
The Paxos Register

Harry C. Li, Allen Clement, Amitanand S. Aiyer, and Lorenzo Alvisi
The University of Texas at Austin
Department of Computer Sciences

{harry, aclement, anand, lorenzo}@cs.utexas.edu

Abstract

We introduce the Paxos register to simplify and unify the
presentation of Paxos-style consensus protocols. We use our
register to show how Lamport’s Classic Paxos and Castro
and Liskov’s Byzantine Paxos are the same consensus proto-
col, but for different failure models. We also use our register
to compare and contrast Byzantine Paxos with Martin and
Alvisi’s Fast Byzantine Consensus. The Paxos register is a
write-once register that exposes two important abstractions
for reaching consensus: (i) read and write operations that
capture how processes in Paxos protocols propose and de-
cide values and (ii) tokens that capture how these protocols
guarantee agreement despite partial failures. We encapsu-
late the differences of several Paxos-style protocols in the
implementation details of these abstractions.

1 Introduction

We introduce the Paxos register to simplify and unify the
presentation of Paxos-style consensus protocols. We frame
Lamport’s Classic Paxos [14] and Castro and Liskov’s
Byzantine Paxos [5] as implementations of this register and
show that they are the same protocol, but for different fail-
ure models. We then use the Paxos register to highlight
the similarities and differences between Byzantine Paxos
and Martin and Alvisi’s Fast Byzantine (FaB) Paxos algo-
rithm [19]. Finally, we show how insights stemming from
the Paxos register have led to the first deterministic asyn-
chronous consensus algorithm that tolerates computation-
ally unbound Byzantine adversaries by using secrets instead
of digital signatures.

Since deterministically solving consensus in an asyn-
chronous system with failures is impossible [10], a com-
mon approach is to guarantee safety at all times and only
provide liveness during periods of synchrony [9]. Classic
Paxos provides these properties in the presence of crash fail-
ures. Byzantine Paxos and FaB Paxos do the same but for
Byzantine faults.

At a high-level, these consensus protocols are intuitively
similar. All three protocols use leaders to coordinate actions
among quorums [7, 18, 20] of processes, and guarantee
safety and liveness as explained above. And yet, while these
protocols share part of their names, the extent of the simi-
larities among Lamport’s protocol, Castro and Liskov’s, and
Martin and Alvisi’s is unclear.

It is difficult to characterize these similarities for three
main reasons. First, Paxos-style algorithms are non-trivial
protocols that use asynchronous and unreliable communica-
tion to obtain quorums. The subtleties of the corner cases in
such a setting can quickly become overwhelming1. Second,
Byzantine Paxos and FaB Paxos are more complex than
Classic Paxos because the former ones assume a weaker
failure model. This additional complexity obfuscates the
similarities among these three protocols.

The Paxos register helps overcome these difficulties in
two ways. The first way is that using a register hides the
details of asynchronous communication and quorum oper-
ations. The second is that the register introduces tokens to
guard writes and to define both what values are safe to write
and when.

Processes issue read and write operations to this shared
register. With a correct unique leader, it is easy to see how
to guarantee agreement; only the leader writes to the Paxos
register and the leader writes only one value to the register.
Non-leader processes wait until they read a non-⊥ value.
Guaranteeing agreement becomes harder if the leader fails.
Processes need to elect a new leader who should only write
values consistent with previous writes.

We define the Paxos register’s consistency semantics
such that for a new leader, reads only return values con-
sistent with the previous leader’s writes. A newly elected
leader therefore only needs to prove that it issued the ap-
propriate read before it writes a value.

A token is a proof that a leader issued a particular read.
To write a value, a newly elected leader must first present

1It is a testament to Classic Paxos’s steep learning curve that, to be
qualified for a research position, candidates may be required to have at
least once tried to understand it by reading the original paper [24].

an appropriate token to the register. By guarding each write
with a token, we obtain a write-once register. Describing
Paxos-style protocols as operations on a write-once register
appears to simplify the presentation of these protocols and
to make them more accessible.

Differences among Paxos-style protocols manifest them-
selves in the implementation of the Paxos register, not in the
specification. For example, a crash-tolerant Paxos register
uses plain tokens, whereas a Byzantine-tolerant Paxos reg-
ister uses secure tokens.

The Paxos register is the first register-based treatment of
both a crash-tolerant consensus protocol and a Byzantine-
tolerant consensus protocol. Although registers simplify the
exposition of deterministic asynchronous consensus proto-
cols [11], the only existing unified presentation of these pro-
tocols does not use a register [16]. Prior efforts that use a
register to explain consensus are limited to either benign or
Byzantine failures [4, 6, 8]. The Paxos register handles both
kinds of faults and provides semantics similar to regular se-
mantics [13].

We give an overview of our approach in Section 3. Sec-
tion 4 specifies the Paxos register and explains how guard-
ing each write with a token yields a write-once register. In
Sections 5 through 7, we show how Classic Paxos, Byzan-
tine Paxos, and FaB Paxos implement the Paxos register.
Finally, in Section 8, we demonstrate the Paxos register’s
power and flexibility by sketching IT ByzPaxos [2], a novel
variant of Byzantine Paxos that is information-theoretically
secure.

2 Related Work

De Prisco et al. introduce the Clock General Timed Au-
tomaton (Clock GTA) [22] and use it to model, verify, and
analyze Classic Paxos. Using the Clock GTA, they were the
first to study the performance of Classic Paxos both during
failure-free executions and with failures.

Lamport’s second take at Classic Paxos [15] directly and
concisely explains the protocol. Our goal is to maintain that
clarity and simplicity while also encompassing Castro and
Liskov’s Byzantine Paxos.

Lampson describes Abstract Paxos [16], a version of
Lamport’s original protocol, and derives Classic Paxos,
Byzantine Paxos, and Disk Paxos [11] from it. These
derivations focus on how a process chooses an appropriate
value before trying to get enough processes to accept that
value, which Lampson identifies as the key problem in im-
plementing Paxos-like protocols. We leverage the existing
body of work on quorum systems to capture the complexity
of this choice in a register’s read operation.

