
SafeStore: A Durable and Practical Storage System

Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin
The University of Texas at Austin

Abstract

This paper presents SafeStore, a distributed storage
system designed to maintain long-term data durabil-
ity despite conventional hardware and software faults,
environmental disruptions, and administrative failures
caused by human error or malice. The architecture
of SafeStore is based on fault isolation, which Safe-
Store applies aggressively along administrative, physi-
cal, and temporal dimensions by spreading data across
autonomous storage service providers (SSPs). However,
current storage interfaces provided by SSPs are not de-
signed for high end-to-end durability. In this paper,
we propose a new storage system architecture that (1)
spreads data efficiently across autonomous SSPs using
informed hierarchical erasure coding that, for a given
replication cost, provides several additional 9’s of dura-
bility over what can be achieved with existing black-box
SSP interfaces, (2) performs an efficient end-to-end au-
dit of SSPs to detect data loss that, for a 20% cost in-
crease, improves data durability by two 9’s by reducing
MTTR, and (3) offers durable storage with cost, per-
formance, and availability competitive with traditional
storage systems. We instantiate and evaluate these ideas
by building a SafeStore-based file system with an NFS-
like interface.

1 Introduction

The design of storage systems that provide data dura-
bility on the time scale of decades is an increasingly
important challenge as more valuable information is
stored digitally [10, 31, 57]. For example, data from the
National Archives and Records Administration indicate
that 93% of companies go bankrupt within a year if they
lose their data center in some disaster [5], and a grow-
ing number of government laws [8, 22] mandate multi-
year periods of data retention for many types of infor-
mation [12, 50].

Against a backdrop in which over 34% of companies
fail to test their tape backups [6] and over 40% of in-

dividuals do not back up their data at all [29], multi-
decade scale durable storage raises two technical chal-
lenges. First, there exist a broad range of threats to data
durability including media failures [51, 60, 67], software
bugs [52, 68], malware [18, 63], user error [50, 59], ad-
ministrator error [39, 48], organizational failures [24,
28], malicious insiders [27, 32], and natural disasters on
the scale of buildings [7] or geographic regions [11].
Requiring robustness on the scale of decades magnifies
them all: threats that could otherwise be considered neg-
ligible must now be addressed. Second, such a system
has to be practical with cost, performance, and availabil-
ity competitive with traditional systems.

Storage outsourcing is emerging as a popular ap-
proach to address some of these challenges [41]. By
entrusting storage management to a Storage Service
Provider (SSP), where “economies of scale” can min-
imize hardware and administrative costs, individual
users and small to medium-sized businesses seek cost-
effective professional system management and peace
of mind vis-a-vis both conventional media failures and
catastrophic events.

Unfortunately, relying on an SSP is no panacea for
long-term data integrity. SSPs face the same list of hard
problems outlined above and as a result even brand-
name ones [9, 14] can still lose data. To make mat-
ters worse, clients often become aware of such losses
only after it is too late. This opaqueness is a symp-
tom of a fundamental problem: SSPs are separate ad-
ministrative entities and the internal details of their op-
eration may not be known by data owners. While most
SSPs may be highly competent and follow best practices
punctiliously, some may not. By entrusting their data to
back-box SSPs, data owners may free themselves from
the daily worries of storage management, but they also
relinquish ultimate control over the fate of their data.
In short, while SSPs are an economically attractive re-
sponse to the costs and complexity of long-term data
storage, they do not offer their clients any end-to-end
guarantees on data durability, which we define as the
probability that a specific data object will not be lost or

2007 USENIX Annual Technical ConferenceUSENIX Association 129

corrupted over a given time period.

Aggressive isolation for durability. SafeStore stores
data redundantly across multiple SSPs and leverages
diversity across SSPs to prevent permanent data loss
caused by isolated administrator errors, software bugs,
insider attacks, bankruptcy, or natural catastrophes.
With respect to data stored at each SSP, SafeStore em-
ploys a “trust but verify” approach: it does not interfere
with the policies used within each SSP to maintain data
integrity, but it provides an audit interface so that data
owner retain end-to-end control over data integrity. The
audit mechanism can quickly detect data loss and trigger
data recovery from redundant storage before additional
faults result in unrecoverable loss. Finally, to guard data
stored at SSPs against faults at the data owner site (e.g.
operator errors, software bugs, and malware attacks),
SafeStore restricts the interface to provide temporal iso-
lation between clients and SSPs so that the latter export
the abstraction of write-once-read-many storage.

Making aggressive isolation practical. SafeStore in-
troduces an efficient storage interface to reduce network
bandwidth and storage cost using an informed hierar-
chical erasure coding scheme, that, when applied across
and within SSPs, can achieve near-optimal durability.
SafeStore SSPs expose redundant encoding options to
allow the system to efficiently divide storage redundan-
cies across and within SSPs. Additionally, SafeStore
limits the cost of implementing its “trust but verify” pol-
icy through an audit protocol that shifts most of the pro-
cessing to the audited SSPs and encourages them proac-
tively measure and report any data loss they experience.
Dishonest SSPs are quickly caught with high probabil-
ity and at little cost to the auditor using probabilistic spot
checks. Finally, to reduce the bandwidth, performance,
and availability costs of implementing geographic and
administrative isolation, SafeStore implements a two-
level storage architecture where a local server (possibly
running on the client machine) is used as a soft-state
cache, and if the local server crashes, SafeStore limits
down-time by quickly recovering the critical meta data
from the remote SSPs while the actual data is being re-
covered in the background.

Contributions. The contribution of this paper is a
highly durable storage architecture that uses a new repli-
cation interface to distribute data efficiently across di-
verse set of SSPs and an effective audit protocol to check
data integrity. We demonstrate that this approach can
provide high durability in a way that is practical and
economically viable with cost, availability, and perfor-
mance competitive with traditional systems. We demon-

strate these ideas by building and evaluating SSFS, an
NFS-based SafeStore storage system. Overall, we show
that SafeStore provides an economical alternative to re-
alize multi-decade scale durable storage for individuals
and small-to-medium sized businesses with limited re-
sources. Note that although we focus our attention on
outsourced SSPs, the SafeStore architecture could also
be applied internally by large enterprises that maintain
multiple isolated data centers.

2 Architecture and Design Principles

The main goal of SafeStore is to provide extremely
durable storage over many years or decades.

2.1 Threat model

Over such long time periods, even relatively rare events
can affect data durability, so we must consider broad
range of threats along multiple dimensions—physical,
administrative, and software.

Physical faults: Physical faults causing data loss in-
clude disk media faults [35, 67], theft [23], fire [7], and
wider geographical catastrophes [11]. These faults can
result in data loss at a single node or spanning multiple
nodes at a site or in a region.

Administrative and client-side faults: Accidental
misconfiguration by system administrators [39, 48], de-
liberate insider sabotage [27, 32], or business failures
leading to bankruptcy [24] can lead to data corruption
or loss. Clients can also delete data accidentally by, for
example, executing “rm -r *”. Administrator and client
faults can be particularly devastating because they can
affect replicas across otherwise isolated subsystems. For
instance [27], a system administrator not only deleted
data but also stole the only backup tape after he was
fired, resulting in financial damages in excess of $10
million and layoff of 80 employees.

Software faults: Software bugs [52, 68] in file sys-
tems, viruses [18], worms [63], and Trojan horses can
delete or corrupt data. A vivid example of threats due to
malware is the recent phenomenon of ransomware [20]
where an attacker encrypts a user’s data and withholds
the encryption key until a ransom is paid.

Of course, any of the listed faults may occur rarely.
But at the scale of decades, it becomes risky to assume
that no rare events will occur. It is important to note that
some of these failures [7, 51, 60] are often correlated re-
sulting in simultaneous data loss at multiple nodes while
others [52] are more likely to occur independently.

