s and d will return the same result.

Now we can define one-way convergence by saying that a system provides this property if it ensures that
s and d can become semi pairwise converged through communication from s to d:

3



DEFINITION 2.2. One-way convergent. A system is one-way convergent iff for any machines s and d, if
s issues no writes and receives no messages then eventually s will send a set of messages such that if d
receives these messages, then s will have semi-pairwise converged with d.

3 CAC with omission failures
In this section, we consider environments where only omission and network failures occur.

3.1 Impossibility result
Theorem 3.1 shows that it is impossible to provide any consistency stronger than RTC while ensuring always
availability and one-way convergence. This theorem holds under an asynchronous model with unreliable
network even if nodes are assumed to be correct. We prove this theorem by showing that we can take any
system that claims to provide consistency stronger than RTC and force-feed it a workload under which it
must either block reads or writes (sacrificing always availability), fail to propagate updates among connected
nodes (sacrificing one-way convergence), or violate RTC (showing that it is not, in fact, stronger than RTC).

THEOREM 3.1. No consistency semantics stronger than real time causal consistency can be implemented
using a one-way convergent and always available distributed storage implementation.

Proof. (Sketch) By way of contradiction, suppose there exists a stronger semantics SC, implemented by a
one-way convergent and always available distributed storage implementation, ISC , that doesn’t accept an
execution e that is accepted by RTC consistency. We will construct a run of ISC that produces the rejected
execution e. The proof goes through the following stages.

Stage 1 We use the real time causal HB graph G for e to construct another graph H as follows. For every
read/write vertex v ∈ G and for each write w ≺G v such that w and v occur at different nodes, add a
directed edge from w to v inH . Now, remove all non-local edges fromH (edges that connect vertices
at different nodes) that were not added in Stage 1.

Stage 2 We then useH to construct an execution e′ by issuing operations at nodes in ISC and by controlling the
behavior of the network and local clocks at each node. When constructing e′, we issue a few additional
read operations e′ (beyond those present in H) to inspect the state of the implementation ISC during
the execution. We use the always availability property to ensure that all operations complete.

Stage 3 Because SC is stronger than RTC, any execution e′ of ISC must also be RTC consistent. Let G′ be
the RTC HB graph for execution e′.

Stage 4 Using G′, we show that reads in e and e′ return the same set of writes.

Stages 1 and 3 are straightforward. In the rest of the section, we highlight the key intuition for Stages 2
and 4. The full proof is available in the Appendix B.

Stage 2 Use H to generate a series of reads/writes while controlling the network and local clocks such
that ISC produces an execution e′ that we later show must be similar to e.

Let v be an iterator over a topological sort T of H . For each vertex v at a node pv:

1. For each non-local incoming edge to v from a write w to object o, do the following: (a) deliver the
messages that were sent when the outgoing edges of vertex v′ were processed (see step 3 below), and
(b) add an additional read ro to object o at node pv and wait until this read finishes.

2. Perform v’s operation at node pv. Wait until the operation completes (Because ISC is always available,
the operation must eventually complete).

3. For each outgoing edge to vertex v′ at node pv′ , perform the following steps: wait until pv sends
the set of messages Mpv ,pv′ that are sufficient to bring d into a semi-pairwise converged state with
s. From the one-way convergence requirement, pv must eventually send such messages. Buffer these
messages for delivery in step (1) when the corresponding end point of this outgoing edge is processed.

4



Note that we have not yet specified when each operation will be performed in real time; we show in
Appendix B (Lemma B.2) that a feasible real time assignment (that matches the startT ime and endT ime
of operations in e) can be found because G satisfies the CC3 requirement of RTC.

Stage 4: Reads return the same set of writes in e and e′ In this stage of the proof, we argue that writes
that are dependent in G must remain dependent in any observer graph G′ for execution e′ and similarly,
due to the real time constraint, concurrent writes returned on a read cannot be ordered in G′. Using these
observations, we can show that e must match e′.

LEMMA 3.2. If a write w precedes an operation u in G then w precedes u in G′. (w ≺G u⇒ w ≺G′ u)

Proof. (Sketch) If w and u occur on the same node, then the claim follows from CC1. If not (pu 6= pw), let
u′ denote the earliest operation on pu such that w ≺G u′. By Stage 1, there exists an incoming edge from
w to u′ in H . Processing that edge in Stage 2 involved performing one-way convergence from pw to pu and
inserting before u′ artificial reads rf to the object o at pu, where o is the object that w was writing. It is
easy to prove that w ∈ rf .wl and hence, by CC2, w ≺G′ rf . Now, since by CC1 rf ≺G′ u, it follows by
transitivity that w ≺G′ u.

LEMMA 3.3. In forced execution e′, a write w appears in the writeList of a read r only if w precedes r in
G. (w ∈ r.wl′ ⇒ w ≺G r.)

Proof. (Sketch) Since an implementation can only read values produced by writes, there must exist a
communication path from pw after the issue of write w to pr prior to the issue of read r. By construction,
such a path can exist only if w ≺G r.

LEMMA 3.4. For every read r ∈ e with writeList wl in e and wl′ in e′, wl = wl′

Proof. (Sketch) Consider the following two cases:
Case 1: w ∈ wl′ ∧ w 6∈ wl: From construction Stage 2, w ∈ wl′ ⇒ w ≺G r, so for r to not return w
there must exist a w′ such that w ≺G w′ ∧ w′ ≺G r but from Lemma 3.2 , w ≺G w′ ∧ w′ ≺G r ⇒ w ≺G′
w′ ∧ w′ ≺G′ r so r.wl′ could not include w (from CC2). Contradiction.
Case 2: w ∈ wl ∧w 6∈ wl′: From CC2 w ≺G r, and from Lemma 3.3 w ≺G′ r. So, from CC2, for r to not
return w in e′, there must exist w′ such that r returns w′ in G′ and w ≺G′ w′. From Case 1, we know that
w′ ∈ wl. Combining these two observations, it must be the case that w||Gw′ (w is concurrent to w′ in G)
whereas w ≺G′ w′.

Now, consider a different execution e′′ in which w starts after w′ finishes in real time (e′′ is possible
because w and w′ are concurrent in G and hence also concurrent in H). Because the implementation does
not have access to real time, it must produce identical responses in both e′ and e′′. In particular, the write
lists wl′ and wl′′ returned respectively by read r in e′ and e′′ must be identical. However this cannot be,
since by CC3 we can’t have w ≺G′′ w′ in any HB graph G′′ for e′′. Contradiction.

Lemma 3.4 shows that e′ and e match for reads that are common to both executions. Because our imple-
mentation is assumed to be classical and hence not influenced by reads, if we were to generate an execution
with no artificial reads, it should still produce the same answer for all the reads that are present in e. Hence,
repeating the construction in Stage (1) and (2) above but without adding the artificial reads must produce
the execution e. Therefore, Theorem 3.1 holds.

3.2 CAC implementation of RTC
We next show that RTC provides a tight bound for CAC semantics that are achievable using an always
available and one-way convergent implementation. Theorem 3.5, which holds in an asynchronous model
with unreliable network and omission failures, proves the desired result.

5



THEOREM 3.5. Real time causal consistency (RTC) can be enforced by an always available and one-way
convergent implementation.

We defer the detailed proof of Theorem 3.5 to the Appendix F and instead provide the key ideas behind
constructing the implementation and the associated proof here.

The implementation for RTC is similar to the log-exchange protocol used in Bayou [36] or PRACTI [4]
where each write produces an update with a vector clock (or version vector), an object identifier, and the
object value. The vector clock determines precedence of updates, and a local store at each node tracks the
most recent update(s) to each object. On a read of an object o, the node returns the most recent update(s) to
o from its local store without requiring any communication. Similarly, on a read, an update is created and
added to the local store and the local log at the issuing node. Nodes periodically exchange updates from
their local logs; newly received updates are appended to the local log and then used to update the local store
of a node, replacing any old updates that causally precede the new update. Each node in our implementation
periodically sends its log to all other nodes to ensure one-way convergence.

The implementation sketched above is always available because it does not require communication to
ensure completion of reads/writes. It is one-way convergent because updates received from a sender can be
applied at the receiver to attain the converged state, and nodes periodically broadcast all the updates from
their local log. It is causally consistent because the vector clocks attached to each update ensure that the
causally newest writes are returned on a read. Finally, the implementation is RTC consistent because the
vector clock assignment never violates the real time requirement by assigning an older vector clock to a
newer update.

4 CAC with Byzantine failures
The previous section considered an omission failure model. In this section, we consider a Byzantine failure
model and show that fork-causal [30] and stronger consistency semantics cannot be implemented without
sacrificing availability or convergence. We then introduce bounded fork join causal consistency that can be
enforced by a one-way convergent and always available implementation.

4.1 Impossibility result
Informally, fork-causal consistency ensures that a correct node sees only causally consistent subset of the
global execution even though the overall execution may not be causally consistent [30]. We include a
definition of fork-causal consistency in the Appendix C for reference.

THEOREM 4.1. Fork-causal and stronger consistency semantics are not achievable in an always available
and one way convergent distributed storage implementation.

Proof. (Sketch) Let S be a semantics at least as strong as fork-causal consistency that is implemented by an
always available and one way convergent implementation IS . Consider an execution of three nodes p1, p2,
and f . Nodes p1 and p2 are correct and node f is faulty. In particular, f simulates two instances of a node,
f1 and f2, that share the same initial state as f . Execute the following sequence of operations. Assume the
network drops any messages not described below.

1. Issue and complete write wa to object a at f1 and write wb to object b at f2.
2. Now, let f1 become semi-pairwise converged with p1 by waiting for f1 to send messages to p1 and

then delivering these messages at p1. Similarly, let f2 become semi-pairwise converged with p2 by
delivering messages from f2 to p2.

3. Issue ra,p1 followed by rb,p1 at p1 and rb,p2 followed by ra,p2 at p2. From the definition of one way
convergence and the requirements of fork-causal consistency, ra,p1 at p1 must return wa and rb,p1 at
p1 must return ⊥. Similarly, rb,p2 at p2 must return wb and ra,p2 must return ⊥.

6



We claim that this implementation now cannot enforce one way convergence between p1 and p2. This is
because p1 and p2 have observed inconsistent histories that cannot be reconciled without requiring correct
nodes p1 and p2 to observe the concurrent writes w1 and w2 issued by a single node: a violation of the serial
ordering for operations seen by correct node property enforced by fork-causal and stronger consistency
semantics. In Appendix D, we show this result by arguing that no fork-causal HB graph exists for this
execution.