Boichat et al. separate Paxos’s safety and liveness re-
quirements into the eventual register and leader election
modules [4]. Guerraoui and Raynal later refined this safety-

liveness separation into the Alpha and Omega abstractions,
respectively [12]. Both works use this separation to gain
insight into the common internal structure of several crash-
tolerant Paxos protocols. Our paper is complementary to
these efforts: the Paxos register abstraction tries to eluci-
date one of the subtlest aspects of Paxos-style protocols—
how to provide agreement when the leader fails—which the
eventual register and Alpha operations abstract away into a
single propose or Alpha step, respectively. We believe that
exposing the complexity of how to guarantee agreement is
crucial towards understanding Paxos variants.

Dutta et al. focus on establishing complexity bounds
for asynchronous Byzantine consensus [8]. Their treatment
contains a construct, the WriteProof, that is akin to our to-
ken. The Paxos register differentiates our work from theirs
because our specification enables us to unify the presenta-
tion of Classic Paxos and Byzantine Paxos.

Chockler and Malkhi’s ranked register [6] drew inspira-
tion from Boichat et al.’s earlier work [3]. Our Paxos regis-
ter is similar to their ranked register but differs in two im-
portant ways. First, the Paxos register handles crash and
Byzantine failures, while the ranked register handles only
crash ones. Second, the Paxos register specification is sim-
ilar to regular semantics, whereas the ranked register’s re-
sembles neither safe, regular, nor atomic.

Shao et al. [23] also explore multi-writer regular consis-
tency semantics. Our semantics are closest to their weakest
specification, MWR1, but qualitatively differs because we
base our consistency semantics on a different partial-order
than what real-time defines.

3 Overview

We now describe a high-level protocol to reach con-
sensus. Our description uses a shared register abstraction.
Processes play any of three roles: proposer, acceptor, or
learner [15]. Proposers propose values by writing to the
shared register. Acceptors are responsible for implement-
ing the register abstraction, and learners decide values that
they observe have been written. We specify the consensus
problem as four properties:

Validity: If a correct learner decides value v, then some proposer
wrote v.

Integrity: A correct learner decides at most one value.

Agreement: No two correct learners decide different values.

Termination: All correct learners eventually decide.

If all proposers are correct, solving consensus is easy:
proposers write only one value to the register, and learners
decide any value that they have seen a proposer write.

Designing consensus protocols (and understanding
them) is difficult because proposers can fail, possibly lead-
ing to situations in which two correct learners decide dif-
ferent values. Paxos protocols avoid these situations in a
common way: by implementing a Paxos register. A Paxos
register guards each write with a token to provide the ab-
straction of a write-once register [21].

Tokens are proofs of which values are safe to write. A
token for value v proves that it is safe for a proposer to write
v. Proposers acquire these tokens by reading from the reg-
ister, meaning that proposers propose values by reading and
then writing.

If a proposer reads a value v 6= ⊥, then that proposer
may only write v. Otherwise, that proposer may write any
value. With this restriction, the Paxos register guarantees
that if a learner can decide a value v written by some pro-
poser then subsequent proposers read v from the register,
leading those proposers to again write v.

If proposers can fail in Byzantine ways, then faulty pro-
posers could forge tokens, permitting such proposers to
write values different from the ones they read. With Byzan-
tine failures, tokens need to be secure.

For liveness, we assume a protocol exists that eventually
selects a single correct proposer long enough for that pro-
poser to write a value. For crash failures, we can implement
a simple leader election protocol. For Byzantine failures,
we can allot exponentially increasing windows of time to
each proposer in a round-robin fashion [5]. Both of these
approaches require timing assumptions.

4 Paxos Register

4.1 Paxos Register Semantics

A Paxos register stores value and timestamp pairs. For
convenience, we use the syntactic convention that v is a
value and ts is a timestamp. The register provides read and
write operations to access the value and timestamp. The
register is initialized to ⊥, a value that cannot be written.
Furthermore, each read or write has begin and end times
measured by a world clock. We point out that timestamps
are usually monotonically increasing values that have little
relation to the world clock.

Register Operations
The Paxos register’s read operation takes no parameters

and returns either an error or a token. Each token encapsu-
lates a value and timestamp pair and serves as proof that a
read returned that particular pair. The write operation takes
two parameters—a value and a token—and returns immedi-
ately whether the value actually gets written or not. Paxos
registers further depart from traditional registers [13, 18] in
the following ways.

total write wr1 with timestamp 1

world time

partial wr4 with timestamp 4

total write wr'2 with timestamp 2

total wr5 with timestamp 5

total write wr2 with timestamp 2

Figure 1. A sequence of disallowed Paxos register operations
for two reasons—independent of the values they read or write. Ac-
cording to O8, wr1 should end when wr′

2 ends and according to
O7, wr2 and wr′

2 cannot both be total.

O1 If a read returns a token, the read’s timestamp is the returned
token’s timestamp. If a read returns with an error, the read’s
timestamp is undefined.

O2 A write’s timestamp is the timestamp of the write’s token.
O3 A write is legal if the token’s value is ⊥ or v, where v is the

value trying to be written.
O4 A write is visible if it is legal and can be read.
O5 The Paxos register supports a third operation, acknowledged,

that tracks the progress of write operations. The acknowl-
edged operation takes no parameters and returns a set of
value-timestamp pairs, each pair corresponding to a visible
write.

O6 A write is total if the write’s value-timestamp pair is in the
returned set of any acknowledged operation. Otherwise, the
write is partial.

O7 If a write is total, no other write for the same timestamp can
be visible.

O8 Every write begins as partial and ends either when it becomes
total or when an overlapping write with higher timestamp
ends, whichever occurs first. An overlapping operation with
a higher timestamp may prevent a write from becoming total.