Limitations of existing practice. Most existing ap-
proaches to data storage face two problems that are par-
ticularly acute in our target environments of individuals

2007 USENIX Annual Technical Conference USENIX Association130

Storage service providers (SSPs)

Auditor

1

2

3

4

Remote storage

Virtual storage SSP2

SSP1

SSP3

 Local storage

Local ServerClients
NFS Interface

Client 1

Client 2

Client 3 R
es

tr
ic

te
d

In
te

rf
ac

e

Fig. 1: SafeStore architecture

and small/medium businesses: (1) they depend too heav-
ily on the operator or (2) they provide insufficient fault
isolation in at least some dimensions.

For example, traditional removable-media-based-
systems (e.g., tape, DVD-R) systems are labor inten-
sive, which hurts durability in the target environments
because users frequently fail to back their data up, fail
to transport media off-site, or commit errors in the
backup/restore process [25]. The relatively high risk of
robot and media failures [3] and slow mean time to re-
cover [44] are also limitations.

Similarly, although on-site disk-based [4, 16] backup
systems speed backup/recovery, use reliable media com-
pared to tapes, and even isolate client failures by main-
taining multiple versions of data, they are vulnerable to
physical site, administrative, and software failures.

Finally, network storage service providers (SSPs) [1,
2, 15, 21] are a promising alternative as they provide ge-
ographical and administrative isolation from users and
they ride the technology trend of falling network and
hardware costs to reduce the data-owner’s effort. But
they are still vulnerable to administrative failures at
the service providers [9], organizational failures (e.g.,
bankruptcy [24, 41]), and operator errors [28]. They thus
fail to fully meet the challenges of a durable storage sys-
tem. We do, however, make use of SSPs as a component
of SafeStore.

2.2 SafeStore architecture

As shown in Figure 1, SafeStore uses the following de-
sign principles to provide high durability by tolerating
the broad range of threats outlined above while keeping
the architecture practical, with cost, performance, and
availability competitive with traditional systems.

Efficiency via 2-level architecture. SafeStore uses a
two-level architecture in which the data owner’s local
server (©1 in Figure 1) acts as a cache and write buffer
while durable storage is provided by multiple remote
storage service providers SSPs ©2. The local server could
be running on the client’s machine or a different ma-
chine. This division of labor has two consequences.
First, performance, availability, and network cost are

improved because most accesses are served locally; we
show this is crucial in Section 3. Second, management
cost is improved because the requirements on the local
system are limited (local storage is soft state, so local
failures have limited consequences) and critical man-
agement challenges are shifted to the SSPs, which can
have excellent economies of scale for managing large
data storage systems [1, 26, 41].

Aggressive isolation for durability. We apply the
principle of aggressive isolation in order to protect data
from the broad range of threats described above.

• Autonomous SSPs: SafeStore stores data redundantly
across multiple autonomous SSPs (©2 in Figure 1). Di-
verse SSPs are chosen to minimize the likelihood of
common-mode failures across SSPs. For example,
SSPs can be external commercial service providers [1,
2, 15, 21], that are geographically distributed, run by
different companies, and based on different software
stacks. Although we focus on out-sourced SSPs, large
organizations can use our architecture with in-sourced
storage across autonomous entities within their orga-
nization (e.g., different campuses in a university sys-
tem.)

• Audit: Aggressive isolation alone is not enough to
provide high durability as data fragment failures ac-
cumulate over time. On the contrary, aggressive iso-
lation can adversely affect data durability because the
data owner has little ability to enforce or monitor the
SSPs’ internal design or operation to ensure that SSPs
follow best practices. We provide an end-to-end au-
dit interface (©3 in Figure 1) to detect data loss and
thereby bound mean time to recover (MTTR), which
in turn increases mean time to data loss (MTTDL).
In Section 4 we describe our audit interface and show
how audits limit the damage that poorly-run SSPs can
inflict on overall durability.

• Restricted interface: SafeStore must minimize the
likelihood that erroneous operation of one subsystem
compromises the integrity of another [46]. In partic-
ular, because SSPs all interact with the local server,
we must restrict that interface. For example, we must
protect against careless users, malicious insiders, or

2007 USENIX Annual Technical ConferenceUSENIX Association 131

devious malware at the clients or local server that mis-
takenly delete or modify data. SafeStore’s restricted
SSP interface ©4 provides temporal isolation via the
abstraction of versioned write-once-read-many stor-
age so that a future error cannot damage existing data.

Making isolation practical. Although durability is
our primary goal, the architecture must still be econom-
ically viable.
• Efficient data replication: The SafeStore architecture

defines a new interface that allows the local server
to realize near-optimal durability using informed hi-
erarchical erasure coding mechanism, where SSPs
expose internal redundancy. Our interface does not
restrict SSP’s autonomy in choosing internal stor-
age organization (replication mechanism, redundancy
level, hardware platform, software stack, administra-
tive policies, geographic location, etc.) Section 3
shows that our new interface and replication mech-
anism provides orders of magnitude better durability
than oblivious hierarchical encoding based systems
using existing black-box based interfaces [1, 2, 21].

• Efficient audit mechanism: To make audits of SSPs
practical, we use a novel audit protocol that, like real
world financial audits, uses self-reporting whereby
auditor offloads most of the audit work to the audi-
tee (SSP) in order to reduce the overall system re-
sources required for audits. However, our audit takes
the form of a challenge-response protocol with oc-
casional spot-checks that ensure that an auditee that
generates improper responses is quickly discovered
and that such a discovery is associated with a cryp-
tographic proof of misbehavior [30].

• Other optimizations: We use several optimizations to
reduce overhead and downtime in order to make sys-
tem practical and economically viable. First, we use a
fast recovery mechanism to quickly recover from data
loss at a local server where the local server comes on-
line as soon as the meta-data is recovered from re-
mote SSPs even while data recovery is going on in
the background. Second, we use block level version-
ing to reduce storage and network overhead involved
in maintaining multiple versions of files.

2.3 Economic viability

In this section, we consider the economic viability of
our storage system architecture in two different settings,
outsourced storage using commercial SSPs and feder-
ated storage using in-house but autonomous SSPs, and
calibrate the costs by comparing with a less-durable lo-
cal storage system.

We consider three components to storage cost: hard-
ware resources, administration, and—for outsourced

100

1000

10000

0.01 0.1 1 10 100

C
o
st

/m
o
n
th

/T
B

Accesses (% of Storage)/month

Outsourced SSPs (HW + Admin + Profit) - (3,1) encoding

Outsourced SSPs (HW + Admin + Profit) - (3,2) encoding

In-house SSPs (HW + Admin) - (3,2) encoding

Local storage - HW + 1 Admin/1TB (inefficient)

 Local storage - HW + 1 Admin/10TB (typical)

 Local storage - HW + 1 Admin/100TB (optimized)

Fig. 2: Comparison of SafeStore cost v. accesses to remote
storage (as a percentage of straw-man Standalone local stor-
age) varies.

storage—profit. Table 1 summarizes our basic assump-
tions for a straw-man Standalone local storage system
and for the local owner and SSP parts of a SafeStore
system. In column B, we estimate the raw hardware and
administrative costs that might be paid by an in-house
SSP. We base our storage hardware costs on estimated
full-system 5-year total cost of ownership (TCO) costs
in 2006 for large-scale internet services such as Inter-
net Archive [26]. Note that using the same storage cost
for a large-scale, specialized SSP and for smaller data
owners and Standalone systems is conservative in that
it may overstate the relative additional cost of adding
SSPs. For network resources, we base our costs on pub-
lished rates in 2006 [17]. For administrative costs, we
use Gray’s estimate that highly efficient internet services
require about 1 administrator to manage 100TB while
smaller enterprises are typically closer to one adminis-
trator per 10TB but can range from one per 1TB to 1
per 100TB [49] (Gray notes, “But the real cost of stor-
age is management” [49]). Note that we assume that by
transforming local storage into a soft-state cache, Safe-
Store simplifies local storage administration. We there-
fore estimate local hardware and administrative costs at
1 admin per 100TB.