While the above result has been shown for highly available implementations, a similar result holds for
implementations that allow operations under quorums that are not guaranteed to overlap in at least one
correct node. We call such quorum systems disjoint quorum systems to indicate that the two quorums in
such a system are not required to overlap in any correct node. Note that any two quorums are allowed to
overlap as long as the overlapping nodes can be faulty.

We then define a weaker notion of availability, called quorum-available. In particular, we say that an
implementation is available under a quorum Q if any operation performed by a correct client c completes
within a bounded amount of time if every node p ∈ Q is correct and nodes in Q ∪ c can communicate with
each other. Similarly, we define a weaker notion of convergence, called quorum-convergence, where if a
quorum of servers and a set of correct clients can exchange messages, they should be able to converge to a
common state where reads return identical response at converged clients.

Now we can show the following theorem:

THEOREM 4.2. Fork-causal and stronger consistency semantics are not achievable in a disjoint-quorum-
convergent, disjoint-quorum-available, and eventually consistent distributed storage implementation.

Proof. (Sketch) The proof of this theorem is very similar to the proof for Theorem 4.1. Consider two
elements Q1, Q2 of the disjoint quorum system. Consider an execution in which each node s ∈ Q1 ∩ Q2

is faulty and simulates the behavior of two nodes s1 and s2. Now, we consider three clients p1, p2, and f
where client f is faulty and simulates the behavior of two correct clients: f1 and f2 in quorums Q1 and Q2

respectively. Now, as before we perform operations at f1 and f2 and force f1 to attain quorum-convergence
with p1 using quorum Q1 and similarly force f2 to attain quorum-convergence with p2 using quorum Q2.
Next we issue reads at p1 and p2 and force these reads to complete using quorum-availability. Now we
can argue that this system can’t attain eventual consistency because correct nodes p1 and p2 have observed
inconsistent writes.

COROLLARY 4.3. Always available implementations are equivalent to the disjoint quorum system where
each quorum contains a single correct node. Hence, always available implementations must either sacrifice
eventual consistency or enforce semantics that are not equal to or stronger than fork-causal if nodes can be
Byzantine.

COROLLARY 4.4. Fork-X implementations are equivalent to a disjoint quorum system where each quorum
contains the server. Hence, fork-X implementations must either sacrifice eventual consistency or enforce
semantics that are not equal to or stronger than fork-causal if nodes can be Byzantine.

4.2 CAC implementation of BFJC
Theorem 4.1 rules out CAC implementations of fork-causal and stronger consistency semantics. We next
answer the question: What consistency can be provided using an always available and one-way convergent
implementation? We introduce a new consistency semantics called bounded fork join causal (BFJC) con-
sistency that we believe is close to the strongest achievable CAC semantics in the Byzantine failure model.
We then describe a CAC implementation of BFJC semantics.

THEOREM 4.5. Bounded fork join causal (BFJC) consistency can be enforced by an always available and
one-way convergent implementation.

7



An execution e is bounded fork join causally consistent (BFJC-consistent) if there exists a directed acyclic
graph G, called a HB (happens before) graph, containing a vertex for every operation by a correct node and
a vertex for every write operation by a faulty node that is returned on a read by a correct node, and edges
that impose a partial order ≺G (precede) on these vertices such that G satisfies the following consistency
check:

BFJC1 Serial ordering. The operations of a correct node are totally ordered in G. This total ordering of
operations by a correct node p must be consistent with the real time at which these operations were
issued by p. Specifically, if v and v′ are operations by the p, then v.startT ime < v′.startT ime ⇔
v ≺G v′.
The operations of a faulty node form a directed tree. In a tree that contains multiple leaf vertices (i.e.
the tree isn’t a chain), we call each path from the root to a leaf a fork.

BFJC2 A read return the latest preceding concurrent writes. Same as CC2.
BFJC3 Time doesn’t travel backward. For operations u, v by correct nodes: u.endT ime < v.startT ime⇒

v 6≺G u.
BFJC4 Bounded number of forks. In a distributed implementation consisting of k faulty nodes and n correct

nodes, the maximum number of forks possible are n · 2k−1. Note that it can easily be shown by
construction that the bound on the number of forks imposed by BFJC definition is tight; one can
indeed construct executions where any implementation is forced to create n · 2k−1 forks if it does not
want to sacrifice always availability and one-way convergence.

BFJC is achievable using an always available available and one-way convergent implementation. We
defer the pseudocode and proof to Appendix E and sketch the key ideas here.

BFJC can be implemented by extending the implementation for RTC in four key ways. First, as is
common in protocols designed to tolerate Byzantine faults [6, 27, 30], updates are signed and include a
tamper-evident encoding of the history seen by the node that is creating the update. The signature and
encoded history guard against omission or reordering. Second, nodes check the received updates against
their local history to ensure that nodes that issue concurrent updates (and thus create forks) are declared
faulty and their updates are rejected. Third, nodes ensure that updates created by known faulty nodes are not
accepted unless some other potentially correct node has accepted them without knowing that their creator
is faulty. This relaxation of update checks (compared to existing fork-X protocols [6, 8, 26, 27, 31, 35])
allows forked correct nodes to join these forks and ensure one-way convergence in our implementation.
Conceptually, a node joins a fork by treating forked writes by a faulty node as concurrent writes by different
virtual correct nodes [30]. This approach is appealing because we can reduce the problem of Byzantine faults
to the well-studied problem of handling concurrency and conflicts in optimistic consistency systems [5, 13,
20, 22, 38, 41]. Finally, to bound the number of forks, when a node receives updates from another node, it
issues a view update to prove to other nodes that none of the updates it accepted were issued by nodes known
to be faulty.

5 Discussion
Why CAC and not CAP? The CAP (consistency, availability, partition-resilience) formulation mixes
properties (consistency and availability) with the system model (network reliability assumptions). In our
formulation, we decouple the model from the properties so that we can separately consider bounds on
properties achievable under both omission and Byzantine failure models.

Additionally, CAP does not explicitly consider convergence because linearizability and sequential con-
sistency embed a convergence requirement. When we examine weaker semantics like causal consistency,
we find that we must explicitly consider convergence.
Open questions. There are strong consistency semantics that are incomparable with linearizability but
that seem “unnatural” [15] (e.g., always return the original value of an object regardless of what writes

8



occur.) Perhaps convergence provides a principled way to prefer some strong semantics over others? Is
linearizability the strongest semantic for some natural convergence requirement?

As CAP indicates, different system models yield different trade-offs; a CAC-M framework would gen-
eralize CAC by exposing the model as a parameter. CAP and this paper showed consistency-availability
trade-offs for an unreliable network with Byzantine and omission failures. What other bounds on consis-
tency exist under different availability requirements (e.g., wait, lock, or obstruction freedom), convergence
requirements (e.g., two-way convergent or eventually consistent), or environment models? For example, we
conjecture that weak fork-linearizability [6] is the strongest consistency semantics that can be enforced with
a Byzantine faulty server if wait-freedom is desired when the server is correct.

Why one-way convergence? The weaker two-way convergence property requires a pair of nodes to con-
verge only when bidirectional communication is possible.

We focused on one-way convergence because it is needed in theory and useful in practice. In our theory,
RTC is not the strongest always-available consistency semantics under two-way convergence because nodes
could conspire to impose order among logically-concurrent updates while exchanging those updates. In
practice, one-way convergence captures the spirit of anti-entropy protocols [4, 12, 36]. Although most im-
plementations use bidirectional communication, the communication from the update-receiver to the update-
sender is just a (significant) performance optimization used to avoid redundant transfers of updates already
known to the receiver. One-way convergence is also important in protocols that transmit updates via delay
tolerant networks [13, 36, 42].
Open questions: How do the CAC trade-offs vary as we weaken convergence requirements? Although
we know that we can strengthen consistency if we only require two-way convergence, so far we have only
identified “artificial” and not-obviously-useful variations. Are there useful, stronger consistency guarantees
that can be provided with weaker, but still useful, convergence requirements?

Why isn’t causal the strongest? Here we illustrate the HB graph for an execution that is causal but not
RTC. An implementation could produce this execution by, for example, deciding that a write by the node
with the lowest nodeID dominates other causally-concurrent updates.

w2(X = 5)

w1(X = 3)
p1

p2

r1(X) = 3

real time

(a) Causal execution

w1

r1w2

(b) HB graph

Open questions: Are there other natural strengthening of causal that are incomparable with RTC but still
highly available and usefully convergent? Is there a way to characterize different families of strengthening
into some design space of metrics or trade-offs?

Why no tight bound for Byzantine? We would have liked to show that BFJC is the strongest available and
convergent semantics in the Byzantine model. Unfortunately, this conjecture is false—an implementation
can enforce a slightly stronger, albeit unnatural, BFJC’ semantics that disallows certain BFJC executions.
For example, consider an execution e consisting of two logically concurrent writes w1 and w2 issued by
a faulty node f to an object o. An implementation for BFJC’ can suppress the actual concurrency and
pretend that one of the writes (say w1) precedes the other (say w2). Such a BFJC’ implementation admits
all executions admitted by BFJC except for execution e (that BFJC admits) and thus enforces stronger
semantics.

The CC3 constraint of RTC helps us rule out such strengthenings in the omission-failure model. Unfor-
tunately, operations performed by a Byzantine faulty node do not have a well-defined start and end time, so
that approach does not work here.
Open questions. Do useful strengthenings of BFJC exist? Is there a tight CAC bound for a strongest
(hopefully useful!) consistency semantic that can be achieved with high availability and useful convergence?

9



6 Related work
Several prior efforts have explored the limits of consistency when other properties are desired. The CAP
tension between consistency and availability in systems with unreliable networks is well known [10, 17,
40]. Similarly, there is a fundamental tension between strong consistency and performance [28]. Yu and
Vahdat’s TACT framework provides ways to manage the trade-offs between availability, consistency, and
staleness [43]. Frigo defined the weakest “reasonable” memory model by imposing specific constraints,
such as constructability, nondeterminism confinement, and classicality [16]. Frigo also noted the problem
of defining “trivial yet strong” semantics that we address by using convergence properties [16].

To ensure availability, many systems have implemented causal consistency and weaker semantics with
various conflict resolution policies [1, 4, 11, 12, 18, 36, 37, 39]. To avoid picking a winner among different
conflict resolution policies, we follow some previous systems [4, 12, 30, 37] and permit a read to return a set
of concurrent writes.