Different protocols implement the above conditions in
different ways. Figure 1 shows a sequence of operations
that are disallowed by our specification.

Consistency Semantics
The semantics of a Paxos register are similar to regular

consistency semantics [13]. In a register with regular se-
mantics, a read that is not concurrent with a write returns
the last written value. A read that is concurrent with a write
can return the last written value or any value that is concur-
rently being written.

We alter this traditional definition in two ways. First, the
read is only allowed to return the value of visible writes.
Second, we redefine the notion of concurrency with respect
to register operations.

Traditionally, two operations are concurrent if they over-
lap in real time. The register defines a different partial order
using timestamps and the distinction between partial and to-
tal writes:

partial wr0 writes v = a, tok = (⊥,0)

world time

total wr1 writes v = a, tok = (a, 1)

rd0 reads tok = (⊥,0)

rd1 reads tok = (a,1)

total wr2 writes v = a, tok = (a, 2)rd2 reads tok = (a,2)

partial wr0 writes v = a, tok = (⊥,0)

world time

total wr1 writes v = b, tok = (⊥, 1)

rd0 reads tok = (⊥,0)

rd1 reads tok = (⊥,1)

total wr2 writes v = b, tok = (b, 2)rd2 reads tok = (b,2)

Figure 2. Two illustrations of the Paxos register’s consistency semantics. Note that rd1 is concurrent with wr0, allowing rd1 to read value ‘a’
or⊥ in the left and right pictures, respectively. However, rd2 is after wr1 in both examples because of C2. In both the left and right diagrams, wr2

writes the already totally written value of wr1.

C1 Writes are ordered by increasing timestamp.
C2 A total write precedes a read if the read returns a higher times-

tamp.
C3 A read precedes a write (whether partial or total) if the read’s

timestamp is lower than the write’s.

Henceforth, we use ‘overlapping’ with respect to the
real-time partial order and ‘concurrent, previous, most re-
cent, etc.’ with respect to the above partial order definition.
Figure 2 gives an example of how our partial order affects
reads under regular semantics.

4.2 Write-Once Register

By using the tokens to restrict what values can be writ-
ten, a Paxos register implements a write-once register. A
write-once register stores a value, initially ⊥, that changes
at most once. We define the value stored by a Paxos register
as the last totally written value. Note that reads issued be-
fore the first total write ends may return values that, strictly
speaking, are never actually written. These values come
from concurrent partial writes.

We prove that all total writes to a Paxos register write the
same value by proving the following stronger property in a
technical report [17].

Theorem 1. If write(v, tok) is the first write that is total,
then all writes with timestamp ts′ > ts also write v, where
ts is tok’s timestamp.

Proposers and learners use the Paxos register to solve
consensus by executing the protocol in Figure 3. Remem-
ber that acceptors implement the actual register and that
leader eventually selects a single correct proposer long
enough for that proposer to write a value.

4.3 Discussion

The Paxos register hides the details of asynchrony and
quorum operations. In the next sections, we give imple-
mentations of the Paxos register over a set of processes
where register operations translate to messages sent over
asynchronous links to quorums of acceptors.

Proposer i ’ s protocol:
let inp be the input value
repeat when i == l e a d e r ()

token := r e a d ()
if read did not return an error

if token.value == ⊥
w r i t e (inp, token)

else w r i t e (token.value, token)

Learner i’s protocol:
when acknowledged () 6= ∅

d e c i d e v f o r any (v, ts) ∈ acknowledged ()

Figure 3. High-level protocol for proposers and learners.

Separating the read and write operations, instead of com-
bining them as in Boichat et al.’s single propose opera-
tion [4], exposes an important component of Paxos-like
protocols—the tokens. Tokens serve as guards to writes.
Tokens require that for a value v and timestamp ts to be
written, either v and ts first have to be read or ⊥ and ts
have to be read. Because of the Paxos register’s consistency
semantics, such a read guarantees that the write can proceed
without violating agreement.

The tokens encapsulate the most difficult part in under-
standing the differences between Classic Paxos and Byzan-
tine Paxos—how to guarantee agreement when proposers
fail. We use plain tokens in a crash failure model because
we assume proposers do not forge tokens. However, if pro-
posers can be Byzantine, we use secure tokens. Secure to-
kens prevent players from invoking writes that violate The-
orem 1 and consequently agreement.

By extracting tokens out from reads and writes, it is natu-
ral to explore different ways of implementing secure tokens.
In the next sections, we show how Classic Paxos, Byzantine
Paxos, and FaB Paxos have very different token implemen-
tations. Then in Section 8, we show a novel way to im-
plement tokens using secrets instead of using cryptographic
primitives.

5 Crash Paxos Register

We show how to implement the Paxos register over a set
of acceptors that can fail by crashing. Proposers issue read
and write operations by sending requests over asynchronous
links to the acceptors. Upon receiving a request, an accep-
tor may send an acknowledgment. Acceptors send read ac-

Proposer p’s implementation of read and write:
localT S := 0

procedure read()
currT S := (localT S, p)
localT S := localT S + 1
send 〈READ, currT S〉 to acceptors
wait until received 〈READ-ACK, currT S, lastV isible〉 from a majority of acceptors

let v be the value among the lastV isibles with highest timestamp
return (v, currT S)

on timeout return e r r o r

procedure write(v,token)
let ts be the token’s timestamp
send 〈WRITE, v, ts〉 to acceptors

Acceptor a’s protocol:
highestT S := (-1, NULL)
lastV isible := (⊥,−1)

on receive 〈READ, ts〉 from proposer p
if (ts > highestT S)

highestT S := ts
send 〈READ-ACK, ts, lastV isible〉 to p

endif

on receive 〈WRITE, v, ts〉
if (ts ≥ highestT S)

highestT S := ts
lastV isible := (v, ts)
send 〈WRITE-ACK, v, ts〉 to learners

endif

Learner l’s implementation of acknowledged:
procedure acknowledged():

return the set of value-timestamp pairs (v, ts)
such that l received 〈WRITE-ACK, v, ts〉 from a majority of acceptors

Figure 4. Crash Paxos register.

knowledgments to proposers and send write acknowledg-
ments to learners. Learners decide a value when they re-
ceive enough write acknowledgments for that value. Later
in this section, we draw the parallels between our protocol
and the Classic Paxos algorithm.