In Figure 2, the storage cost of in-house SSP includes
SafeStore’s hardware (cpu, storage, network) and ad-
ministrative costs. We also plot the straw-man local
storage system with 1, 10, or 100 TB per administrator.
The outsourced SSP lines show SafeStore costs assum-
ing SSPs prices include a profit by using Amazon’s S3
storage service pricing. Three points stand out. First,
additional replication to SSPs increases cost (as inter-
SSP data encoding, as discussed in section 3, is raised
from (3,2) to (3,1)), and the network cost rises rapidly
as the remote access rate increases. These factors mo-
tivate SafeStore’s architectural decisions to (1) use ef-

2007 USENIX Annual Technical Conference USENIX Association132

Standalone SafeStore In-house SafeStore SSP (Cost+Profit)

Storage $30/TB/month [26] $30/TB/month [26] $150/TB/month [1]
Network NA $200/TB [17] $200/TB [1]
Admin 1 admin/[1,10,100]TB ([inefficient,typical,optimized]) [49] 1 admin/100TB [49] Included [1]

Table 1: System cost assumptions. Note that a Standalone system makes no provision for isolated backup and is used for cost
comparison only.

ficient encoding and (2) minimize network traffic with
a large local cache that fully replicates all stored state.
Second, when SSPs are able to exploit economies of
scale to reduce administrative costs below those of their
customers, SafeStore can reduce overall system costs
even when compared to a less-durable Standalone local-
storage-only system. Third, even for customers with
highly-optimized administrative costs, as long as most
requests are filtered by the local cache, SafeStore im-
poses relatively modest additional costs that may be ac-
ceptable if it succeeds in improving durability.

The rest of the paper is organized as follows. First,
in Section 3 we present and and evaluate our novel in-
formed hierarchical erasure coding mechanism. In Sec-
tion 4, we address SafeStore’s audit protocol. Later, in
Section 5 we describe the SafeStore interfaces and im-
plementation. We evaluate the prototype in Section 6.
Finally, we present the related work in Section 7.

3 Data replication interface

This section describes a new replication interface to
achieve near-optimal data durability while limiting the
internal details exposed by SSPs, controlling replication
cost, and maximizing fault isolation.

SafeStore uses hierarchical encoding comprising
inter-SSP and intra-SSP redundancy: First, it stores data
redundantly across different SSPs, and then each SSP
internally replicates data entrusted to it as it sees fit. Hi-
erarchical encoding is the natural way to replicate data in
our setting as it tries to maximize fault-isolation across
SSPs while allowing SSP’s autonomy in choosing an ap-
propriate internal data replication mechanism. Differ-
ent replication mechanisms such as erasure coding [55],
RAID [35], or full replication can be used to store data
redundantly at inter-SSP and intra-SSP levels (any repli-
cation mechanism can be viewed as some form of (k,l)
encoding [65] from durability perspective, where l out
of k encoded fragments are required to reconstruct data).
However, it requires proper balance between inter-SSP
and intra-SSP redundancies to maximize end-end dura-
bility for a fixed storage overhead. For example, con-
sider a system willing to pay an overall 6x redundancy
cost using 3 SSPs with 8 nodes each. If, for example,
each SSP only provides the option of (8,2) intra-SSP en-
coding, then we can use at most (3,2) inter-SSP encod-

ing. This combination gives gives 4 9’s less durability
for the same overhead compared to a system that uses
(3,1) encoding at the inter-SSP level and (8,4) encoding
at the intra-SSP level at all the SSPs.

3.1 Model

The overall storage overhead to store a data object is
(n0/m0 + n1/m1 + ...nk−1/mk−1)/l, when a data object
is hierarchically encoded using (k, l) erasure coding
across k SSPs, and SSPs 0 through k− 1 internally use
erasure codings (n0,m0), (n1,m1),....(nk−1,mk−1), re-
spectively. We assume that the number of SSPs(k) is
fixed and a data object is (possibly redundantly) stored
at all SSPs. We do not allow varying k as it requires ad-
ditional internal information about various SSPs (MTTF
of nodes, number of nodes, etc.) which may not be avail-
able in order to choose optimal set of k nodes. Instead,
we tackle the problem of finding optimal distribution of
inter-SSP and intra-SSP redundancies for a fixed k. The
end-to-end data durability can be estimated as a func-
tion of these variables using a simple analytical model,
detailed in Appendix A of our extended report [45],
that considers two classes of faults. Node faults (e.g.
physical faults like sector failures, disk crashes, etc.)
occur within an SSP and affect just one fragment of
an encoded object stored at the SSP. SSP faults (e.g.,
administrator errors, organizational failures, geograph-
ical failures, etc.) are instead simultaneous or near-
simultaneous failures that take out all fragments across
which an object is stored within an SSP. To illustrate the
approach, we consider a baseline system consisting of 3
SSPs with 8 nodes each. We use a baseline MTTDL of
10 years due to invidual node faults and 100 years for
SSP failures and assume both are independent and iden-
tically distributed. We use MTTR of data of 2 days (e.g.
to detect and replace a faulty disk) for node faults and
10 days for SSP failures. We use the probability of data
loss of an object during a 10 year period to characterize
durability because expressing end-to-end durability as
MTTDL can be misleading [35] (although MTTDL can
be easily computed from the probability of data loss as
shown in our report [45]). Later, we change the distribu-
tion of nodes across SSPs, MTTDL and MTTR of node
failures within SSPs, to model diverse SSPs. The con-
clusions that we draw here are general and not specific

2007 USENIX Annual Technical ConferenceUSENIX Association 133

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

1 10

Pr
ob

ab
ili

ty
of

da
ta

lo
ss

in
10

Y
ea

rs

Storage overhead

Ideal

Redundancy 4 (Oblivious)

Redundancy 2 (Oblivious)

Redundancy 1 (Oblivious)

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

1 10

Pr
ob

ab
ili

ty
of

da
ta

lo
ss

in
10

Y
ea

rs

Storage overhead

Informed hierarchical encoding

Ideal

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

1 10

Pr
ob

ab
ili

ty
of

da
ta

lo
ss

in
10

Y
ea

rs

Storage overhead

Ideal Informed

(a) (b) (c)

Fig. 3: (a) Durability with Black-box interface with fixed intra-SSP redundancy (b) Informed hierarchical encoding (c) Informed
hierarchical encoding with non-uniform distribution

to this setup; we find similar trends when we change the
total number of nodes, as well as MTTDL and MTTR of
correlated SSP faults.

3.2 Informed hierarchical encoding

A client can maximize end-to-end durability if it can
control both intra-SSP and inter-SSP redundancies.
However, current black-box storage interfaces exported
by commercial outsourced SSPs [1, 2, 21] do not allow
clients to change intra-SSP redundancies. With such a
black-box interface, clients perform oblivious hierarchi-
cal encoding as they control only inter-SSP redundancy.
Figure 3(a) plots the optimal durability achieved by an
ideal system that has full control of inter-SSP and intra-
SSP redundancy and a system using oblivious hierarchi-
cal encoding. The latter system has 3 lines for differ-
ent fixed intra-SSP redundancies of 1, 2, and 4, where
each line has 3 points for each of the 3 different inter-
SSP encodings((3,1), (3,2) and (3,3)) that a client can
choose with such a black-box interface. Two conclu-
sions emerge. First, for a given storage overhead, the
probability of data loss of an ideal system is often orders
of magnitude lower than a system using oblivious hier-
archical encoding, which therefore is several 9’s short
of optimal durability. Second, a system using oblivious
hierarchical encoding often requires 2x-4x more storage
than ideal to achieve the same durability.

To improve on this situation, SafeStore describes an
interface that allows clients to realize near-optimal dura-
bility using informed hierarchical encoding by exercis-
ing additional control on intra-SSP redundancies. With
this interface, each SSP exposes the set of redundancy
factors that it is willing to support. For example, an SSP
with 4 internal nodes can expose redundancy factors of
1 (no redundancy), 1.33, 2, and 4 corresponding, respec-
tively, to the (4,4), (4,3), (4,2) and (4,1) encodings used
internally.