As noted above, most systems that claim to implement causal consistency actually implement stronger
semantics (e.g. RTC). Lloyd et al. [29] explicitly note that their system’s causal and per-object sequential
semantics are stronger than causal consistency. In particular, these semantics enforce a variation of causal
consistency in which writes to each key are totally ordered. This natural strengthening has been implemented
by a number of past systems [3, 34] by, for example, associating a Lamport clock [24] with each write and
then imposing a highest-accept-stamp-wins conflict resolution policy.

Traditionally, Byzantine faults have been addressed using quorums [32, 33], sometimes within state ma-
chine replication systems [2, 9, 19]. For sufficiently large quorums, traditional semantics such as regular,
safe, or atomic registers [25] or linearizability [21] can be enforced, while weaker fork-X consistency vari-
ations can be enforced on smaller quorums or even individual machines [6, 8, 26, 27, 31, 35]. Whereas tra-
ditional semantics are unavailable when quorums are unresponsive, many Fork-X semantics allow faulty
nodes to introduce permanent partitions among correct nodes [30]. In this paper, we show that this problem
is fundamental to these semantics.

Cachin et al. [6, 7] expose the trade-off between consistency and availability in fork-X semantics by show-
ing that neither fork-sequential consistency [35], nor fork-* linearizable consistency [27] can be enforced
by a wait-free implementation using a Byzantine faulty server.

The BFJC consistency in this paper strengthens Depot’s fork join causal consistency [30] to ensure that
only a bounded number of forks are admitted. The BFJC implementation uses views to bound the number
of forks and enforce BFJC consistency. In contrast, Depot’s eviction protocol is more efficient and attains
similar bound on forks but requires two way communication.

Eventual propagation [14] requires all the nodes to observe all updates but, unlike convergence, does not
demand different nodes to order updates or converge to a common state.

7 Conclusion
This paper examines the tradeoff between consistency and availability in fault-tolerant distributed systems.
In environments with network failures, we strengthen the CAP theorem to show that real time causal con-
sistency, a strengthening of causal consistency that respects the real time order of operations, is the strongest
semantics achievable while retaining strong liveness guarantees. Similarly, we show that in the Byzantine
failure model, fork-causal [30] or stronger consistency semantics cannot be implemented without compro-
mising liveness. The key to both these results is the use of convergence as a liveness requirement. Conver-
gence precludes uninteresting semantics that gain their strength by disallowing nodes from observing each
other’s writes. Finally, we introduce bounded fork join causal consistency and show that it can be enforced
despite network failures and Byzantine nodes.

10



References
[1] M. Ahamad, J. Burns, P. Hutto, and G. Neiger. Causal memory. In WDAG, pages 9–30, 1991.

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine Replication Under Attack. In DSN, 2008.

[3] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTI replication (extended version).
http://www.cs.utexas.edu/users/dahlin/papers/PRACTI-2005-10-extended.pdf, Oct. 2005.

[4] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTI replication. In NSDI, 2006.

[5] A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine: An Exercise in Distributed
Computing. CACM, 25(4), 1982.

[6] C. Cachin, I. Keidar, and A. Shraer. Fail-Aware Untrusted Storage. In DSN, 2009.

[7] C. Cachin, I. Keidar, and A. Shraer. Fork sequential consistency is blocking. Inf. Process. Lett.,
109:360–364, March 2009.

[8] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted shared memory. In
PODC, 2007.

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM TOCS,
20(4), 2002.

[10] B. Coan, B. Oki, and E. Kolodner. Limitations on database availability when networks partition. In
ACM Symposium on Principles of Distributed Computing (PODC), 1986.

[11] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s Hosted Data Serving Platform. In VLDB, 2008.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value
store. In SOSP, 2007.

[13] M. Demmer, B. Du, and E. Brewer. TierStore: a distributed filesystem for challenged networks in
developing regions. In FAST, 2008.

[14] R. Friedman, R. Vitenberg, and G. Chockler. On the composability of consistency conditions.
Information Processing Letters, 86(4):169 – 176, 2003.

[15] M. Frigo. The weakest reasonable memory model. Master’s thesis, MIT Department of Electrical
Engineering and Computer Science, Jan. 1998.

[16] M. Frigo and V. Luchangco. Computation-Centric Memory Models. In SPAA, 1998.

[17] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of Consistent, Available,
Partition-tolerant web services. In ACM SIGACT News, 33(2), 2002.

[18] R. Golding. A weak-consistency architecture for distributed information services. Computing
Systems, 5(4):379–405, 1992.

11



[19] R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The next 700 BFT protocols. In Eurosys,
2010.

[20] R. Guy, J. Heidemann, W. Mak, T. Page, G. J. Popek, and D. Rothmeier. Implementation of the Ficus
Replicated File System. In USENIX Summer, 1990.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
TOPLAS, 12(3), July 1990.

[22] J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM TOCS,
10(1):3–5, Feb. 1992.

[23] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy replication.
ACM TOCS, 10(4):360–391, 1992.

[24] L. Lamport. Time, clocks, and the ordering of events in a distributed system. CACM, 21(7), July
1978.

[25] L. Lamport. On interprocess communication, 1985.

[26] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository (SUNDR). In OSDI,
2004.

[27] J. Li and D. Mazières. Beyond one-third faulty replicas in Byzantine fault tolerant systems. In NSDI,
2007.

[28] R. Lipton and J. Sandberg. PRAM: A scalable shared memory. Technical Report CS-TR-180-88,
Princeton, 1988.

[29] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen. Don’t settle for eventual: Stronger
consistency for wide-area storage. NSDI 2011 Poster Session, Mar. 2011.
http://www.cs.princeton.edu/˜wlloyd/papers/widekv-poster-nsdi11.pdf.

[30] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish. Depot: Cloud storage
with minimal trust. In OSDI 2010, Oct. 2010.

[31] M. Majuntke, D. Dobre, M. Serafini, and N. Suri. Abortable fork-linearizable storage. In OPODIS,
2009.

[32] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, pages 203–213, 1998.

[33] J. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine quorums. In Symposium on Distributed
Computing (DISC), Oct. 2002.

[34] A. muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. In
OSDI, 2002.

[35] A. Oprea and M. Reiter. On consistency of encrypted files. In DISC, 2006.

[36] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible Update
Propagation for Weakly Consistent Replication. In SOSP, 1997.

[37] V. Ramasubramanian, T. Rodeheffer, D. B. Terry, M. Walraed-Sullivan, T. Wobber, C. C. Marshall,
and A. Vahdat. Cimbiosys: A platform for content-based partial replication. In NSDI, 2009.

12



[38] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving File Conflicts in the Ficus
File System. In USENIX Summer, 1994.

[39] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: A highly
available file system for distributed workstation environments. IEEE Transactions on Computers,
39(4):447–459, Apr. 1990.

[40] A. Siegel. Performance in Flexible Distributed File Systems. PhD thesis, Cornell, 1992.

[41] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected replicated storage system. In SOSP, 1995.

[42] R. Wang, S. Sobti, N. Garg, E. Ziskind, J. Lai, and A. Krishnamurthy. Turning the postal system into
a generic digital communication mechanism. In SIGCOMM, pages 159–166, 2004.

[43] H. Yu and A. Vahdat. The costs and limits of availability for replicated services. In Proceedings of the
eighteenth ACM Symposium on Operating Systems Principles, pages 29–42, 2001.

13



read-start
write-start

DSM1

read-end
write-end

recv-msg
local-clocksend-msg

(c) A Storage implementation

Asynchronous channel

App1 App2 App2

DSM1 DSM3DSM2

(d) A distributed storage implementation

Figure 1: A storage implementation (a) and a distributed storage implementation (b) constructed by con-
necting several storage implementations through an asynchronous channel. Note that the asynchronous
channel also controls the operation of local clocks at various implementations.

A Revisiting availability and convergence
In this section, we first introduce our framework and then define the availability, and convergence properties
in terms of our framework. We note that this framework is a slight extension of the framework that we
introduced in the main paper. This extension is useful to provide precise proofs for the results stated in
the main paper. The definitions of consistency remains unchanged and therefore we don’t repeat those
definitions.

A.1 Terminology
Implementation A storage implementation is a deterministic I/O automaton with input events read-start
(objId,uid), write-start (objId,uid,value), clock-tick (), recv-msg (nodeId,m)
and output events read-complete (uid,wl), write-complete (uid), send-msg (nodeId,m)
where oId denotes the object identifier, value denotes the value written, uid denote application assigned
unique identifiers assigned to each read and write operation, nodeId denotes the unique identifier of a
storage implementation, m denotes content of a message, wl denotes a writeList which is a set of tuples of
the form (uid,d) indicating that multiple values can be returned on a read [12, 30].

We assume that the automaton implements a classical memory system whose state is not changed by
reads reads (as opposed to a quantum memory system in which some reads may change the behavior of
other reads) [15]. Note that we do not preclude implementations in which a local read operation triggers
communication (e.g., a local read causes a node to fetch updates from nearby reachable node) including the
reception of messages that changes the system state. In these systems, it is not the read that changes the
state of the reader, it is the reception of messages.

A distributed storage implementation consists of a collection of storage implementations that communi-
cate through an asynchronous channel. Figure 1 shows a storage implementation and a distributed storage
implementation connected through an asynchronous channel.

An application issues read-start and write-start input events to a particular storage implemen-
tation and gets read-end and write-end outputs as responses. The channel controls the local clock
at each storage implementation by issuing local-clock events—the implementation doesn’t have ac-
cess to any other clock. The channel also controls the network by issuing recv-msg events and receiving
send-msg events.

Environment We assume an asynchronous model with an unreliable network: messages may be delayed
for an arbitrary but finite duration, reordered, or dropped in the network. Likewise, local clocks at different
storage implementations may run at different speeds.

14



We describe these environmental conditions through an environment graph. In particular, an environment
graph specifies (1) the behavior of the local clocks by indicating when clock-tick events are issued,
(2) the behavior of application by indicating when read-start and write-start events are issued,
and (3) the behavior of the asynchronous channel by indicating which transmitted messages are received
and when, and which are dropped.

An environment graph is a directed acyclic graph with read-start, write-start, local-clock,
send-msg-stub, and recv-msg-stub vertices. It contains edges connecting successive events at
each storage implementation and edges connecting send of a message to its receive if the message was
successfully delivered. Thus, an environment graph provides the complete specification of inputs to a dis-
tributed storage implementation and the state of a distributed storage implementation is a function of the
environment graph that has been provided as input to it.