5.1 Assumptions

Our implementation assumes an asynchronous system in
which at least one proposer and over half the acceptors are
correct. Processes communicate by passing messages over
unreliable links and fail by crashing2.

5.2 Implementation

Proposers and learners reach consensus, as shown in Fig-
ure 3, by invoking read, write and acknowledged operations
on a Paxos register. Figure 4 shows those operations when
acceptors collectively implement a Paxos register.

A proposer p reads from the register by first con-
structing a unique timestamp, currTS, and send-
ing 〈READ, currTS〉 to all acceptors. An acceptor
a responds to such a request if currTS is higher
than any timestamp a has seen. If so, a sends
〈READ-ACK, currTS, lastV isible〉 back to p, where
lastV isible identifies the visible write with highest times-
tamp that a has seen so far. This acknowledgment is also
a promise that any future request whose timestamp is lower
than currTS is ignored by a.

2We can handle processes that crash and recover by having each process
write global variables to stable storage before sending any message.

Classic Paxos Msg Crash Paxos Register Msg
prepare request read

prepare response read acknowledgment
accept request write

accept response write acknowledgment

Table 1. How messages in Classic Paxos map to messages in a
crash-tolerant Paxos register.

If p obtains read acknowledgments from a majority of
acceptors, p can finish reading from the register by con-
structing a token with timestamp equal to currTS and value
equal to the value of the highest timestamped visible write
among the received read acknowledgments.

Proposer p writes to the register by sending
〈WRITE, v, ts〉 to the acceptors, where ts is the timestamp
of the passed in token. An acceptor a responds if ts is
at least as large as the highest timestamp a has seen.
If so, a considers the write for v, ts visible and sends
〈WRITE-ACK, v, ts〉 to the learners.

A learner tracks a write’s progress using the acknowl-
edged operation, which returns value-timestamp pairs of
writes that a majority of acceptors consider visible.

5.3 Classic Paxos

Our protocol to implement a crash-tolerant Paxos regis-
ter is nearly identical to the Classic Paxos algorithm for a
single instance of consensus. We now give a brief overview
of the Classic Paxos algorithm and show how it relates to
the Crash Paxos register. The reader can find the full Clas-
sic Paxos protocol in [14].

Proposers, acceptors, and learners in Classic Paxos play
the same roles as they did in the Crash Paxos register. Pro-
posers propose values to acceptors, and learners decide a
proposal’s value once they have learned that enough accep-
tors have responded to that proposal.

In Classic Paxos, proposers issue proposals in two
phases. In the first phase, a proposer p sends a prepare re-
quest containing a unique proposal number x to all the ac-
ceptors. An acceptor responds only if x is higher than any
proposal number the acceptor has seen. A prepare response
contains i) the highest numbered proposal the acceptor has
accepted and ii) a promise to only accept proposals whose
proposal numbers are greater than x.

If p receives responses to its prepare request from a ma-
jority of acceptors, then p enters the second phase. In the
second phase, a proposer selects the value of the highest
numbered proposal among the received prepare responses.
If there is no such value, then p selects an arbitrary value. p
then sends an accept request containing x and the selected
value to all acceptors.

An acceptor a responds to an accept request if the con-
tained proposal number is at least as high as any other pro-
posal number the acceptor has seen. If a accepts an accept
request, a sends an accept response to the learners, echo-
ing the proposal’s value and number. A learner can decide
a proposal’s value once it has received accept responses for
that proposal from a majority of acceptors.

Table 1 relates Crash Paxos register messages to Classic
Paxos messages and shows that a proposer’s first and second
phases correspond to a read and write, respectively. Also,
proposal numbers correspond to the Paxos register’s times-
tamps and a proposal that can be decided corresponds to a
total write.

6 Byzantine Paxos Register

In this section, we show how to implement a Byzantine
fault-tolerant Paxos register. Similar to the crash-tolerant
version, register operations send requests to acceptors and
acceptors respond with acknowledgements.

6.1 Assumptions

We assume an asynchronous system in which processes
can fail by arbitrarily deviating from the protocol. There are
np proposers, at least one of which is correct, and na > 3fa

acceptors, fa of which may fail. Failed processes cannot
subvert digital signatures.

Processes digitally sign messages to prevent message
forgery. We use the notation 〈M〉i to indicate a message M
signed by process i. Processes discard improperly signed
messages.

6.2 Implementation

There are three key differences between a Byzantine
Paxos register and a Crash Paxos register. First, an accep-
tor implementing the Byzantine Paxos register maintains its
own timestamp and only acknowledges reads and writes for
the current timestamp, discarding all other messages. Fur-
thermore, for each timestamp ts, proposer p is the leader
for ts if p ≡ ts mod np. Second, each write involves a pre-
write step to guarantee that only one write per timestamp
is visible. Third, na − fa acceptors constitute a quorum as
compared to a simple majority in the Crash Paxos register.
Figure 5 defines the protocols that proposers, acceptors, and
learners follow.