Our approach to achieve near-optimal end-to-end
durability is motivated by the stair-like shape of the

curve tracking the durability of ideal as a function of
storage overhead (Figure 3(a)). For a fixed storage over-
head, there is a tradeoff between inter-SSP and intra-SSP
redundancies, as a given overhead O can be expressed
as 1/l × (r0 + r1 + ..rk−1), when (k, l) encoding is used
across k SSPs in the system with intra-SSP redundancies
of r0 to rk−1 (where ri = ni/mi). Figure 3(a) shows that
durability increases dramatically (moving down one step
in the figure) when inter-SSP redundancy increases, but
does not improve appreciably when additional storage is
used to increase intra-SSP redundancy beyond a thresh-
old that is close to but greater than 1. This observation
is backed by mathematical analysis in the extended re-
port [45].

Hence, we propose a heuristic biased in favor of
spending storage to maximize inter-SSP redundancy as
follows:
• First, for a given number k of SSPs, we maximize the

inter-SSP redundancy factor by minimizing l. In par-
ticular, for each SSP i, we choose the minimum re-
dundancy factor r′i >1 exposed by i, and we compute
l as l = b(r′0 + r′1 + ...r′k−1)/Oc.

• Next, we distribute the remaining overhead (O−1/l×
(r′0 + r′1 + ..r′k−1)) among the SSPs to minimize the
standard deviation of the intra-SSP redundancy fac-
tors ri that are ultimately used by the different SSPs.

Figure 3(b) shows that this new approach, which we
call informed hierarchical coding, achieves near opti-
mal durability in a setting where three SSPs have the
same number of nodes (8 each) and the same MTTDL
and MTTR for internal node failures. These assump-
tions, however, may not hold in practice, as different
SSPs are likely to have a different number of nodes,
with different MTTDLs and MTTRs. Figure 3(c) shows
the result of an experiment in which SSPs have a differ-
ent number of nodes—and, therefore, expose different
sets of redundancy factors. We still use 24 nodes, but
we distribute them non-uniformly (14, 7, 3) across the

2007 USENIX Annual Technical Conference USENIX Association134

SSPs: informed hierarchical encoding continues to pro-
vide near-optimal durability. This continues to be true
even when there is a skew in MTTDL and MTTR (due to
node failures) across SSPs. For instance, Figure 4 uses
the same non-uniform node distribution of Figure 3(c),
but the (MTTDL, MTTR) values for node failures now
differ across SSPs—they are, respectively, (10 years, 2
days), (5 years, 3 days), and (3 years, 5 days). Note that,
by assigning the worst (MTTDL, MTTR) for node fail-
ures to the SSP with least number of nodes, we are con-
sidering a worst-case scenario for informed hierarchical
encoding.

These results are not surprising in light of our dis-
cussion of Figure 3(a): durability depends mainly on
maximizing inter-SSP redundancy and it is only slightly
affected by the internal data management of individual
SSPs. In our extended technical report [45] we per-
form additional experiments that study the sensitivity of
informed hierarchical encoding to changes in the total
number of nodes used to store data across all SSPs and
in MTTDL and MTTR for SSP failures: they all confirm
the conclusion that a simple interface that allows SSPs
to expose the redundancy factors they support is all it is
needed to achieve, through our simple informed hierar-
chical encoding mechanism, near optimal durability.

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

1 10

Pr
ob

ab
ili

ty
of

da
ta

lo
ss

in
10

Y
ea

rs

Storage overhead

Informed

Ideal

Fig. 4: Durability with different MTTDL and MTTR for node
failures across SSPs

SSPs can provide such an interface as part of their
SLA (service level agreement) and charge clients based
on the redundancy factor they choose when they store a
data object. The interface is designed to limit the amount
of detail that an SSP must expose about the internal
organization. For example, an SSP with 1000 servers
each with 10 disks might only expose redundancy op-
tions (1.0, 1.1, 1.5, 2.0, 4.0, 10.0), revealing little about
its architecture. Note that the proposed interface could
allow a dishonest SSP to cheat the client by using less
redundancy than advertised. The impact of such false
advertising is limited by two factors: First, as observed
above, our design is relatively insensitive to variations in

intra-SSP redundancy. Second, the end to end audit pro-
tocol described in the next section limits the worst-case
damage any SSP can inflict.

4 Audit

We need an effective audit mechanism to quickly detect
data losses at SSPs so that data can be recovered be-
fore multiple component failures resulting in unrecover-
able loss. An SSP should safeguard the data entrusted to
it by following best practices like monitoring hardware
health [62], spreading coded data across drives and con-
trollers [35] or geographically distributed data centers,
periodically scanning and correcting latent errors [61],
and quickly notifying a data owner of any lost data so
that the owner can restore the data from other SSPs and
maintain a desired replication level. However, the prin-
ciple of isolation argues against blindly assuming SSPs
are flawless system designers and operators for two rea-
sons. First, SSPs are separate administrative entities,
and their internal details of operation may not be veri-
fiable by data owners. Second, given the imperfections
of software [18, 52, 68], operators [39, 48], and hard-
ware [35, 67], even name-brand SSPs may encounter
unexpected issues and silently lose customer data [9,
14]. Auditing SSP data storage embodies the end-to-
end principle (in almost exactly the form it was first
described) [58], and frequent auditing ensures a short
Mean Time To Detect (MTTD) data loss, which helps
limit worst-case Mean Time To Recover (MTTR). It is
important to reduce MTTR in order to increase MTTDL
as a good replication mechanism alone cannot improve
MTTDL over a long time-duration spanning decades.

The technical challenge to auditing is to provide an
end-to-end guarantee on data integrity while minimiz-
ing cost. These goals rule out simply reading stored data
across the network as too expensive (see Figure 2) and,
similarly, just retrieving a hash of the data as not pro-
viding an end-to-end guarantee (the SSP may be storing
the hash not the data.). Furthermore, the audit proto-
col must work with data erasure-coded across SSPs, so
a simple scheme that sends a challenge to multiple iden-
tical replicas and then compare the responses such as
those in LOCKSS [46] and Samsara [37] do not work.
We must therefore devise an inexpensive audit protocol
despite the fact that no two replicas store the same data.

To reduce audit cost, SafeStore’s audit protocol bor-
rows a strategy from real-world audits: we push most
of the work onto the auditee and ask the auditor to
spot check the auditee’s reports. Our reliance on self-
reporting by SSPs drives two aspects of the protocol
design. First, the protocol is believed to be shortcut

2007 USENIX Annual Technical ConferenceUSENIX Association 135

free–audit responses from SSPs are guaranteed to em-
body end-to-end checks on data storage– under the as-
sumption that collision resistant modification detection
codes [47] exist. Second, the protocol is externally ver-
ifiable and non-repudiable—falsified SSP audit replies
are quickly detected (with high probability) and deliber-
ate falsifications can be proven to any third party.

4.1 Audit protocol

The audit protocol proceeds in three phases: (1) data
storage, (2) routine audit, and (3) spot check. Note that
the auditor may be co-located with or separate from the
owner. For example, audit may be outsourced to an ex-
ternal auditor when data owners are offline for extended
periods. To authorize SSPs to respond to auditor re-
quests, the owner signs a certificate granting audit rights
to the auditor’s public key, and all requests from the au-
ditor are authenticated against such a certificate (these
authentication handshakes are omitted in the description
below.) We describe the high level protocol here and
detail it in the report [45].

Data storage. When an object is stored at an SSP, the
SSP signs and returns to the data owner a receipt that in-
cludes the object ID, cryptographic hash of the data, and
storage expiration time. The data owner in turn verifies
that the signed hash matches the data it sent and that the
receipt is not malformed with an incorrect id or expira-
tion time. If the data and hash fail to match, the owner
retries sending the write message (data could have been
corrupted in the transmission); repeated failures indicate
a malfunctioning SSP and generate a notification to the
data owner. As we detail in Section 5, SSPs do not pro-
vide a delete interface, so the expiration time indicates
when the SSP will garbage collect the data. The data
owner collects such valid receipts, encodes them, and
spreads them across SSPs for durable storage.