There is an issue when specifying the behavior of a channel—we don’t know a priori when and which
messages will be sent by a storage implementation. Therefore, we label messages using a combination
of the local-clock value and an identifier of the storage implementation that produced the message. For
example, if the channel wants to deliver the message that was produced by storage implementation p1 at
time t1 for storage implementation p2 at time t2, then the corresponding environment graph will contain a
send-msg-stub at p1 at local clock t1 connected using a directed edge to a recv-msg-stub at p2 at
local clock t2.

Run Generating inputs to a distributed storage implementation using an environment graph and obtain-
ing the output produces a run of the distributed storage implementation. We represent a run using another
directed acyclic graph that is similar to an environment graph, but augmented to include write-end
and read-end vertices and send-msg and recv-msg vertices in place of send-msg-stub and
recv-msg-stub vertices.

Execution We represent the application’s view of a run of distributed storage implementation using an
execution. An execution consists of a set of read and write operations. Intuitively, an execution eliminates
details of a run that are not needed for defining consistency while retaining essential details. An execution
is represented using a set of read and write operations that carry the following fields:

Read = (nodeId, objId, wl, uid, startTime, endTime)
Write = (nodeId, objId, value, uid, startTime, endTime)

Most of the fields above are taken from the fields of the start and end event of the corresponding operation.
nodeId corresponds to the identifier of the storage implementation at which the event is issued.

The real-time (startTime and endTime) of an operation reflects when that operation is issued at
the application and when the operation is reported to be complete to the application respectively. Because
propagation of an application’s read/write request to the storage layer and vice-versa can take some finite
time depending on the scheduling and propagation delays, we require that for each operation o, ostartT ime <
ostoreStartT ime < ostoreEndT ime < oendT ime, where ostoreStartT ime and ostoreEndT ime denote the real time
at which the request and response event occur at the storage implementation. These real time assignments
are useful for characterizing semantics like linearizability where the real time ordering of operations must
be respected [21]. We require that each operation takes finite and positive time to complete. Note that
the real time(s) associated with an event are not visible to the implementation that only has access to an
unsynchronized local clock.

A.2 Availability
An implementation I is available under a environment graphEG ifEG produces a available run on I . In an
available run, each read-start input has a corresponding read-end output and each write-start
input has a corresponding write-end output.

Now, we can compare the availability of two implementations. An implementation I is more available

15



than implementation I ′ if the set of environment graphs SG under which I is available is a superset of the
set of environment graphs SG′ under which I ′ is available.

An implementation I is always available iff it is available under all environment graphs that contain
infinite local clock events for each machine. An implementation in which one storage implementation must
communicate with another before processing a request cannot be always available because a read or write
request can not complete in an environment where two storage implementations are partitioned.

A.3 Convergence
Convergence intuitively refers to the ability of a system to ensure that writes issued by one storage im-
plementation are observed by other storage implementations. Like consistency and availability, different
systems can offer different convergence properties.

We say that a run R of implementation I has globally converged iff for any extension R′ of the run R
with no write-start events in R′/R, reads in R′/R of identical objects that return responses, return
identical responses.

Informally, an implementation is eventually consistent if sufficient communication can cause it to be-
come globally converged. Formally, an implementation is said to be eventually consistent iff for each run
R, there exists an extension R′ of the run R that has globally converged such that R′/R comprises only
of local-clock events, send-msg events, and recv-msg events that correspond to a subset of the
send-msg events in R′/R.

The above property does not require that disconnected machines should be able to converge and therefore
an implementation may (for example) provide eventual consistency by designating a special master machine
responsible for resolving conflicts or through which all updates flow. However, we are interested in highly
available systems that can tolerate failures or partitions of arbitrary subsets of machines while still allow-
ing the remaining machines to provide useful liveness and safety properties. Therefore, we next define a
strengthening of eventual consistency that defines a similar convergence property among arbitrary subsets
of connected machines.

We say that an available run R of implementation I has pairwise converged for machines s and d iff for
any extension R′ of the run R that satisfies the following constraint, reads by s and d in R′/R of identical
objects that return responses, return identical response: R′/R comprises only of local-clock events at
s and d, send-msg events at s and d, and recv-msg events at s and d that correspond to a subset of the
send-msg events in R′/R.

Informally, an implementation is pairwise convergent if sufficient communication between a pair of nodes
can cause that pair of nodes to converge. Formally, an implementation is said to be pairwise convergent iff
for each run R and for any nodes s and d, there exists an extension R′ of the run R that has pairwise
converged for s and d and R′/R comprises only of local-clock events at s and d, send-msg events at
s and d, and recv-msg events at s and d that correspond to a subset of send-msg events R′/R.

Most practical systems rely on one-way transfer of data where data is transferred from one machine to
another. We next define a convergence property useful for such scenarios.

The basic idea of one-way convergence is that any pair of nodes s and d can converge with two steps of
1-way communication: first s sends updates to d, next d sends updates to s, and then both nodes read the
same values for all objects. The full definition is a little more complicated because it explicitly states that
additional communication between s and d should not prevent convergence.

First, we define an intermediate state where d has converged on the appropriate state by receiving what-
ever it needs from s. The key property of this state is that now d can send to s and both nodes would
converge to the common state:

DEFINITION A.1. Semi-pairwise converged. We say that a run R of an implementation I has semi pairwise
converged for nodes s and d iff for all extensions R′ of run R such that R′/R contains no write-start

16



events and all send-msg and recv-msg events in R′/R occur at node s and d and recv-msg events
in R′/R correspond to some subset of send-msg events in R′/R, the following condition holds: there
exists an extension R′′ of run R′ that has pairwise converged for s and d such that R′′/R′ comprises of only
local-clock events at s and d, send-msg events at d, and recv-msg events at s that correspond to
a subset of send-msg events in R′′/R.

Now we can define one-way convergence by saying that an implementation provides this property if it
ensures that s and d can become semi pairwise converged through communication from s to d:

DEFINITION A.2. One way convergent. An implementation is said to be one way convergent iff for each
run R and for any nodes s and d, there exists an extension R′ of R such that R′/R comprises only of
local-clock and send-msg events at s, such that all extensions R′′ of R′ that satisfy the following
constraints, are semi pairwise converged: (1)R′′/R′ comprises only of local-clock events at d, and (2)
R′′/R′ contains a corresponding recv-msg event at d for every send-msg event to d at s in R′/R.

B Nothing stronger than RTC is enforceable
THEOREM B.1. No consistency semantics stronger than real time causal consistency can be implemented
using a one-way convergent and always available distributed storage implementation.

Proof. By way of contradiction, suppose there exists a stronger semantics SC, implemented by a one-way
convergent and always available distributed storage implementation, ISC , that doesn’t accept an execution
e that is accepted by RTC consistency. We will show that a run of ISC exists that produces the rejected
execution e. To do so, we will construct a run augmented with a few additional reads added to inspect the
state of the implementation. We will then argue that this execution e′ matches e in reads and writes that are
present in both the executions. Hence, if we were to remove the additional reads, the implementation must
produce the execution e as we have assumed that the state of the implementation doesn’t change on reads
(classical implementation assumption). We will construct a run of ISC that produces the rejected execution
e. The proof goes through the following stages.

Stage 1 We use the real time causal HB graph G for e to construct another graph H as follows. For every
read/write vertex v ∈ G and for each write w ≺G v such that w and v occur at different nodes, add a
directed edge from w to v inH . Now, remove all non-local edges fromH (edges that connect vertices
at different nodes) that were not added in Stage 1.

Stage 2 We then useH to construct an execution e′ by issuing operations at nodes in ISC and by controlling the
behavior of the network and local clocks at each node. When constructing e′, we issue a few additional
read operations e′ (beyond those present in H) to inspect the state of the implementation ISC during
the execution. We use the always availability property to ensure that all operations complete.

Stage 3 Because SC is stronger than RTC, any execution e′ of ISC must also be RTC consistent. Let G′ be
the RTC HB graph for execution e′.

Stage 4 Using G′, we show that reads in e and e′ return the same set of writes.

Stages 1 and 3 are straightforward. In the rest of the section, we describe Stages 2 and 4 in detail.

Stage 2 Use H to generate a series of reads/writes while controlling the network and local clocks such
that ISC produces an execution e′ that we later show must be similar to e.

Let v be an iterator over a topological sort T of H . For each vertex v at a node pv:

1. For each non-local incoming edge to v from a write w to object o, do the following: (a) deliver the
messages that were sent when the outgoing edges of vertex v′ were processed (see step 3 below), and
(b) add an additional read ro to object o at node pv and wait until this read finishes.

2. Perform v’s operation at node pv. Wait until the operation completes (Because ISC is always available,
the operation must eventually complete).

17



3. For each outgoing edge to vertex v′ at node pv′ , perform the following steps: wait until pv sends
the set of messages Mpv ,pv′ that are sufficient to bring d into a semi-pairwise converged state with
s. From the one-way convergence requirement, pv must eventually send such messages. Buffer these
messages for delivery in step (1) when the corresponding end point of this outgoing edge is processed.

Stage 4: Executions e and e′ match. In this stage of the proof we will argue that executions e and e′

match. We first show that it is possible to control the local clocks at each node such that the startT ime and
endT ime of read and write events in e and e′ can be made identical. Then we will show that reads that are
present e must return identical responses in both e and e′.

Feasible time assignment We next show that a feasible real time assignment (that matches the startT ime
and endT ime of operations in e) can be found because G satisfies the CC3 requirement of RTC.

Let ψ be the run corresponding to the above execution. Recall that ψ will contain read-start,
read-end, write-start, write-end, send-msg, recv-msg, and local-clock events.
Now, we will assign a real time to each of these events such that each read and write event starts and finishes
(storeStartT ime and storeEndT ime) at some time between the specified start and end time of read/write
operations in the execution e (i.e. startT ime and endT ime)

Recall that we assumed that the real time clock has infinite precision and therefore, there are infinitely
many timestamps between any two real timestamps. Consider a topological sort T of G such that when
multiple choices are possible, the vertex with smallest startT ime is chosen. This topological sort has no
inconsistent assignments becauseG doesn’t contain any inconsistent assignments. We now use the following
algorithm to assign the time stamps (s, e) to every event i:

1. set t = Min∀j((j.endT ime− j.startT ime)/3 ·N, ∀i:i≺Gj(j.endT ime− i.startT ime)/3 ·N where
N is the total number of vertices in G.

2. Let i be the reverse iterator on T

3. set i.e = Min(i.endT ime− t,∀j∈ci(j.e− 3 · t)).

4. set i.s = i.e− t.

5. if i.startT ime < i.s < i.e < i.endT ime continue else stop.