A proposer p reads from the register by sending
〈READ, estTS〉p to all acceptors, where estTS is p’s es-
timate of the timestamp for a quorum of acceptors. An
acceptor a responds if estTS matches a’s current times-
tamp and p is the leader for estTS. If so, then a
responds with 〈READ-ACK, estTS, lastV isible〉a, where

Proposer p’s implementation of read and write:
estT S := p

procedure read()
send 〈READ, estT S〉p to acceptors
wait until received 〈READ-ACK, estT S, lastV isible〉 from a quorum of acceptors

let v be the value among lastV isibles with highest timestamp
return (v, estT S, quorum of READ-ACKs)
on timeout return e r r o r

when receive 〈TIMESTAMP-CHANGE, ts〉 from quorum of acceptors
if ts > estT S AND p ≡ ts mod np

estT S := ts
endif

procedure write(v,token)
let ts be the token’s timestamp
send 〈PRE-WRITE, v, ts, token〉p to acceptors

Learner l’s implementation of acknowledged:
procedure acknowledged()

return the set of value-timestamp pairs (v, ts)
such that l received 〈WRITE-ACK, v, ts〉 from a quorum of processes

Acceptor a’s protocol:
currT S := 0
lastV isible := (⊥ , −1, NULL)

on receive 〈READ, ts〉p
if (ts = currT S AND p is the leader for ts)

send 〈READ-ACK, currT S, lastV isible〉a to p
endif

on receive 〈PRE-WRITE, v, ts, token〉p
if ((p = ts mod np) AND (ts ≥ currT S) AND

(have not sent WRITE for ts) AND (token shows this write is legal))
if ts > currT S

reset timeout
currT S := ts

endif
send 〈WRITE, v, ts〉a to acceptors

endif

when receive 〈WRITE, v, ts〉 from quorum of acceptors
if (ts ≥ currT S)

if ts > currT S
reset timeout
currT S := ts

endif
lastV isible := (v, ts, quorum of WRITEs)
send 〈WRITE-ACK, v, ts〉a to learners

endif

at time timeoutV al
currT S := currT S + 1
timeoutV al := 2 × timeoutV al
p := currT S mod np
send 〈TIMESTAMP-CHANGE, currT S〉a to proposer p

Figure 5. Byzantine Paxos register.

lastV isible contains the value and timestamp of the last
visible write that a has seen. lastV isible also contains a
set of signed messages from a quorum of acceptors proving
that such a write actually was visible and not just something
that a concocted.

If p obtains and verifies read acknowledgments from a
quorum of acceptors, then p can finish reading by construct-
ing a token with timestamp estTS and value equal to the
value of the highest timestamped visible write among the
lastV isibles. p also appends the quorum of read acknowl-
edgments to the token as proof that p did not fabricate the
result of the read.

Proposer p writes to the register by sending
〈PRE-WRITE, v, ts, token〉p, where ts is the token’s
timestamp and v is a value that can be legally written
using token. An acceptor a accepts the pre-write if i) p
is the leader for ts, ii) ts is at least as high as a’s current
timestamp, iii) a has not accepted another pre-write for ts,
and iv) token shows that this write is legal. If a accepts

a pre-write, then a sends 〈WRITE, v, ts〉a to all acceptors
and changes its current timestamp to ts if ts is higher.

A write is visible once a quorum of acceptors send write
messages in response to it, meaning that two writes will
never both be visible if they are for the same timestamp but
different values. An acceptor a sends 〈WRITE-ACK, v, ts〉a
to the learners if a observes that a write for v and ts is visi-
ble, where ts is greater than a’s current timestamp.

As in the Crash Paxos register, each learner tracks the
progress of writes using acknowledged(). The acknowl-
edged operation returns the value-timestamp pairs of writes
that a quorum of acceptors consider visible.

In case a proposer has failed, acceptors periodically in-
crement their timestamps to give another proposer an op-
portunity to write a value. When an acceptor a changes its
timestamp to ts, a sends 〈TIMESTAMP-CHANGE, ts〉a to
the proposer p that leads ts. p updates its estimate of the
current timestamp when it receives a quorum of such times-
tamp change messages.

For clarity, we presented an unoptimized Byzantine
Paxos register. We now describe two simple optimizations
that reduce the number of messages that need to be sent in
some situations. First, the write for timestamp 0 does not
require a token, meaning that a decision can be reached in
three message delays when there are no failures and all mes-
sages are delivered on time, a situation that we expect to be
the norm. Second, we can eliminate the read message by
combining read acknowledgments with timestamp change
messages. When an acceptor a increments its timestamp to
ts, a can send 〈TIMESTAMP-CHANGE, ts, lastV isible〉a
to the proposer p who leads ts. Therefore when p reads,
p can immediately construct a token using the timestamp
change messages instead of sending a read message and
waiting for acknowledgments.

6.3 Byzantine Paxos

Castro and Liskov presented Byzantine Paxos as part of
the larger Practical Byzantine Fault-Tolerance (PBFT) pro-
tocol [5]. PBFT is a Byzantine tolerant state-machine repli-
cation algorithm. It is hard to see the connection between
PBFT and Byzantine Paxos because PBFT handles aspects
of state-machine replication (like checkpoints and garbage
collection) that quickly increases the protocol’s complexity.
We strip PBFT down to the elements necessary to achieve
consensus and present this as Byzantine Paxos.

Processes in Byzantine Paxos have unique ids from the
set {0, . . . , n − 1}, where n is the number of processes.
Each process maintains its view, which is a monotonically
increasing natural number initialized to 0. The primary for
view v is the process with id v mod n. A quorum in Byzan-
tine Paxos consists of n − f processes, where f ≤ bn−1

3 c
is the maximum number of processes that can fail.

Byz. Paxos Msg Byz Paxos Register Msg
pre-prepare pre-write (without token)

prepare write
commit write ack

view change timestamp change + read ack
new view pre-write (with token)

(optimized out) read

Table 2. How messages in Byzantine Paxos map to messages in
an optimized Byzantine Paxos register.

Using the Paxos register terminology, views correspond
to timestamps, primaries correspond to leaders, and each
process is a proposer, acceptor, and learner.

In normal-case operation (without primary failures),
Byzantine Paxos consists of three phases—pre-prepare,
prepare, and commit—each of which contacts a quorum.