Routine audit. The auditor sends to an SSP a list of
object IDs and a random challenge. The SSP com-
putes a cryptographic hash on both the challenge and
the data. The SSP sends a signed message to the au-
ditor that includes the object IDs, the current time, the
challenge, and the hash computed on the challenge and
the data (H(challenge+dataob jId)). The auditor buffers
the challenge responses if the messages are well-formed,
where a message is considered to be well-formed if none
of the following conditions are true: the signature does
not match the message, the response with an unaccept-
ably stale timestamp, the response with the wrong chal-
lenge, or the response indicates error code (e.g., he SSP
detected data is corrupt via internal checks or the data
has expired). If the auditor does not receive any response

from the SSP or if it receives a malformed message, the
auditor notifies the data owner, and the data owner re-
constructs the data via cached state or other SSPs and
stores the lost fragment again. Of course, the owner may
choose to switch SSPs before restoring the data and/or
may extract penalties under their service level agreement
(SLA) with the SSP, but such decisions are outside the
scope of the protocol.

We conjecture that the audit response is shortcut free:
an SSP must possess object’s data to compute the correct
hash. An honest SSP verifies the data integrity against
the challenge-free hash stored at the creation time be-
fore sending a well-formed challenge response. If the
integrity check fails (data is lost or corrupted) it sends
the error code for lost data to the auditor. However, a
dishonest SSP can choose to send a syntactically well-
formed audit response with bogus hash value when the
data is corrupted or lost. Note that the auditor just
buffers well-formed messages and does not verify the
integrity of the data objects covered by the audit in this
phase. Yet, routine audits serve two key purposes. First,
when performed against honest SSPs, they provide end-
to-end guarantees about the integrity of the data objects
covered by the audit. Second, they force dishonest SSPs
to produce a signed, non-repudiable statement about the
integrity of the data objects covered by the audit.
Spot check. In each round, after it receives audit re-
sponses in the routine audit phase, the auditor randomly
selects α% of the objects to be spot checked. The auditor
then retrieves each object’s data (via the owner’s cache,
via the SSP, or via other SSPs) and verifies that the cryp-
tographic hash of the challenge and data matches the
challenge response sent by the SSP in the routine au-
dit phase. If there is a mismatch, the auditor informs the
data owner about the mismatch and provides the signed
audit response sent by the SSP. The data owner then
can create an externally-verifiable proof of misbehav-
ior (POM) [45] against the SSP: the receipt, the audit
response, and the object’s data. Note that SafeStore
local server encrypts all data before storing it to SSPs,
so this proof may be presented to third parties without
leaking the plaintext object contents. Also, note that our
protocol works with erasure coding as the auditor can
reconstruct the data to be spot checked using redundant
data stored at other SSPs.

4.2 Durability and cost

In this section we examine how the low-cost audit proto-
col limits the damage from faulty SSPs. The SafeStore
protocol specifies that SSPs notify data owners imme-
diately of any data loss that the SSP cannot internally
recover so that the owner can restore the desired replica-

2007 USENIX Annual Technical Conference USENIX Association136

30

25

20

15

10

5

1

1 10 100 1000

M
T

T
D

da
ta

lo
ss

(d
ay

s)

Cost (% H/W Cost)

Remote auditor α=100%

Local auditor α=1%,10%,100%

Remote auditor α=1%

Remote auditor α=10%

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

1 10

Pr
ob

ab
ili

ty
of

da
ta

lo
ss

in
10

Y
ea

rs

Maximum available storage overhead

MTTD (10 days)

MTTD (20 days)

MTTD (2 days)

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1 1

Pr
ob

ab
ili

ty
of

da
ta

lo
ss

in
10

Y
ea

rs

Percentage data loss at a dishonest SSP

Remote auditor - 20% audit cost

Local auditor - 20% audit cost

Oracle auditor

No audit

(a) (b) (c)

Fig. 5: (a) Time to detect SSP data loss via audit with varying amounts of resources dedicated to audit overhead assuming honest
SSPs. (b) Durability with varying MTTD. (c) Impact on overall durability with a dishonest SSP. The audit cost model for hardware,
storage, and network bandwidth are described in [45].

tion level using redundant data. Figures 3 and 4 illustrate
the durability of our system when the SSPs follow the re-
quirement and immediately report failures. As explained
below, Figure 5-(a) and (b) show that SafeStore still pro-
vides excellent data durability with low audit cost, if a
data owner is unlucky and selects a passive SSP that vio-
lates the immediate-notify requirement and waits for an
audit of an object to report that it is missing. Figure 5-(c)
shows that if a data owner is really unlucky and selects
a dishonest SSP that first loses some of the owner’s data
and then lies when audited to try to conceal that fact,
the owner’s data is still very likely to emerge unscathed.
We evaluate our audit protocol with 1TB of data stored
redundantly across three SSPs with inter-SSP encoding
of (3,1) (the extended report [45] has results with other
encodings).

First, assume that SSPs are passive and wait for an
audit to check data integrity. Because the protocol uses
relatively cheap processing at the SSP to reduce data
transfers across the wide area network, it is able to scan
through the system’s data relatively frequently without
raising system costs too much. Figure 5-(a) plots the
mean time to detect data loss (MTTD) at a passive SSP
as a function of the cost of hardware resources (storage,
network, and cpu) dedicated to auditing, expressed as
a percentage of the cost of the system’s total hardware
resources as detailed in the caption. We also vary the
fraction of objects that are spot checked in each audit
round (α) for both the cases with local (co-located with
the data owner) and remote (separated over WAN) au-
ditors. We reach following conclusions: (1) As we in-
crease the audit budget we can audit more frequently and
the time to detect data loss falls rapidly. (2) audit costs
with local and remote auditors is almost the same when
α is less than 1%. (3) The audit cost with local audi-
tor does not vary much with increasing α (as there is no
additional network overhead in retrieving data from the
local data owner) whereas the audit cost for the remote

auditor increases with increasing α (due to additional
network overhead in retrieving data over the WAN). (4)
Overall, if a system dedicates 20% of resources to audit-
ing, we can detect a lost data block within a week (with
a local or a remote auditor with α = 1%).

Given this information, Figure 5-(b) shows the mod-
est impact on overall data durability of increasing the
time to detect and correct such failures when we assume
that all SSPs are passive and SafeStore relies on audit-
ing rather than immediate self reporting to trigger data
recovery.

Now consider the possibility of an SSP trying to
brazen its way through an audit of data it has lost using
a made-up value purporting to be the hash of the chal-
lenge and data. The audit protocol encourages rational
SSPs that lose data to respond to audits honestly. In par-
ticular, we prove [45] that under reasonable assumptions
about the penalty for an honest failure versus the penalty
for generating a proof of misbehavior (POM), a rational
SSP will maximize its utility [30] by faithfully executing
the audit protocol as specified.

But suppose that through misconfiguration, malfunc-
tion, or malice, a node first loses data and then issues
dishonest audit replies that claim that the node is storing
a set of objects that it does not have. The spot check
protocol ensures that if a node is missing even a small
fraction of the objects, such cheating is quickly discov-
ered with high probability. Furthermore, as that fraction
increases, the time to detect falls rapidly. The intuition
is simple: the probability of detecting a dishonest SSP
in k audits is given by

pk = 1− (1− p)k

where p is the probability of detection in an audit, which
is given by

p =
 m

i=1

(n
i

)(N−n
m−i

)

(N
m

) ,(if n ≥ m)

2007 USENIX Annual Technical ConferenceUSENIX Association 137

WriteReceipt write(ID oid, byte data[], int64 size,
int32 type, int64 expire);

ReadReply read(ID oid, int64 size, int32 type)
AttrReply get attr(ID oid);
TTLReceipt extend expire(ID oid, int64 expire);

Table 2: SSP storage interface

p =
 n

i=1

(m
i

)(N−m
n−i

)

(N
n

) ,(if n < m)

where N is the total number of data blocks stored at an
SSP, n is the number of blocks that are corrupted or lost
and m is the number of blocks that are spot checked,
α=(m/N) × 100.