LEMMA B.2. The above algorithm produces a legal time stamp assignment (∀i, i.startT ime < i.s < i.e <
i.endT ime).

Proof. (Sketch) Suppose that no legal assignment exists and the check on step 5 fails at i = I . Now, from
step 3 and 4, ∀i∃j : i.s = j.endT ime− k · t where i ≺G j and k is a finite integer such that k < 3 ·N (this
can be shown by induction). However, this value of k combined with the value of t implies that the check at
step (5) can’t be violated.

We then assign the (s, e) values to the corresponding events in the run—the s value is assigned to the
corresponding start event (read-start/write-start) and e value is assigned to the corresponding
end event. The intermediate local-clock and send-msg and recv-msg events can then be assigned
suitable time stamp based on a topologic sort of the run graph ψ.

Reads return the same set of writes in e and e′ In this stage of the proof, we argue that writes that are
dependent in G must remain dependent in any observer graph G′ for execution e′ and similarly, due to the
real time constraint, concurrent writes returned on a read cannot be ordered in G′. Using these observations,
we can show that e must match e′.

LEMMA B.3. If a write w precedes an operation u in G then w precedes u in G′. (w ≺G u⇒ w ≺G′ u)

18



Proof. If w and u occur on the same node, then the claim follows from CC1. If not, let pw and pu denote
the distinct nodes where w and u respectively occurred, and let u′ denote the earliest operation on pu such
that w ≺G u′. By Stage 1, there exists an incoming edge from w to u′ in H . Processing that edge in Stage
2 involved performing one-way convergence from pw to pu and inserting before u′ artificial reads rf to the
object o at pu, where o is the object that w was writing. It is easy to prove (see below) that w ∈ rf .wl and
hence, by CC2, w ≺G′ rf . Now, since by CC1 rf ≺G′ u, it follows by transitivity that w ≺G′ u.

Next we show that w ∈ rf .wl. Suppose w 6∈ wlrf . Consider a different environment ψ′ that consists of
only events that have a path to the start of u in ψ. Now extend psi′ as follows: First, add local clock events
to ensure termination of u using the availability requirement on ISC . Second, add one way convergent
communication pattern from u’s machine to w’s machine. Third, add a read rf ′ at pw′ to the object o.
Finally, add local clock events to ensure termination of rf ′ . From the one-way convergence requirement
wlrf ′ = wlrf ′ . Furthermore, wlrf ′ must contain w as argued below:

1. Note that in any RTC HB graph J for ψ′, w ≺J rf ′ from the program order requirement.

2. So, w /∈ wlrf ′ ⇒ ∃w
′ : w ≺J w′ ∧ w′ ≺J rf ′ . However, from construction of psi′ there doesn’t

exists a w′ in ψ′ such that w ≺ψ′ w′. So w||ψ′w′. However, if w and w′ are concurrent in ψ′, we can
construct psi′′ in which w and w′ have time stamps such that w starts after w′ finishes. Because these
time stamps are not visible to the implementation, ISC should still produce the same response on rf ′
which is impossible without violating CC3 requirement of RTC consistency. Hence, by contradiction,
we must have w ∈ wlrf ′ .

LEMMA B.4. In forced execution e′, a write w appears in the writeList of a read r only if w precedes r in
G. (w ∈ r.wl′ ⇒ w ≺G r.)

Proof. (Sketch) Since an implementation can only read values produced by writes, there must exist a
communication path from pw after the issue of write w to pr prior to the issue of read r. By construction,
such a path can exist only if w ≺G r.

LEMMA B.5. For every read r ∈ e with writeList wl in e and wl′ in e′, wl = wl′

Proof. (Sketch) Consider the following two cases:
Case 1: w ∈ wl′ ∧ w 6∈ wl: From construction Stage 2, w ∈ wl′ ⇒ w ≺G r, so for r to not return w there
must exist a w′ such that w ≺G w′ ∧ w′ ≺G r but from Lemma B.3 , w ≺G w′ ∧ w′ ≺G r ⇒ w ≺G′
w′ ∧ w′ ≺G′ r so r.wl′ could not include w (from CC2). Contradiction.
Case 2: w ∈ wl ∧w 6∈ wl′: From CC2 w ≺G r, and from Lemma B.4 w ≺G′ r. So, from CC2, for r to not
return w in e′, there must exist w′ such that r returns w′ in G′ and w ≺G′ w′. From Case 1, we know that
w′ ∈ wl. Combining these two observations, it must be the case that w||Gw′ (w is concurrent to w′ in G)
whereas w ≺G′ w′.

Now, consider a different execution e′′ in which w starts after w′ finishes in real time (e′′ is possible
because w and w′ are concurrent in G and hence also concurrent in H). Because the implementation does
not have access to real time, it must produce identical responses in both e′ and e′′. In particular, the write
lists wl′ and wl′′ returned respectively by read r in e′ and e′′ must be identical. However this cannot be,
since by CC3 we can’t have w ≺G′′ w′ in any HB graph G′′ for e′′. Contradiction.

Lemma B.5 shows that e′ and e match for reads that are common to both executions. Because our
implementation is assumed to be classical and hence not influenced by reads, if we were to generate an
execution with no artificial reads, it should still produce the same answer for all the reads that are present in
e. Hence, repeating the construction in Stage (1) and (2) above but without adding the artificial reads must
produce the execution e. Therefore, Theorem B.1 holds.

19



C Fork-causal consistency
DEFINITION C.1. An execution e is said to be fork-causally consistent if there exists a directed acyclic graph
G, called a HB (happens before) graph, containing a read/write vertex corresponding to each read/write
operation in e, and edges connecting these vertices such that G satisfies the following consistency check.

FC1 Serial ordering at each correct node. The ordering of operations by any node is reflected in G.
Specifically, if p is a correct node and v and v′ are vertices corresponding to operations by p, then
v.startT ime < v′.startT ime⇔ v ≺G v′.

FC2 A read returns the latest preceding concurrent writes. For any vertex r corresponding to a read
operation of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that
have not been overwritten by another write of objId that both follows w and precedes r:

w ∈ r.wl⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId = r.objId))

FC3 Serial ordering for operations seen by correct node. For any operation o by a correct node and for all
operations u1 and u2 by a node p, u1 ≺G o ∧ u2 ≺G o⇒ u1 ≺G u2 ∨ u2 ≺G u1.

D Byzantine impossibility result
THEOREM D.1. Fork-causal and stronger consistency semantics are not achievable in an always available
and one way convergent distributed storage implementation.

Proof. Let S be a semantics at least as strong as fork-causal consistency that is implemented by an always
available and one way convergent implementation IS . Consider an execution of three nodes p1, p2, and f .
Nodes p1 and p2 are correct and node f is faulty. In particular, f simulates two instances of a node, f1 and
f2, that share the same initial state as f . Execute the following sequence of operations. Assume the network
drops any messages not described below.

1. Issue and complete write wa to object a at f1 and write wb to object b at f2.
2. Now, let f1 become semi-pairwise converged with p1 by waiting for f1 to send messages to p1 and

then delivering these messages at p1. Similarly, let f2 become semi-pairwise converged with p2 by
delivering messages from f2 to p2.

3. Issue ra,p1 followed by rb,p1 at p1 and rb,p2 followed by ra,p2 at p2. From the definition of one way
convergence and the requirements of fork-causal consistency, ra,p1 at p1 must return wa and rb,p1 at
p1 must return ⊥. Similarly, rb,p2 at p2 must return wb and ra,p2 must return ⊥.

We claim that this implementation now cannot enforce one way convergence between p1 and p2. This is
because p1 and p2 have observed inconsistent histories that cannot be reconciled without requiring correct
nodes p1 and p2 to observe the concurrent writes w1 and w2 issued by a single node: a violation of the serial
ordering for operations seen by correct node property enforced by fork-causal and stronger consistency
semantics.

More precisely, suppose the implementation IS can attain one way convergence. Let p1 send messages
necessary to p2 to ensure one-way convergence and vice-versa. Deliver these messages and issue reads r′a,p1
and r′a,p2 to object a at p1 and p2 respectively and let these reads finish. Now we consider the admissible
HB graphs for this execution. We first note that in any fork-causal HB graphs for this execution wa and wb
must be shown as concurrent. Graphs that order them as w1 ≺ w2 or w2 ≺ w1 won’t be admissible based
on the reads issued by correct nodes p1 and p2.
Now consider the response returned to reads r′a,p1 and r′a,p2 . From one way convergence requirement, both
these reads must return the same answer. Furthermore, because only one write wa has been issued to object
a, the reads can either return wa or ⊥.

20



If the reads returns⊥, we can show that no fork-causal HB graph can satisfy the reads return the most recent
concurrent write property at correct node p1 because the later read r′a,p1 by p1 is returning an answer than
is older than that returned by an earlier read ra,p1 by p1. Similarly, if the reads return wa, then we can show
that no fork-causal HB graph can satisfy the serial ordering for operations seen by correct node at correct
node p2 because p2 has observed concurrent operations wa and wb from faulty node f .

E BFJC is enforceable using a CAC implementation
Consider an execution of the pseudocode described in Table 1. We show that this implementation is CAC:
VFJC-consistent, available, and one-way convergent.

DEFINITION E.1. A write w (or a view v) is accepted by a correct node p if p has added the corresponding
update w (or v) to the log at its local state (Note that we make a distinction between when an update is
added to the copy of the log vs when the update is added to the actual log). A read operation r is accepted
by a correct node p if r is issued by p. The accept time for an operation v accepted by a correct node p is
denoted by tsp,v and defined as follows:

• For a read r issued by a correct node p, tsp,r indicates the real time when the monitor lock was
acquired in step 24 (get method call) at p.

• For a write w accepted by a correct node p, tsp,w indicates the real time when the monitor lock was
acquired in step 27 (put method call) at that correct node.

• For a view v accepted by a correct node p, tsp,v indicates the real time at which createView is invoked
at p.

• For all other operation node pairs, tsp,v is undefined.

DEFINITION E.2. For an update u, define history of u (denoted by Hu) as a set of updates such that ∀v ∈
Hu∃w1, w2, ..., wk : H(u) ∈ w1.prevUpdates,H(w1) ∈ w2.prevUpdates, ...,H(wk) ∈ v.prevUpdates.
H(u) denotes the cryptographic hash of update u.

DEFINITION E.3. The set PREDv for an operation v accepted by a correct node is defined as follows:

1. If v is a write/view operation accepted by some correct node then PREDv includes all u : H(u) ∈
v.prevUpdates.

2. If v is a write/view operation issued by a correct node p, then PREDv includes all reads r accepted
by p such that tsp,r < tsp,v.