In the pre-prepare phase, the primary p issues
〈PRE-PREPARE, val, vue〉p, where vue is the current view
and val is the value that p proposes. A process accepts a
pre-prepare message provided the sender is the primary of
vue, the process’s current view is vue, and the process has
not already accepted a pre-prepare message for vue. When
a process i accepts 〈PRE-PREPARE, val, vue〉p, it broad-
casts a 〈PREPARE, val, vue〉i and enters the prepare phase.

In the prepare phase, a process waits and collects a quo-
rum of prepare messages that have matching values and
views. Once a process i has such a quorum of messages
that match its current view, i considers that value to have
prepared in view vue, broadcasts 〈COMMIT, val, vue〉i and
enters the commit phase.

In the commit phase, a process waits for a quorum of
commit messages that have matching values and views.
Once a process i has such a quorum, i considers that value
and view to have been committed and decides that value.

A value val that has prepared in view vue is analogous to
a visible write for value val and timestamp vue. A similar
analogy exists between a value and view that has committed
and a write becoming total. Table 2 gives the mapping from
messages in Byzantine Paxos to messages in the optimized
Byzantine Paxos register.

If the primary is suspected to have failed, pro-
cesses elect a new primary by incrementing their
views. When a process increments its view to vue,
it sends 〈VIEW-CHANGE, vue,P〉i to the new primary,
where P is the quorum of prepare messages vouch-
ing for the most recent value and view to have pre-
pared at i. When the primary p for view vue re-
ceives a quorum of valid view-change messages, p broad-
casts 〈NEW-VIEW, vue,V, 〈PRE-PREPARE, vue, val〉p〉p,
where V is the quorum of valid view-change messages and
val is the value among the prepare messages of V with high-

est view number. If all the P in the view-change messages
are empty, then val can be any value.

When a process receives a new-view message, it verifies
the contents including the V field and the appropriate selec-
tion of the value in the contained pre-prepare message. If
the process can verify the contents, then it acts as if it re-
ceived the pre-prepare message and continues executing the
protocol, as before, but in the new view.

The P field of a view-change message corresponds to
the last visible write that an acceptor in a Byzantine Paxos
register has seen. Similarly, the V field of a new-view mes-
sage is conceptually a token proving that the pre-prepare
message in the new-view message is legal.

7 Fast Byzantine Paxos Register

We now describe a faster version of the Byzantine Paxos
Register that in the failure-free synchronous case allows
learners to decide after two message delays instead of three.
This added speed comes at the cost of additional acceptors
to guarantee safety.

7.1 Assumptions

The FaB Paxos register uses the same system assump-
tions as the Byzantine Paxos register (Section 6.1), except
that the former requires np > 3fp proposers and na > 5fa

acceptors, at most fp proposers and fa acceptors may fail.
Also, the FaB Paxos register only uses digital signatures in
reads, relying on authenticated channels for writes.

7.2 Implementation

There are four important differences between the FaB
Paxos register and the Byzantine Paxos register. First, there
is no pre-write step. Second, the FaB register’s read opera-
tion differs significantly in that it does not select the value
of the highest timestamped visible write. Third, each ac-
ceptor tracks the value for the last legal write that it has
accepted, instead of tracking visible writes that it has seen.
Fourth, proposers elect one another to move the timestamp
past faulty proposers. A newly elected proposer is responsi-
ble for advancing the timestamps maintained by acceptors.
Figure 6 gives the protocol that proposers, acceptors, and
learners follow.

A proposer p reads from the register by sending
〈READ, estTS, tsProof〉 to all acceptors, where estTS is
p’s estimate of the current timestamp, and tsProof is a set
of messages proving that enough proposers have advanced
their timestamps to estTS.

An acceptor a responds if estTS is higher than any
timestamp a has seen, p is the leader for estTS, and
tsProof shows that enough proposers have advanced their

Proposer p’s implementation of read and write:
estT S := p
myT S := 0
tsP roof := NULL

procedure read()
send 〈READ, estT S, tsP roof〉 to acceptors
wait until received 〈READ-ACK, estT S, lastLegal〉 from na − fa acceptors

let v be a value among lastLegals that appears a majority of times
return (v, estT S, the na − fa READ-ACKs)
on timeout return e r r o r

at time timeoutV al
myT S := myT S + 1
timeoutV al := 2 × timeoutV al
q := myT S mod np
send 〈TIMESTAMP-CHANGE, myT S〉a to proposer q

when receive 〈TIMESTAMP-CHANGE, ts〉 from np − fp proposers
if ts > estT S AND p ≡ ts mod np

estT S := ts
tsP roof := np − fp TIMESTAMP-CHANGE messages

endif

procedure write(v,token)
let ts be the token’s timestamp
send 〈WRITE, v, ts, token〉 to acceptors

Acceptor a’s protocol:
highestT S := 0
lastLegal := ⊥

on receive 〈READ, ts, tsP roof〉 from p
if ((ts > highestT S) AND (p is the leader for ts) AND

(tsProof is valid for ts))
highestT S := ts
send 〈READ-ACK, currT S, lastLegal〉a to p

endif

on receive 〈WRITE, v, ts, token〉 from p
if ((p = ts mod np) AND (ts ≥ highestT S) AND

(have not sent WRITE-ACK for ts) AND (token shows this write is legal))
highestT S := ts
lastLegal := v
send 〈WRITE-ACK, v, ts〉 to learners

endif

Learner l’s implementation of acknowledged:
procedure acknowledged()

return the set of value-timestamp pairs (v, ts) such that l received〈WRITE-ACK, v, ts〉 from

dna+3fa+1
2 e acceptors

Figure 6. Fast Byzantine Paxos register.

timestamps to estTS. If so, then a responds with the
signed message 〈READ-ACK, estTS, lastLegal〉a where
lastLegal contains the value of the last legal write that a
has accepted. Note that lastLegal is not a proof that some
write in the past was actually legal, just a’s testimony.