Figure 5-(c) shows the overall impact on durability if
a node that has lost a fraction of objects maximizes the
time to detect these failures by generating dishonest au-
dit replies. We fix the audit budget at 20% and measure
the durability of SafeStore with local auditor (with α at
100%) as well as remote auditor (with α at 1%). We also
plot the durability with oracle detector which detects the
data loss immediately and triggers recovery. Note that
the oracle detector line shows worse durability than the
lines in Figure 5-(b) because (b) shows durability for a
randomly selected 10-year period while (c) shows dura-
bility for a 10-year period that begins when one SSP has
already lost data. Without auditing (no audit), there is
significant risk of data loss reducing durability by three
9’s compared to oracle detector. Using our audit proto-
col with remote auditor, the figure shows that a cheating
SSP can introduce a non-negligible probability of small-
scale data loss because it takes multiple audit rounds to
detect the loss as it spot checks only 1% of data blocks.
But that the probability of data loss falls quickly and
comes closer to oracle detector line (with in one 9 of
durability) as the amount of data at risk rises. Finally,
with a local auditor, data loss is detected in one audit
round independent of data loss percentage at the dishon-
est SSPs as a local auditor can spot check all the data. In
the presence of dishonest SSPs, our audit protocol im-
proves durability of our system by two 9’s over a system
with no audit at an additional audit cost of just 20%. We
show in the extended report [45] that overall durability
of our system improves with increasing audit budget and
approaches the oracle detector line.

5 SSFS

We implement SSFS, a file system that embodies the
SafeStore architecture and protocol. In this section, we
first describe the SSP interface and our SSFS SSP im-
plementation. Then, we describe SSFS’s local server.

5.1 SSP

As Figure 1 shows, for long-term data retention SSFS
local servers store data redundantly across administra-
tively autonomous SSPs using erasure coding or full
replication. SafeStore SSPs provide a simple yet care-
fully defined object store interface to local servers as
shown in Table 2.

Two aspects of this interface are important. First, it
provides non-repudiable receipts for writes and expira-
tion extensions in order to support our spot-check-based
audit protocol. Second, it provides temporal isolation to
limit the data owner’s ability to change data that is cur-
rently stored [46]. In particular, the SafeStore SSP pro-
tocol (1) gives each object an absolute expiration time
and (2) allows a data owner to extend but not reduce an
object’s lifetime.

This interface supports what we expect to be a typ-
ical usage pattern in which an owner creates a ladder
of backups at increasing granularity [59]. Suppose the
owner wishes to maintain yearly backups for each year
in the past 10 years, monthly backups for each month
of the current year, weekly backups for the last four
weeks, and daily backups for the last week. Using the
local server’s snapshot facility (see Section 5.2), on the
last day of the year, the local server writes all current
blocks that are not yet at the SSP with an expiration
date 10-years into the future and also iterates across the
most recent version of all remaining blocks and sends
extend expire requests with an expiration date 10-years
into the future. Similarly, on the last day of each month,
the local server writes all new blocks and extends the
most recent version of all blocks; notice that blocks not
modified during the current year may already have ex-
piration times beyond the 1-year target, but these exten-
sions will not reduce this time. Similarly, on the last day
of each week, the local server writes new blocks and
extends deadlines of the current version of blocks for
a month. And every night, the local server writes new
blocks and extends deadlines of the current version of all
blocks for a week. Of course, SSPs ignore extend expire
requests that would shorten an object’s expiration time.

SSP implementation. We have constructed a proto-
type SSFS SSP that supports all of the features described
in this paper including the interface for servers and the
interface for auditors. Internally, each SSP spreads data
across a set nodes using erasure coding with a redun-
dancy level specified for each data owner’s account at
account creation time.

For compatibility with legacy SSPs, we also imple-
ment a simplified SSP interface that allows data owners
to store data to Amazon’s S3 [1], which provides a sim-

2007 USENIX Annual Technical Conference USENIX Association138

ple non-versioned read/write/delete interface and which
does not support our optimized audit protocol.

Issues. There are two outstanding issues in our current
implementation. We believe all are manageable. .

First, in practice, it is likely that SSPs will provide
some protocol for deleting data early. We assume that
any such out-of-band early-delete mechanism is care-
fully designed to maximize resistance to erroneous dele-
tion by the data owner. For concreteness, we assume that
the payment stream for SSP services is well protected by
the data owner and that our SSP will delete data 90 days
after payment is stopped. So, a data owner can delete un-
wanted data by creating a new account, copying a subset
of data from the old account to the new account, and then
stopping payment on the old account. More sophisti-
cated variations (e.g., using threshold-key cryptography
to allow a quorum of independent administrators to sign
off on a delete request) are possible.

Second, SSFS is vulnerable to resource consumption
attacks: although an attacker who controls an owner’s
local server cannot reduce the integrity of data stored at
SSPs, the attacker can send large amounts of long-lived
garbage data and/or extend expirations farther than de-
sired for large amounts of the owner’s data stored at the
SSP. We conjecture that SSPs would typically employ a
quota system to bound resource consumption to within
some budget along with an out-of-band early delete
mechanism such as described in the previous paragraph
to recover from any resulting denial of service attack.

5.2 Local Server

Clients interact with SSFS through a local server. The
SSFS local server is a user level file system that exports
the NFS 2.0 interface to its clients. The local server
serves requests from local storage to improve the cost,
performance, and availability of the system. Remote
storage is used to store data durably to guard against
local failures. The local server encrypts (using SHA1
and 1024 bit Rabin key signature) and encodes [55] (if
data is not fully replicated) all data before sending it to
remote SSPs, and it transparently fetches, decodes and
decrypts data from remote storage if it is not present in
the local cache.

All local server state except the encryption key and
list of SSPs is soft state: given these items, the local
server can recover the full filesystem. We assume both
are stored out of band (e.g., the owner burns them to
a CD at installation time and stores the CD in a safety
deposit box).

Snapshots: In addition to the standard NFS calls,
the SSFS local server provides a snapshot interface [16]

that supports file versioning for achieving temporal iso-
lation to tolerate client or administrator failures. A snap-
shot stores a copy in the local cache and also redun-
dantly stores encrypted, erasure-coded data across mul-
tiple SSPs using the remote storage interface.

Local storage is structured carefully to reduce stor-
age and performance overheads for maintaining multi-
ple versions of files. SSFS uses block-level version-
ing [16, 53] to reduce storage overhead by storing only
modified blocks in the older versions when a file is mod-
ified.

Other optimizations: SSFS uses a fast recovery
optimization to recover quickly from remote storage
when local data is lost due to local server failures (disk
crashes, fire, etc.) The SSFS local server recovers
quickly by coming online as soon as all metadata in-
formation (directories, inodes, and old-version informa-
tion) is recovered and then fetching file data to fill the
local cache in the background. If a missing block is
requested before it is recovered, it is fetched immedi-
ately on demand from the SSPs. Additionally, local stor-
age acts as a write-back cache where updates are propa-
gated to remote SSPs asynchronously so that client per-
formance is not affected by updates to remote storage.

6 Evaluation

To evaluate the practicality of the SafeStore architec-
ture, we evaluate our SSFS prototype via microbench-
marks selected to stress test three aspects of the design.
First, we examine performance overheads, then we look
at storage space overheads, and finally we evaluate re-
covery performance.

In our base setup, client, local server, and remote SSP
servers run on different machines that are connected by a
100 Mbit isolated network. For several experiments we
modify the network to synthetically model WAN behav-
ior. All of our machines use 933MHZ Intel Pentium III
processors with 256 MB RAM and run Linux version
2.4.7. We use (3,2) erasure coding or full replication
((3,1) encoding) to redundantly store backup data across
SSPs.