3. If v is a read operation issued by a correct node p, then PREDv includes all operations u accepted
by p such that tsp,u < tsp,v.

4. if u is any other operation not covered by any of the earlier cases, then PREDu is the empty set.

We denote u ∈ PREDv as u ≺PRED v.

DEFINITION E.4. Define u ≺ v if

1. u ≺PRED v, or

2. u ≺PRED w and w ≺ v.

DEFINITION E.5. Vertices v1 and v2 in ≺ are said to be connected through an edge (denoted by v1 → v2)
iff v1 ≺ v2∧ 6 ∃u : v1 ≺ u ≺ v2.

21



Table 1: Listing for BFJC implementation.

1 Messages
2 Update := {NodeID nodeID , OID oid , Value value ,
3 S e t 〈Hash〉 prevUpdate}σnodeID

4 / / prevUpdate i s a s e t c o n t a i n i n g ha sh es
5 / / o f u p d a t e s t h a t were s u p e r s e d e d by u

7 S t a t e ( a t each node p )
8 S t a t e := {Set〈Hash〉lastWrites , Update lastLocalWrite ,
9 HashMap{oid, 〈Hash〉}store , Map{Hash, Update}log ,

10 NodeID myNodeID , S e t 〈NodeID〉 nodes , (Kp,Ku)}

12 / / lastWrites : S e t s t o r i n g t h e hash o f
13 / / l a s t u n s u p e r s e d e d non l o c a l u p d a t e s
14 / / lastLocalWrite : l a s t l o c a l u pda t e
15 / / store : Map s t o r i n g t h e s e t o f most
16 / / r e c e n t up da t e ha sh es f o r e v e r y o b j e c t o i d
17 / / log : map o f u p d a t e s r e c e i v e d i n d e x e d
18 / / by t h e i r ha sh es
19 / / (Kp,Ku) : RSA key p a i r f o r s i g n i n g

21 MyState := l o c a l s t a t e

23 Methods
24 synchronized f u n c t i o n get ( OID oid ) :
25 re turn MyState.store{oid}

27 synchronized f u n c t i o n put ( OID oid , Value value ) :
28 p u t I n t (MyState , oid , value )
29 c r e a t e V i e w (MyState )

31 f u n c t i o n putInt ( S t a t e s , OID oid , Value value ) :
32 c r e a t e a new s i g n e d u p d a t e u such t h a t
33 u.prevUpdates := s.LastWrites ∪ s.LastLocalWrite
34 u.oid := oid
35 u.value := value
36 u.nodeID := myNodeID
37 re turn i n t A p p l y (s , u )

39 f u n c t i o n send ( ) :
40 whi le ( t rue )
41 synchronized
42 Let T be a l i s t o f a l l u p d a t e s s o r t e d
43 i n an o r d e r i n which t h e y were added
44 to MyState.Log
45 foreach p ∈MyState.nodes send T to p
46 s l e e p 30

48 synchronized f u n c t i o n pktApply ( S e t 〈Update〉pkt ) :
49 i f (pkt c o n t a i n s on ly view u p d a t e s )
50 re turn f a l s e
51 S t a t e t e s t S t a t e = S t a t e . copy ( )
52 i f ( i n t P k t A p p l y ( testState, pkt )
53 i n t P k t A p p l y (MyState, pkt )
54 e l s e re turn f a l s e
55 re turn true

57 f u n c t i o n intPktApply ( S t a t e s , S e t 〈Update〉pkt ) :
58 s t a t u s = t rue
59 foreach w ∈ pkt
60 s t a t u s = s t a t u s ∧ i n t A p p l y (s, w )
61 s t a t u s = s t a t u s ∧ l a s t W r i t e V i e w s (s )
62 i f ( s t a t u s ∧ c r e a t e V i e w (s ) )
63 re turn true
64 e l s e re turn f a l s e

67 f u n c t i o n lastWritesViews ( S t a t e s )
68 / / r e t u r n t r u e i f a l l t h e u p d a t e s i n
69 / / s t a t e . l a s t W r i t e s are v iew u p d a t e s

71 f u n c t i o n intApply ( S t a t e s , Update u ) :
72 i f ( s . l o g . c o n t a i n s K e y ( Hash (u ) ) )
73 re turn true
74 e l s e i f ( v e r i f y (s, u ) )
75 / / up da t e s t a t e
76 foreach l ∈ s.lastWrites
77 i f ( p r e c (s, l, u ) )
78 s.lastWrites := s.lastWrites− {l}
79 i f (u.nodeID = s.myNodeID )
80 s.LastLocalWrite := u
81 e l s e
82 s.lastWrites := s.lastWrites ∪ {u}
83 s . l o g {Hash(w)} = u
84 foreach l ∈ s.Store[u.oid]
85 i f ( p r e c (s, l, u ) )
86 s.Store{u.oid} := s.Store{u.oid} − {l}
87 s.Store{u.oid} := s.Store{u.oid} ∪ {u}
88 e l s e
89 re turn true

91 f u n c t i o n verify ( S t a t e s , Update u ) :
92 re turn s i g n e d (u.nodeID, u ) ∧
93 h i s t o r y L o c a l (s, u ) ∧
94 n o F a u l t y C h i l d (s, u )

96 / / r e t u r n s i f t h e h i s t o r y o f u i s p r e s e n t
97 / / i n l o c a l h i s t o r y o f s t a t e s
98 f u n c t i o n historyLocal ( S t a t e s , Update u ) :
99 foreach v ∈ u.prevUpdates

100 i f (s.log.containsKey(Hash(v)) )
101 re turn f a l s e
102 re turn true

104 / / r e t u r n s i f any o f t h e immed ia t e c h i l d
105 / / o f w i s f a u l t y
106 f u n c t i o n noFaultyChild ( S t a t e s , Update u ) :
107 foreach c ∈ u.prevUpdates
108 i f (c ∈ getFaulty(s, u) )
109 re turn true
110 re turn f a l s e

112 f u n c t i o n getFaulty ( S t a t e s , Update u ) :
113 / / r e t u r n t h e s e t o f n o d e I d s t h a t have
114 / / c o n c u r r e n t u p d a t e s t h a t p r e c e d e u
115 / / i n S t a t e s

117 / / r e t u r n s t r u e i f u o c c u r s i n h i s t o r y o f v
118 f u n c t i o n prec ( S t a t e s , Update u , Update v ) :
119 i f (v = ⊥ ) re turn f a l s e
120 foreach Hw ∈ v.prevUpdates
121 w = s . l o g {Hw}
122 i f (u = w)
123 re turn true
124 e l s e i f ( p r e c (s, u, w) )
125 re turn true
126 re turn f a l s e

128 / / c r e a t e s a v iew
129 f u n c t i o n createView ( S t a t e s ) :
130 re turn p u t I n t (s , VIEW, VIEW)

22



DEFINITION E.6. An edge connecting vertices v1 and v2 in≺ is said to be non-local if v1 and v2 correspond
to operations occurring at different nodes.

LEMMA E.7. Consider a chain r ≺PRED u1 ≺PRED ... ≺PRED uk. pr 6= puk ⇒ ∃l : 1 ≤ l ≤ k ∧ pul =
pr ∧ ul is a write/view operation.

Proof. (Sketch) Let l be the largest value such that 1 ≤ l < k ∧ ∀n ≤ l, un.nodeID = r.nodeID. There
must exist one such l because from Definition E.3[2,3], reads only appear in PRED set of local operations.
By the same logic, we claim that ul must be a write/view operation.

LEMMA E.8. ≺ is acyclic.

Proof. (Sketch) Consider a cycle C : u1 ≺PRED u2 ≺PRED ... ≺PRED uk ≺PRED u1. Suppose C has
no reads. Without loss of generality, assume that u1 was accepted first by a correct node p. But for u1 to be
accepted by a correct node p, the historyLocal check should have passed that would have required p’s log to
contain uk contradicting the assumption that u1 was accepted first.

Now consider a cycle with at least one read ui. ui must be issued by a correct node since PRED for
reads by faulty nodes is set to empty. Furthermore, from definition of PRED for reads, node that issued ui
must have accepted ui−1. Break down this chain into maximum number of sub-chains C1, C2, ..., Cl such
that

1. Each sub-chain starts and ends at an operation that was issued by a correct node.

2. No operation by a correct node is present inside the chain (i.e. operations that are not end-points of a
chain must be issued by a faulty node).

3. Each chain ends at an operation at which the next chain begins.

Suppose that the above procedure produces l chains. Because the chain C contains a read, it must contain
at least two operations that are issued by a correct node (from Lemma E.7, a read must be followed by a write
by the same node) and hence the above breaking is possible and should produce at least two components
(l ≥ 2).

Now, from definition of PRED (Definition E.3[2][3]), each sub-chain of length greater than two must
contain only write/view operations at all positions except the last position. Let sk, ek denote the starting and
end vertices of a sub-chain Ck and pk denote the correct node at which ek was issued. Now, we make the
following two claims:

Claim 1 First, for each sub-chain Ck, we show that sk and ek are accepted by the node pk and tspk,sk <
tspk,ek .

The proof for this claim is as follows. There are four types of chains: r → r, r → w, w → r, and
w → w → ... → w (from the construction steps involved in breaking down a chain). In the first three
cases, the desired result follows from the definition of PRED and from the fact that PRED is only defined
to be non-empty for reads by correct node. So, we concentrate on the third case. Now, in a sub-chain
Ck consisting of writes w1 ≺PRED w2 ≺PRED ... ≺PRED wi, we have w1 ∈ w2.prevUpdates, w2 ∈
w3.prevUpdates, ..., wi−1 ∈ wi.prevUpdates and hence, w1 must have been accepted by pk prior to
accepting w2 for the localHistory check to pass and similarly w2 must have been accepted before w3 and so
on. Therefore, we must have tspk,w1 < tspk,w2 < ... < tspk,wi . Hence, we get our desired result. Note that
the w → w → ... → r chain with length ¿ 2 isn’t possible because then the penultimate w must have been
issued at a correct node violating the requirement (2) in the breaking down steps above.

23



Claim 2 Next, we note that for consecutive sub-chains, Ck, Ck+1, tspk,ek ≤ tspk+1,sk+1
.

This claim can be proved as follows. Recall that ek = sk+1—requirement 3 in the construction above).
If pk = pk+1 then the above claim follows trivially as tspk,ek = tspk+1,sk+1

. If pk 6= pk+1 then ek can’t be
a read operation from Lemma E.7. Otherwise, we must have tspk,ek < tspk+1,ek as it will take some finite
time for the write to propagate from the issuing node to the receiving node.