If p obtains and verifies read acknowledgments from
na − fa acceptors, then p finishes reading by constructing
a token with timestamp estTS and value equal to the ma-
jority value among the lastLegals. If no value appears a
majority of times, then the read’s value is ⊥. As before, p
appends the quorum of read acknowledgments to the token
to prove that p did not fabricate the read.

Proposer p writes to the register by sending
〈WRITE, v, ts, token〉, where ts is the token’s times-
tamp and v is a value that can be legally written using
token. An acceptor a accepts the write if i) p is the leader
for ts, ii) ts is at least as high as the highest timestamp a
has seen, iii) a has not accepted another write for ts, and
iv) token shows that this write is legal. If a accepts a write,
then a sends 〈WRITE-ACK, v, ts〉 to all learners.

A learner’s acknowledged operation returns the value-
timestamp pair of any write that dna+3fa+1

2 e acceptors ac-

knowledge. This number of acceptors is necessary and suf-
ficient to guarantee that the result of subsequent reads return
the written value.

In contrast to the Byzantine Paxos register, proposers in
the FaB Paxos register are responsible for advancing the
timestamp. Periodically, they increment their timestamps
to give other proposers an opportunity to write. When
a proposer p increments its timestamp to ts, p sends the
signed message 〈TIMESTAMP-CHANGE, ts〉p to the pro-
poser with id ts mod np. Proposers collect such messages
to prove to acceptors that the timestamp has advanced.

Like before, the FaB Paxos register is unoptimized and
we can make it more efficient in the common case by spec-
ifying that any write for timestamp 0 does not require a to-
ken. Further optimizations can be found in [19].

An advantage of using the Paxos register abstraction to
describe FaB Paxos is that we can intuitively derive the
above cryptic dna+3fa+1

2 e value by using C2 of the con-
sistency semantics. We use C2 to work backwards from
how we defined the read operation. Remember that C2 dic-
tates that a read is after a total write in the partial order if
the write’s timestamp is lower than the read’s. To guarantee
C2, a total write’s value should be the majority of lastLegal
values in any subsequent read’s na − fa acknowledgments.
Out of na − fa acknowledgments, dna−fa+1

2 e is the small-
est majority, and after accounting for those acceptors that
did not respond plus those that are Byzantine, a total write
needs to be accepted by dna−fa+1

2 e+2fa acceptors to guar-
antee C2. dna−fa+1

2 e+ 2fa simplifies to dna+3fa+1
2 e.

7.3 Fast Byzantine Paxos

We now describe Martin and Alvisi’s FaB protocol [19].
In FaB, each process is a proposer, acceptor, or learner. The
FaB protocol uses np > 3fp proposers, na > 5fa accep-
tors, and nl > 3fl learners, where fp, fa, fl are the maxi-
mum number of proposers, acceptors, and learners that fail,
respectively. However, we observe that a minimum number
of learners is unnecessary to solve consensus and so elide
those details in this presentation of FaB.

A proposer p proposes a value by first querying the ac-
ceptors and then issuing a proposal. Both the query and
the proposal contain a proposal number n such that p is the
leader for n, i.e. p ≡ n mod np. p performs a query by
sending 〈QUERY, n, proof〉 to the acceptors.

An acceptor a accepts the query if n is greater than the
proposal number of any message that a has accepted, p
equals n mod np, and proof shows that enough proposers
believe it is time for p to be the leader of n. The FaB proto-
col leaves the implementation of proof unspecified. If a ac-
cepts the query, then a responds to p with 〈REPLY, val, n〉a,
where val is the value of the last proposal that a accepted.

If p receives na − fa replies to its query, then p can fin-
ish the query by constructing a progress certificate from the

FaB Paxos Msg FaB Paxos Register Msg
query read
reply read acknowledgment

propose write
accepted write acknowledgment

Table 3. How messages in Fast Byzantine Paxos map to mes-
sages in an Fast Byzantine Paxos register.

signed replies. A progress certificate vouches for a value v
and proposal number n if all the contained replies are for
n, and v appears a majority number of times among the
replies. If no value appears a majority number of times,
then the progress certificate vouches for every value.

A query is identical to the Paxos register’s read opera-
tion: proposal numbers are analogous to timestamps, and
progress certificates implement tokens. A progress certifi-
cate that vouches for only one value v corresponds to a to-
ken with value v. A progress certificate that vouches for
multiple values corresponds to a token with value ⊥.

After constructing a progress certificate PC, p issues a
proposal for value val by sending 〈PROPOSE, val, n, PC〉
to all acceptors. An acceptor a accepts this proposal if n is
at least as large as any message that a has accepted, p is the
leader for n, a has not accepted any other proposal for n,
and PC vouches for val and n. If a accepts this proposal,
then a sends 〈ACCEPTED, val, n〉 to all learners.

A learner decides a value v if it receives dna+3fa+1
2 e

accepted messages for v with the same proposal number.
Issuing a proposal for val and n is analogous to writing

a value val for timestamp n to a Paxos register. Proposals
that are later queried are essentially visible writes, and pro-
posals that result in a learner deciding corresponds to total
writes. Interesingly, the FaB protocol highlights a nuance of
the Paxos register specification: that multiple writes for the
same timestamp can be visible. The FaB Paxos register, in
Figure 6, allows this situation as well. However, the register
implementation still guarantees that a total write guarantees
means that no other write for the same timestamp is or ever
will be visible.

8 Information-Theoretically Secure Byzan-
tine Paxos

Current deterministic asynchronous consensus algo-
rithms rely on cryptographic primitives, i.e. digital signa-
tures, to thwart Byzantine adversaries and guarantee safety.
Given this, a natural question to ask is whether a version
of Paxos is possible for computationally unbound Byzan-
tine adversaries. Using the Paxos register, we now sketch
an information-theoreticaly secure version of Byzantine

Paxos: IT ByzPaxos. We highlight the key ideas below and
describe IT ByzPaxos fully in a technical report [2].