6.1 Performance

Figure 6 compares the performance of SSFS and a stan-
dard NFS server using the IOZONE [13] microbench-
mark. In this experiment, we measure the overhead of
SSFS’s bookkeeping to maintain version information,
but we do not take filesystem snapshots and hence no
data is sent to the remote SSPs. Figure 6(a),(b), and
(c) illustrates throughput for reads, throughput for syn-
chronous and asynchronous writes, and throughput ver-

2007 USENIX Annual Technical ConferenceUSENIX Association 139

0

100000

200000

300000

400000

500000

600000

700000

10 100 1000 10000 100000

K
by

te
s/

se
c

File size in KBytes

NFS

SSFS

0

50000

100000

150000

200000

250000

300000

10 100 1000 10000 100000 1e+06

K
by

te
s/

se
c

File size in KBytes

SSFS : Sync

NFS : Sync

NFS
SSFS

0.001

0.01

0.1

1

10

2000 4000 6000 8000 10000 12000

L
at

en
cy

(S
ec

)

Throughput (Kbytes/Sec)

NFS

SSFS

(a) (b) (c)

Fig. 6: IOZONE : (a) Read (b) Write (c) Latency versus Throughput

PostMark

0

5

10

15

20

25

T
im

e
(s

ec
)

NFS
SSFS
SSFS-Snap
SSFS-WAN

Fig. 7: Postmark: End-to-end performance

sus latency for SSFS and stand alone NFS. In all cases,
SSFS’s throughput is within 12% of NFS.

Figure 7 examines the cost of snapshots. Note SSFS
sends snapshots to SSPs asynchronously, but we have
not lowered the priority of these background transfers,
so snapshot transfers can interfere with demand re-
quests. To evaluate this effect, we add snapshots to
the Postmark [19] benchmark, which models email/e-
commerce workloads. The benchmark initially creates
a pool of files and then performs a specified number of
transactions consisting of creating, deleting, reading, or
appending a file. We set file sizes to be between 100B
and 100KB and run 50000 transactions. To maximize
the stress on SSFS, we set the Postmark parameters to
maximize the fraction of append and create operations.
Then, we modify the benchmark to take frequent snap-
shots: we tell the server to create a new snapshot after
every 500 transactions. As shown in the Figure 7, when
no snapshots are taken SSFS takes 13% more time than
NFS due to overhead involved in maintaining multiple
versions. Turning on frequent snapshots increases the
response time of SSFS (SSFS-snap in Figure 7) by 40%
due to additional overhead due to signing and transmit-
ting updates to SSPs. Finally, we vary network latencies
to SSPs to study the impact of WAN latencies on perfor-
mance when SSPs are geographically distributed over
the Internet by introducing artificial delay (of 40 ms) at
the SSP server. As shown in the Figure 7, SSFS-WAN

10

20

30

40

50

60

70

80

54321

St
or

ag
e

(K
B

)

Time (snapshots)

Overhead with full replication

NFS - FR

NFS

SSFS - Local

SSFS - RS

Fig. 8: Storage overhead

response time increases by less than an additional 5%.

6.2 Storage overhead

Here, we evaluate the effectiveness of SSFS’s mecha-
nisms for limiting replication overhead. SSFS mini-
mizes storage overheads by using a versioning system
that stores the difference between versions of a file rather
than complete copies [53]. We compare the storage
overhead of SSFS’s versioning file system and compare
it with NFS storage that just keeps a copy of the lat-
est version and also a naive versioning NFS file system
(NFS-FR) that makes a complete copy of the file before
generating a new version. Figure 8 plots the storage con-
sumed by local storage (SSFS-LS) and storage at one re-
mote server (SSFS-RS) when we use a (3,1) encoding.
To expose the overheads of the versioning system, the
microbenchmark is simple: we append 10KB to a file
after every file system snapshot. SSFS’s local storage
takes a negligible amount of additional space compared
to non-versioned NFS storage. Remote storage pays a
somewhat higher overhead due to duplicate data storage
when appends do not fall on block boundaries and due
to additional metadata (integrity hashes, the signed write
request, expiry time of the file, etc.)

The above experiments examine the case when the
old and new versions of data have much in common and
test whether SSFS can exploit such situations with low
overhead. There is, of course, no free lunch: if there
is little in common between a user’s current data and

2007 USENIX Annual Technical Conference USENIX Association140

old data, the system must store both. Like SafeStore,
Glacier uses a expire-then-garbage collect approach to
avoid inadvertent file deletion, and their experience over
several months of operation is that the space overheads
are reasonable [40].

7 Related work
Several recent studies [31, 57] have identified the chal-
lenges involved in building durable storage system for
multi-year timescales.

Flat erasure coding across nodes [33, 36, 40, 66] does
not require detailed predictions of which sets of nodes
are likely to suffer correlated failures because it tolerates
any combinations of failures up to a maximum number
of nodes. However, flat encoding does not exploit the
opportunity to reduce replication costs when the system
can be structured to make some failure combinations
more likely than others. An alternative approach is to
use full replication across sites that are not expected to
fail together [43, 46], but this can be expensive.

SafeStore is architected to increase the likelihood that
failures will be restricted to specific groups of nodes,
and it efficiently deploys storage within and across SSPs
to address such failures. Myriad [34] also argues for
a 2-level (cross-site, within-site) coding strategy, but
SafeStore’s architecture departs from Myriad in keep-
ing SSPs at arms-length from data owners by carefully
restricting the SSP interface and by including provisions
for efficient end-to-end auditing of black-box SSPs.

SafeStore is most similar in spirit to OceanStore [42]
in that we erasure code indelible, versioned data across
independent SSPs. But in pursuit of a more aggressive
“nomadic data” vision, OceanStore augments this ap-
proach with a sophisticated overlay-based infrastructure
for replication of location-independent objects that may
be accessed concurrently from various locations in the
network [54]. We gain considerable simplicity by using
a local soft-state server through which all user requests
pass and by focusing on storing data on a relatively small
set of specific, relatively conventional SSPs. We also
gain assurance in the workings of our SSPs through our
audit protocol.

Versioning file systems [16, 50, 56, 59, 64] provide
temporal isolation to tolerate client failures by keeping
multiple versions of files. We make use of this technique
but couple it with efficient, isolated, audited storage to
address a broader threat model.

We argue that highly durable storage systems should
audit data periodically to ensure data integrity and to
limit worst-case MTTR. Zero-knowledge-based audit
mechanisms [38, 47] are either network intensive or
CPU intensive as their main purpose is to audit data

without leaking any information about the data. Safe-
Store avoids the need for such expensive approaches by
encrypting data before storing it. We are then able to
offload audit duties to SSPs and probabilistically spot
check their results. LOCKSS [46] and Samsara [37] au-
dit data in P2P storage systems but assume that peers
store full replicas so that they can easily verify if peers
store identical data. SafeStore supports erasure coding
to reduce costs, so our audit mechanism does not require
SSPs to have fully replicated copies of data.

8 Conclusion
Achieving robust data storage on the scale of decades
forces us to reexamine storage architectures: a broad
range of threats that could be neglected over shorter
timescales must now be considered. SafeStore aggres-
sively applies the principle of fault isolation along ad-
ministrative, physical, and temporal dimensions. Anal-
ysis indicates that SafeStore can provide highly robust
storage and evaluation of an NFS prototype suggests that
the approach is practical.

9 Acknowledgements
This work was supported in part by NSF grants CNS-
0411026, CNS-0430510, and CNS-0509338 and by the
Center for Information Assurance and Security at the
University of Texas at Austin.

References
[1] Amazon S3 Storage Service. http://aws.amazon.com/s3.
[2] Apple Backup. http://www.apple.com.
[3] Concerns raised on tape backup methods. http://

searchsecurity.techtarget.com.
[4] Copan Systems. http://www.copansys.com/.
[5] Data loss statistics. http://www.hp.com/sbso/

serverstorage/protect.html.
[6] Data loss statistics. http://www.adrdatarecovery.com/

content/adr_loss_stat.html.
[7] Fire destroys research center. http://news.bbc.co.uk/1/hi/

england/hampshire/4390048.stm.
[8] Health Insurance Portability and Accountability Act (HIPAA).