Combining claims (1) and (2), we get that tsp1,s1 < tsp1,e1 ≤ tsp2,s2 < tsp2,e2 ≤ ... ≤ tspl,sl < tspl,el ≤
tsp1,s1 . Since l ≥ 2, the above real time assignment is not feasible and hence, by contradiction, no cycles
with at least one read can exist.

LEMMA E.9. Let w1 be a write/view operation accepted by a correct node p, and w2 by a write/view
operation issued by p, then tsp,w1 < tsp,w2 ⇒ w1 ∈ Hw2 .

Proof. (Sketch) If w1 ∈ w2.prevUpdate, then the desired result follows.
Consider the case when w1 6∈ w2.prevUpdate. p had accepted w1 when it issued w2 and hence w1 must

have been added to the lastWrites. So, for v to be removed from lastWrites, p must have applied a series
of updates v1, v2, ..., vl such that w1 ∈ v1.prevUpdate, v1 ∈ v2.prevUpdate, ..., vl ∈ w2.prevUpdate.
Hence, w1 ∈ Hw2 .

LEMMA E.10. If v.nodeID = v′.nodeID and v.nodeID is correct, then v.startT ime < v′.startT ime⇔
v ≺ v′.

Proof. (Sketch) “if”. v.startT ime < v′.startT ime⇒ v ≺ v′. We assume that no outstanding operations
are issued at each node. If either v or v′ is a read, then the desired result follows from the Definition E.3
(clause 2 and 3). Otherwise if both v and v′ are non-reads then v.startT ime < v′.startT ime ⇒ v ∈
Hv′ ⇒ v ≺ v′ (using Lemma E.9 and Definition E.3[1]).
“only if”. v.startT ime < v′.startT ime ⇐ v ≺ v′. We know that v and v′ are performed by the same
correct node and we know that operations performed by a node have non-overlapping times. Therefore we
must have either v.startT ime < v′.startT ime or v′.startT ime < v.startT ime. If v.startT ime <
v′.startT ime then we have achieved the desired result. If not, then by the “if” part shown above, we must
have v′ ≺PRED v. Combining this with v ≺PRED v′, we get that the observer graph must have a cycle
which will violate Lemma E.8. Therefore, by contradiction, this scenario is not possible.

LEMMA E.11. If r and w denote reads and writes/views respectively then v ≺PRED r ≺ w ∧ pr = pw ⇒
v ≺PRED w ∨ ∃ writes/views w1, w2, ..., wl : v ≺PRED w1 ≺PRED ... ≺PRED wl ≺PRED w.

Proof. (Sketch) Let p = pr = pw. From Lemma E.10, we have tsp,r < tsp,w. If v is a read, then from
Definition E.3[2][3], we get v ≺PRED w and hence the desired result follows.

Suppose instead, that v is a write/view operation. In this case the desired result follows from Lemma E.9.

LEMMA E.12. Letw2 be a write/view operations accepted by a correct node p, thenw1 ≺ w2 ⇒ w1 ∈ Hw2 .

Proof. (Sketch) Consider the chain with fewest reads: w1 ≺PRED u1 ∧ u1 ≺PRED u2 ∧ ...uk ≺PRED w2.
If all the operations are writes then Lemma E.12 follows from the definition of history (Definition E.2) and
the definition of PRED for writes (DefinitionE.3[1]). Suppose that the chain has m reads. Let ul be one of
the reads. Using Lemma E.7, there must exist a later write uj such that puj = pul . Now using Lemma E.11
we can construct an alternative chain from w1 to uj that comprises solely of write/view operations and
doesn’t have the read ul. Repeating this process for all reads gives us a chain from w1 to w2 with no reads
and hence, the result follows from the argument given earlier for a write only chain.

LEMMA E.13. If w is a write/view and v is an operation accepted by a correct node p, then w ≺ v ⇒ w
accepted by the node p prior to v.

24



Proof. (Sketch) By induction on the number of reads in the chain with fewest reads: w ≺PRED u1 ∧
u1 ≺PRED u2 ∧ ...uk ≺PRED v. If all the operations are writes (base case) then Lemma E.13 is true
because of the localHistory check in verify function in the pseudocode: p will only accept v when it has
already accepted uk, and p will only accept uk when it has already accepted uk−1 and so on. Now consider
the case when the chain with fewest reads has m+ 1 reads. Consider two cases.

Case 1: v is a read. If the length of chain is 2, the result follows from the definition of PRED for reads.
If the length > 2, we have uk ∈ PREDv. Using the induction hypothesis, we have that w ≺ uk and hence
w must have been accepted by p before uk. But, from definition of PRED for reads, uk was received by p
before v. Combining these two, we get our desired result.

Case 2: v is not a read. Suppose that ul is the last read. If p = pul , then by Lemma E.10 we get that
ul must have been accepted before v and from induction hypothesis and case 1, we have u ≺ ul ⇒ u was
accepted before ul. Combining these two results, we get our desired result.

Now, consider the case when pul 6= p. Recall that a read r is only added to the PRED sets of local
operations issued after r based on the construction. Using Lemma E.7, there must exist a later write uj such
that puj = pul . Now using Lemma E.11 we can construct an alternative chain from w to uj that comprises
solely of write/view operations and doesn’t have the read ul. Hence, using the induction hypothesis, the
desired result must be true.

E.1 Bounding forks
DEFINITION E.14. An operation u is said to be observed by a correct node p in a view graph G iff there
exists an operation v issued by p such that u ≺G v.

DEFINITION E.15. A fork is said to be observed by a correct node p if its leaf vertex is observed by p.

DEFINITION E.16. Let MaxFork(n, k) denotes the maximum number of distinct forks (from any faulty
node) observed by correct nodes in a system with n correct nodes and k Byzantine nodes.

DEFINITION E.17. A directed acyclic graph G is called a view graph for an execution e if G contains a
read/write vertex for every operation of a correct node and G satisfies the following conditions:

VC1 Serial ordering. Views, writes, and reads of correct nodes are totally ordered in an order consistent
with the order in which reads and writes were issued in an execution. Specifically, if v and v′ are ver-
tices corresponding to operations by the same correct node, then v.startT ime < v′.startT ime ⇔
v ≺G v′.
Operations of a faulty node form a directed tree. If the tree has more than one leaf vertices (i.e. the
tree isn’t a total order), then we call each path from the root to the leaf in such a tree a fork. In other
words, if a faulty node behaves as a correct node and all its operations are totally ordered, then we
don’t consider its operations to be part of a fork.

VC2 A read return the latest preceding concurrent writes. For any vertex r corresponding to a read op-
eration of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that
have not been overwritten by another write of objId that both follows w and precedes r: w ∈ r.wl⇔
(w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId = r.objId))

VC3 Sharing with correct nodes. If there exists an edge from view v1 at p1 to view v2 at p2 then both p1

and p2 are correct in v2. A node p is correct in a view v if all the vertices v′ of p (reads/writes/views)
in v (i.e. all vertices v′ : v′ ≺G v) are totally ordered.

VC4 Time doesn’t travel backward. For any read/write operations u, v by correct nodes:

u.endT ime < v.startT ime⇒ v 6≺G u.

25



VC5 Operations of a faulty node are observed by some correct node. For any operation u by a faulty node
u ∈ G⇒ ∃v : u ≺G v ∧ pv is correct.

LEMMA E.18. MaxFork(n, k) ≤ n.MaxFork(1, k).

Proof. (Sketch) Consider a view graph that contains the maximum number of forks that are observed by
correct nodes. Now remove all edges that connect two vertices at correct nodes in this graph. It is easy to
see that this transformation doesn’t reduce the number of forks observed by correct nodes; the number of
forks is defined by the number of branches of faulty nodes. Note that while this transformation may affect
the number of forks observed by a particular correct node, it doesn’t affect the overall set of forks observed
by all correct nodes taken together; the path from the faulty node that created a fork to the first correct node
that observed that fork is still preserved. Next, we argue that in a view graph with maximum number of
forks, no two correct node should observe the same fork; exposing the same fork to multiple correct node
doesn’t add to the total number of forks. Instead, the total fork count can be increased by showing different
forks to different correct nodes.

Combining these observations, we make two claims. First, each correct node c will observe at most
MaxFork(1, k) forks with k faulty nodes. Second, because forks produced for different correct nodes
must be different in an optimal view graph, we can have a maximum of n ·MaxFork(1, k) forks in an
optimal view graph with n correct nodes and k Byzantine faulty nodes.

LEMMA E.19. MaxFork(1, k) ≤ 2.MaxFork(1, k − 1).

Proof. (Sketch) Let u be one of the last operation from a faulty node that was observed by the correct node
c (there could be multiple such operations that were observed simultaneously). Let v be the earliest vertex
at c such that u → v. Let G be the original optimal view graph and Gu denote the projection of the graph
G such that Gu contains all vertices w : w ≺G u and all edges connecting these vertices. Since c is the
only correct node in G, and u is the last operation accepted by c in G, we know that (1) pu must be correct
in v (Definition E.17[VC3]), (2) all operations by pu in G must be totally ordered and precede u. Now, Gu
is a view graph containing k − 1 nodes that are allowed to create forks (since pu must ensure that all its
operations are totally ordered and hence act as a correct node). Therefore, the number of forks that c can
observe through u must be MaxFork(1, k−1). Consider G′ obtained by removing Gu from G. G′ doesn’t
contain any operation from pu since u was the last operation observed by c in our view graphG. G′ contains
one correct node c and k−1 faulty nodes. Therefore, the maximum number of forks that c can observe inG′

are MaxFork(1, k − 1). Combining these two observations, the maximum number of forks that a correct
node can observe in presence of k Byzantine faulty nodes is 2.MaxFork(1, k − 1).

LEMMA E.20. In a view graph for k faulty nodes and n correct nodes, at most n · 2k−1 distinct forks can
be observed by correct nodes.

Proof. (Sketch) From Lemma E.19, we have MaxFork(1, k) = 2.MaxFork(1, k − 1). Solving this
recursive relation using the base case of MaxFork(2, 1) = 1, we get MaxFork(k + 1, k) ≤ 2k−1.
Combining this with the result of Lemma E.18, we get MaxFork(n, k) ≤ n. 2k−1.

E.2 Enforcing BFJC consistency
LEMMA E.21. Every execution of the pseudocode in Table 1 can be mapped to a view graph.