We draw two insights from the Paxos register to build
IT ByzPaxos. First, if a write for value v and timestamp
ts is total then a quorum of acceptors can prove that some
proposer visibly wrote v, ts. And second, each token en-
capsulates a proof. A token for value v and timestamp ts
proves two things: i) that some proposer visibly wrote v for
timestamp ts′ < ts and ii) that every write for timestamp
ts′′ is not nor ever will be total, where ts′ < ts′′ < ts. A to-
ken for value ⊥ and timestamp ts proves something slightly
different: that every write for ts′ < ts is not nor ever will
be total.

In IT ByzPaxos, we use secret sharing techniques to im-
plement the above insights. Conceptually, we assign a se-
cret Sv

ts for each value v that can be proposed and for each
possible timestamp ts. We also assign a secret S⊥ts for each
timestamp ts . An honest dealer keeps these secrets hidden,
but divides each secret into shares and distributes the shares
to processes such that the following hold:

• A process i can reconstruct Sv
ts if and only if i observes

a visible write for value v and timestamp ts.
• If a process can reconstruct S⊥ts then any write for ts is

not nor ever will be total.

IT ByzPaxos implements tokens as sequences of secrets.
Remember that a token for v, ts proves that a proposer visi-
bly wrote v for ts′ < ts and that every write between ts′ and
ts is not nor ever will be total. A proposer assembles such
a proof by revealing the secret Sv

ts′ and each secret S⊥ts′′ ,
where ts′ < ts′′ < ts. To implement a token for ⊥, ts, a
proposer reveals each secret S⊥ts′ where ts′ < ts. In [2], we
discuss how to divide secrets and distribute shares with or
without an honest dealer.

IT ByzPaxos demonstrates the power and flexibility of
the Paxos register abstraction. By isolating the properties
common to several Paxos protocols, we found novel ways
to implement the same structure as existing protocols but
for computationally unbound adversaries.

9 Conclusion

The Paxos register abstraction provides a unified frame-
work for simpler presentations of deterministic asyn-
chronous consensus protocols like Classic Paxos and
Byzantine Paxos. This abstraction clarifies the similari-
ties between these protocols, while hiding protocol-specific
details. We believe the Paxos register can express other
deterministic asynchronous consensus protocols, like Disk
Paxos [11] and Byzantine Disk Paxos [1], though this re-
mains for future work. Moreover, the Paxos register has led
to a novel Byzantine Paxos variant, IT ByzPaxos, that is se-
cure even against a computationally unbound adversary. We

suspect that analyzing the Paxos register further will yield
additional interesting Paxos variants.

References

[1] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Byzantine disk
Paxos: optimal resilience with byzantine shared memory. Distributed
Computing, 18(5):387–308, 2006.

[2] A. S. Aiyer, L. Alvisi, A. Clement, and H. Li. Information-
Theoretically Secure Byzantine Paxos. Technical Report TR-07-21,
The University of Texas at Austin, May 2007.

[3] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Deconstructing
Paxos. Technical Report 2001–06, Department of Communication
Systems, Swiss Federal Institute of Technology, Lausanne, January
2001.

[4] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Deconstructing
Paxos. SIGACT News, 34(1):47–67, 2003.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems,
20(4):398–461, 2002.

[6] G. Chockler and D. Malkhi. Active disk Paxos with infinitely many
processes. Distributed Computing, 18(1):73–84, 2005.

[7] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a
partitioned network: a survey. ACM Computing Surveys, 17(3):341–
370, 1985.

[8] P. Dutta, R. Guerraoui, and M. Vukolic. Best-case complexity
of asynchronous Byzantine consensus. Technical Report 200499,
EPFL/IC, February 2005.

[9] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[10] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–
382, 1985.

[11] E. Gafni and L. Lamport. Disk Paxos. Distributed Computing,
16(1):1–20, 2003.

[12] R. Guerraoui and M. Raynal. The alpha of indulgent consensus.
Comput. J., 50(1):53–67, 2007.

[13] L. Lamport. On interprocess communication, part I: Basic formal-
ism. Distributed Computing, 1(2):77–85, 1986.

[14] L. Lamport. The part-time parliament. ACM Transactions on Com-
pututer Systems, 16(2):133–169, 1998.

[15] L. Lamport. Paxos made simple. Distributed Computing Column of
ACM SIGACT News, 32(4):51–58, 2001.

[16] B. Lampson. The ABCDs of Paxos. Presented at 20th Annual ACM
Symposium on Principles of Distributed Computing, 2001.

[17] H. C. Li, A. Clement, A. Aiyer, and L. Alvisi. The Paxos Register.
Technical Report TR-07-25, The University of Texas at Austin, May
2007.

[18] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Distributed
Computing, 11(4):203–213, 1998.

[19] J.-P. Martin and L. Alvisi. Fast Byzantine Consensus. IEEE Trans-
actions on Dependable and Secure Computing, 3(3):202–215, 2006.

[20] D. Peleg and A. Wool. The availability of quorum systems. Informa-
tion and Computation, 123(2):210–223, 1995.

[21] S. A. Plotkin. Sticky bits and universality of consensus. In Proceed-
ings of the 8th annual ACM Symposium on Principles of Distributed
Computing, pages 159–175, New York, NY, USA, 1989. ACM Press.

[22] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting the paxos algo-
rithm. Theoretical Computer Science, 243(1-2):35–91, 2000.

[23] C. Shao, E. Pierce, and J. Welch. Multi-writer consistency conditions
for shared memory objects. In F. E. Fich, editor, Distributed algo-
rithms, volume 2848/2003 of Lecture Notes in Computer Science,
pages 106–120, Oct 2003.

[24] W. Vogels. Job openings in my group.
http://weblogs.cs.cornell.edu/allthingsdistributed/
archives/000538.html.