104th Congress, United States of America Public
Law 104-191.

[9] Hotmail incinerates customer files. http://news.com.com,
June 3rd, 2004.

[10] “How much information ?”. http://www.sims.berkeley.
edu/projects/how-much-info/.

[11] Hurricane Katrina. http://en.wikipedia.org.
[12] Industry data retention regulations. http://www.veritas.

com/van/articles/4435.jsp.
[13] IOZONE micro-benchmarks. http://www.iozone.org.
[14] Lost Gmail Emails and the Future of Web Apps. http://it.

slashdot.org, Dec 29, 2006.
[15] NetMass Systems. http://www.netmass.com.
[16] Network Appliance. http://www.netapp.com.
[17] Network bandwidth cost. http://www.broadbandbuyer.com/

formbusiness.htm.
[18] OS vulnerabilities. http://www.cert.com/stats.

2007 USENIX Annual Technical ConferenceUSENIX Association 141

[19] Postmark macro-benchmark. http://www.netapp.com/tech_
library/postmark.html.

[20] Ransomware. http://www.networkworld.com/buzz/2005/
092605-ransom.html.

[21] Remote Data Backups. http://www.remotedatabackup.com.
[22] Sarbanes-Oxley Act of 2002. 107th Congress, United

States of America Public Law 107-204.
[23] Spike in Laptop Thefts Stirs Jitters Over Data. Washington Post,

June 22, 2006.
[24] SSPs: RIP. Byte and Switch, 2002.
[25] Tape Replacement Realities. http://www.

enterprisestrategygroup.com/ESGPublications.
[26] The Wayback Machine. http://www.archive.org/web/

hardware.php.
[27] US secret service report on insider attacks. http://www.sei.

cmu.edu/about/press/insider-2005.html.
[28] Victims of lost files out of luck. http://news.com.com, April

22, 2002.
[29] “data backup no big deal to many, until...”. http://money.cnn.

com, June 2006.
[30] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and

C. Porth. BAR fault tolerance for cooperative services. In Proc.
of SOSP ’05, pages 45–58, Oct. 2005.

[31] M. Baker, M. Shah, D.S.Rosenthal, M. Roussopoulos, P. Mani-
atis, T. Giuli, and P. Bungale. A fresh look at the reliability of
long-term digital storage. In EuroSys, 2006.

[32] L. Bassham and W. Polk. Threat assessment of malicious code
and human threats. Technical report, National Institute of Stan-
dards and Technology Computer Security Division, 1994. http:
//csrc.nist.gov/nistir/threats/.

[33] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker.
Total Recall: System support for automated availability manage-
ment. In Proceedings of 1st NSDI, CA, 2004.

[34] F. Chang, M. Ji, S. T. A. Leung, J. MacCormick, S. E. Perl, and
L. Zhang. Myriad: Cost-effective disaster tolerance. In Pro-
ceeedings of FAST, 2002.

[35] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID : High-performance,reliable secondary storage.
ACM Comp. Surveys, 26(2):145–185, June 1994.

[36] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yian-
ilos. A prototype implementation of archival intermemory. In
Proceedings of the 4th ACM Conference on Digital Libraries,
San Fransisco, CA, Aug 1999.

[37] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-
peer storage. In Proc. of SOSP03.

[38] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives
enforcing communication and storage complexity. In Financial
Cryptography (FC 2002), volume 2357 of Lecture Notes in Com-
puter Science, pages 120–135. Springer, 2003.

[39] J. Gray. A Census of Tandem System Availability Between 1985
and 1990. IEEE Trans. on Reliability, 39(4):409–418, Oct. 1990.

[40] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Higly
durable, decentralized storage despite massive correlated fail-
ures. In Proceedings of 2nd NSDI, CA, March 2004.

[41] R. Hassan, W. Yurcik, and S. Myagmar. The evolution of storage
service providers. In StorageSS’05, VA,USA, 2005.

[42] J. Kubiatowicz et al. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of ASPLOS, 2000.

[43] F. Junquiera, R. Bhagwan, K. Marzullo, S. Savage, and G. M.
Voelker. Surviving internet catastrophes. In Proceedings of the
Usenix Annual Technical Conference, April 2005.

[44] K. Keeton and E. Anderson. A backup appliance composed of
high-capacity disk drives. In HP Laboratories SSP Technical
Memo HPL-SSP-2001-3, April 2001.

[45] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A durable and

practical storage system. Technical report, University of Texas
at Austin, 2007. UT-CS-TR-07-20.

[46] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosen-
thal, M. Baker, and Y. Muliadi. Lockss: A peer-to-peer digital
preservation system. ACM Transactions on Computer Systems,
23(1):2–50, Feb. 2005.

[47] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Hndbook
of Applied Cryptography. CRC Press, 2001.

[48] D. Openheimer, A. Ganapathi, and D. Patterson. Why do internet
systems fail, and what can be done about it. In Proceedings of
4th USITS, Seattle,WA, March 2003.

[49] D. Patterson. A conversation with jim gray. ACM Queue, pages
vol. 1, no. 4, June 2003.

[50] Z. Peterson and R. Burns. Ext3cow: A time-shifting file system
for regulatory compliance. ACM Trans. on Storage, 1(2):190–
212, May. 2005.

[51] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure Trends in
a Large Disk Drive Population. In Proceeedings of FAST, 2007.

[52] V. Prabhakaran, L. Bairavasundaram, N. Agrawal, H. G. A.
Arpaci-Dusseau, and R. Arpaci-Dusseau. IRON file systems.
In Proc. of SOSP ’05, 2005.

[53] K. M. Reddy, C. P. Wright, A. Hammer, and E. Zadok. A Versa-
tile and user-oriented versioning file system. In FAST, 2004.

[54] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The OceanStore prototype. In FAST03,
Mar. 2003.

[55] L. Rizzo. Effective erasure codes for reliable computer commu-
nication protocols. ACM Comp. Comm. Review, 27(2), 1997.

[56] M. Rosenblum and J. K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Trans. Comput. Syst.,
10(1):26–52, 1992.

[57] D. S. H. Rosenthal, T. S. Robertson, T. Lipkis, V. Reich, and
S. Morabito. Requirements for digital preservation systems: A
bottom-up approach. D-Lib Magazine, 11(11), Nov. 2005.

[58] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in sys-
tem design. ACM TOCS, Nov. 1984.

[59] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W.
Carton, and J. Ofir. Deciding when to forget in the Elephant
file system. In Proceedings of 17th ACM Symp. on Operating
Systems Principles, December 1999.

[60] B. Schroeder and G. A. Gibson. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In
Proceeedings of FAST, 2007.

[61] T. Schwarz, Q. Xin, E. Miller, D. Long, A. Hospodor, and S. Ng.
Disk scrubbing in large archival storage systems. In Proc. MAS-
COTS, Oct. 2004.

[62] Seagate. Get S.M.A.R.T for reliability. Technical Report TP-
67D, Seagate, 1999.

[63] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In Proceedings of 6th OSDI, 2004.

[64] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger.
Metadata efficiency in a comprehensive versioning file system.
In Proc. of FAST 2003.

[65] H. Weatherspoon and J. Kubiatowicz. Erasure Coding ver-
sus replication: A quantitative comparison. In Proceedings of
IPTPS, Cambridge,MA, March 2002.

[66] J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote,
and P. K. Khosla. Survivable information storage systems. IEEE
Computer, 33(8):61–68, Aug. 2000.

[67] Q. Xin, T. Schwarz, and E. Miller. Disk infant mortality in large
storage systems. In Proc of MASCOTS ’05, 2005.

[68] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. In Proceedings of
6th OSDI, December 2004.

2007 USENIX Annual Technical Conference USENIX Association142