Proof. (Sketch) Consider the graph G such that G contains vertices for all operations by correct node and
writes/views by faulty nodes that have been accepted by some correct node. If u→ v then add an edge from
u to v. Now, we need to show that the resulting graph is acyclic and upholds the conditions of a view graph.

≺ graph is acyclic. Follows from Lemma E.8.

26



Serial ordering. If v.nodeID = v′.nodeID and nodeIDv is correct, then v.startT ime < v′.startT ime⇔
v ≺ v′. Follows from Lemma E.10.

Reads return the latest preceding concurrent writes. For any vertex r corresponding to a read operation
of object objId, r’s writeList wl contains all writes w of objId that precede r in G and that have not been
overwritten by another write of objId that both follows w and precedes r:
w ∈ r.wl⇔ (w ≺G r ∧ w.objId = r.objId) ∧ (6 ∃w′ : (w ≺G w′ ≺G r ∧ w′.objId = r.objId))

1. “if”. w ∈ r.wl⇒ (w ≺G r ∧w.objId = r.objId) ∧ (6 ∃w′ : w ≺G w′ ≺G r ∧w′.objId = r.objId.
A correct node p issues a read r that returns a set wl of writes. Reads to an object id oId, return the
value of the store map for key oId. Therefore, w ∈ r.wl implies that w must have been accepted
by p before it issued r because writes are first added to the log and then to the store (as described in
the applyInt function) and the monitor lock must be released before processing a subsequent read r.
Therefore, w ≺PRED r from Definition E.3[3]. Furthermore, if there exists w′ such that w ≺ w′ ≺ r,
then from Lemma E.13, w′ should have been accepted by p after it has accepted w but before issuing
r. Furthermore, w ≺ w′ ⇒ w ∈ Hw′ from Lemma E.12. Hence prec(w,w′) must have returned
true. Therefore, by pseudo-code line 86, p would have removed w from the store on accepting w′ and
therefore not returned w on read r. Hence, by contradiction, this case is true.

2. “only if”. w ∈ wl ⇐ w ≺G r∧ 6 ∃w′ : w ≺G w′ ≺G r. Let p be the correct node that issued
r. w ≺ r implies that from Lemma E.13, p received w before issuing read r and therefore, by the
pseudocode step 87,wmust have been added to the store. Suppose that a subsequent writew′ accepted
by p removes w at pseudocode line 86. For this removal, prec(w,w′) must have returned true to pass
line 85. Therefore, by PRED construction (Definition E.3[1]), w ≺ w′. Also, by construction
(Definition E.3[3]), w′ ≺ r, violating the second precondition. Therefore, by contradiction, no such
w′ can exist and hence this case is true.

Sharing with correct nodes. If there exist an edge from a vertex v1 at p1 to a vertex v2 at p2 then p1 is
correct in v2. A node p is correct in a vertex v if all the vertices v′ of p (reads/writes/views) in v (i.e. all
vertices v′ : v′ ≺G v) are totally ordered.

Suppose by contradiction that p1 is faulty in vertex v2. If p1 is a correct node then it must be correct
in all vertices from the V C1 requirement of VFJC consistency so p1 must be faulty for this assumption to
hold true. Recall that only writes and views from faulty nodes are used to construct the prec relation and
therefore, v1 must be a write or a view vertex. Now, consider the following two cases:

1. v2 is a view/write operation: We claim that we must have v1 ∈ v2.prevUpdate as otherwise there
exist some other write/view operation v such that v1 ≺ v ≺ v2 violating the assumption that v1 and
v2 are connected through an edge. Now, consider when a correct node p accepted v2. It must have
checked that v2.prevUpdates are correct in v2 from the check in noFaultyChild function. Therefore,
none of the updates in v2.prevUpdates can be from a node that is faulty in v2.

2. v2 is a read operation: p2 must be correct because we don’t consider read operations by faulty
nodes. Consider when v1 was accepted by p2. After processing the packet that contains v1, p2 must
have performed a view operation v (From step 62) and hence v1 ≺ v (from Lemma E.9. Only then
can a later read be serviced. Furthermore, we must have that v ≺ v2 (from definition of PRED for
reads). Combining these two, we get that v1 ≺ v ≺ v2 contradicting the assumption that v1 and v2
are connected through a non-local edge.

Time doesn’t travel backward. For any read/write operations u, v by correct nodes:

u.endT ime < v.startT ime⇒ v 6≺G u.

27



By way of contradiction, assume that u and v are operations by correct nodes and u.endtime < v.startT ime∧
v ≺G u. u must be accepted by some correct node p. Note that from Definition E.1, for an operation u by a
correct node, u.startT ime < tspu,u < u.endT ime. Now consider cases on u:

u is a write operation: From Lemma E.13, u must be accepted by pv prior to v but u was issued after v
completed. Contradiction and hence this case isn’t possible.

u is a read operation: If pu = pv, then the desired result follows from the serial ordering property. If
pu 6= pv, then there must be write w such that u ≺G w ≺G v and pw = pu (from Lemma E.7). We know
from the earlier case (when uwas a write) thenwmust have been issued before v and from the serial ordering
at node pu, u must have been issued before w, therefore, we can’t have u.startT ime > v.endT ime.

Operations of a faulty node are observed by some correct node Follows from the construction of graph
G.

THEOREM E.22. The pseudocode in Table 1 enforces BFJC consistency.

Proof. (Sketch) From Lemma E.21 there exists a view graph G for every execution e of listing in Table 1.
Construct graph G′ using G as follows. G′ contains all the read and write vertices of G but view vertices are
removed. Let prevu denote the non-view operation that immediately precedes an operation u at the node
pu. If no previous operation exists, the prevu is ⊥. Similarly, nextu denotes the earliest operation such that
u precedes nextu and nextu is ⊥ if no such operation exists. Now, iterate through all the view vertices v in
G and do the following:

1. For each incoming edge from a vertex u to a view vertex v, add an edge from u to nextv if nextv is
non−⊥. Otherwise, do nothing.

2. For each outgoing edge from the view vertex v to a vertex u, add an edge from prevv to u.

3. Remove v and all edges connecting v.

At the end of this construction, we will have graph G′ with only reads and writes and with the property
that u ≺G′ v ⇔ u ≺G v. Properties BFJC1, BFJC2, and BFJC3 follow directly from properties VC1, VC2,
and VC4 of the view graph G used to construct G′. Property BFJC4 follows from Lemma E.20.

E.3 Liveness
THEOREM E.23. The pseudocode listing 1 is available for reads and writes.

Proof. (Sketch) All reads created by a correct node are accepted. However, for writes we need to argue
that the update corresponding to a write and the view update following a write will be accepted. We first
claim that lastWrites at a correct node is always empty after the lock is released. The proof for this claim
is as follows: initially the lastWrites set must be empty. After a successful write, it will again be empty as
the new view operation will supersede all previous entries. Similarly, after a successful packet receipt, the
lastWrites will again be empty as the new view operation will supersede all previous entries. Based on this
argument, we can claim that new write update and the following view update will be successfully applied—
(1) historyLocal check will pass as the prevUpdate is assigned from lastWrites, a set containing updates that
have already been accepted, (2) noFaultyChild will pass because the only update in the prevUpdate is from
the correct node that is creating the update children, and (3) signed will pass because a correct node will
correctly sign the update. Hence, the update and the view update will both be accepted and applied to the
log ensuring that subsequent reads return the values written by these writes.

LEMMA E.24. Correct nodes p and q that have accepted identical updates will return identical responses
on reads to any object o.

28



Proof. (Sketch) Let U be the set of updates received by both these nodes. Let p and q issue reads rp
and rq respectively to object o. Consider the set of updates Up : u ≺ rp and Uq : u ≺ rq. We claim that
Up = Uq = U . If not, then by Lemma E.13, pmust have received all updates in Up and likewise q must have
received all updates in Uq. Also, from construction Definition E.3[3], ∀u ∈ U, u ≺ rp and ∀u ∈ U, u ≺ rq
and similarly for q. Hence, we must have Up = Uq = U . Given this claim, both the reads must return the
same answer from the reads must return the most recent concurrent writes requirement of VFJC consistency.

LEMMA E.25. A correct node q processes an update packet T from a correct node p that has accepted
updates Up. We claim Up ⊆ Uq after q processes the packet T (accepts or rejects).

Proof. (Sketch) Suppose that when the packet T was received, q has accepted U ′q updates. If Up ⊆ U ′q then
the desired result follows as updates are never removed from a node’s log. Consider the case when Up 6⊆ U ′q.

Let u be the first update (if any) that fails the verify check in the intApply function. The historyLocal will
be satisfied because all updates in the history are sent in T and u is the first rejected update. Similarly, the
signed check should be satisfied if u was accepted by a correct node p. Finally, u’s children (updates whose
hashes are included in u.prevUpdate) must be correct in u because u was accepted by a correct node p that
must have performed the same check. Hence, no such update u from p will be rejected.

There are two other ways in which a packet might be rejected:

1. The lastWriteViews check might fail at step 61. We next show that this isn’t possible.

We first note that at p there must exist a view update v such that ∀u ∈ Logp, prec(u, v) = true. If
the last operation was a write, then the result follows from pseudocode step 29 and the availability
requirement that the view operation won’t be rejected. If it was a successful packet apply then the
result follows from pseudocode step 60.

Now when q processes p’s packet, the lastUpdate will consist of a view update from the correct node
p and (optionally) a view update from q—Hence, the lastWriteView check must pass as the lastWrite
will contain at most two view updates from p and q.

2. Second, we need to show that the intApply at step 62 will succeed. The claim follows because, as
argued above, the lastWrite will contain at most two view updates from p and q, both of which are
correct and hence the noFaultyChild must pass. Similarly, the historyLocal check will pass because
all the updates in lastWrites have already been applied to log and signed will pass because the update
will be properly signed by the correct node q creating the view update.

THEOREM E.26. The pseudocode listing 1 is one-way convergent.

Proof. (Sketch) Follows from Lemma E.25 and Lemma E.24.

THEOREM E.27. Bounded fork join causal (BFJC) consistency can be enforced by an always available and
one-way convergent implementation.

Proof. (Sketch) Follows from Theorem E.26, Theorem E.23 and Theorem E.22.

F RTC is enforceable using a CAC implementation
THEOREM F.1. Real time causal consistency can be enforced by an always available and one-way conver-
gent implementation.

29



Proof. (Sketch) Follows from Theorem E.27 and from noting that in absence of Byzantine nodes, BFJC
consistency reduces to RTC.

30


