
How robust are gossip-based communication protocols?

Lorenzo Alvisi
Laboratory for Advanced

Systems Research (LASR)
Dept. of Computer Sciences

The University of Texas at
Austin

Jeroen Doumen
Distributed and Embedded

Systems Group
Dept. of Computer Science

University of Twente

Rachid Guerraoui
School of Computer &

Communication Sciences
Swiss Federal Institute of
Technology in Lausanne

(EPFL)

Boris Koldehofe
Institute of Parallel and

Distributed Systems (IPVS)
University of Stuttgart

Harry Li
Laboratory for Advanced

Systems Research (LASR)
Dept. of Computer Sciences

The University of Texas at
Austin

Robbert van Renesse
Dept. of Computer Science

Cornell University

Gilles Tredan
IRISA/INRIA-Rennes

ABSTRACT
Gossip-based communication protocols are often touted as
being robust. Not surprisingly, such a claim relies on as-
sumptions under which gossip protocols are supposed to op-
erate. In this paper, we discuss and in some cases expose
some of these assumptions and discuss how sensitive the ro-
bustness of gossip is to these assumptions. This analysis
gives rise to a collection of new research challenges.

Categories and Subject Descriptors
C.2.4 [Computer Communication]: Distributed Systems;
D.2.4 [Operating Systems]: Security and Protection

Keywords
gossiping, security, incentives, robustness

1. INTRODUCTION
Gossip (or epidemic) communication protocols are an at-
tractive technique to manage inconsistencies that arise in
distributed systems because, allegedly, they are simple to
implement and highly resilient to failures. A replicated da-
tabase can converge to a consistent state using a gossip pro-
tocol, despite temporary partitions and process failures [5].
Messages can be broadcast with high reliability and steady
throughput despite high network packet loss rates and high
process failure probabilities [4].

Since the early work on database replication and multicast,
many have considered gossip protocols and touted their ro-
bustness. The robustness claim is often backed-up by anal-
yses accounting for message loss, process failures, topology
changes, and so on. However, as we shall see, they also rely
on a set of additional assumptions about the environment
in which the protocols operate.

In this paper, we take a close look at these assumptions
and at the role they play in determining gossip’s robustness.
We discover, somewhat disturbingly, that gossip’s ability to
deliver on its promise of robustness depends crucially on a
handful of assumptions that are often left unspoken and, as
such, have so far largely escaped close scrutiny.

Our findings suggest that robustness is far from an estab-
lished property of gossip protocols—rather, it is an excit-
ing open research challenge. We conclude this document by
articulating some promising directions for further investiga-
tion.

2. BACKGROUND
In a simple gossip protocol, each process periodically and
randomly selects a partner with whom it exchanges recently
observed information. Gossip’s robustness stems from this
random communication pattern that allows processes to route
new information around both communication and process
failures. Much like real-life rumor- and virus-spreading, in-
formation disseminated by a gossip protocol spreads quickly
and reliably with high probability [7].

In their pioneering work, Demers et al. use a gossip-based
protocol to resolve inconsistencies among Clearinghouse da-
tabase servers [5]. In each communication round, a database
replica randomly selects other replicas with whom it gossips
about recent database updates. This straightforward proto-
col guarantees eventual consistency, that is, in the absence

14



of further updates all replicas converge to the same database
state with probability 1.

Birman et al. take a gossip-based approach towards recov-
ering from message loss in multicast [4]. In each gossip
round, instead of gossiping about database entries, processes
exchange recent multicast receipt events. Such events are
tagged with a maximum hop count chosen large enough so
that gossip guarantees that each event reaches every process
with high probability [8]. At the heart of the dissemination
procedure lies the ability for a process to select a communi-
cation partner, randomly, from the entire set of processes.

Having global membership is a strong assumption, and this
assumption was revisited in [6]. In this protocol, the very
knowledge of membership is also gossiped around. Several
variations of gossip-based membership protocols have been
studied [26, 15, 12, 1, 27].

Gossip protocols can be adapted to tolerate a certain num-
ber of process crashes by adjusting the maximum hop count
and fan-out parameters (the number of selected partners
in each communication round). These techniques impact
the convergence rate of the protocol [3, 14, 23, 17]. In
DRUM [2], Badishi et al. use resource bounding and port
hopping techniques to thwart denial-of-service attacks.

Most gossip protocols assume crash failures. This assump-
tion can be eliminated by creating protocols that tolerate
Byzantine failures. Malkhi et al. initiated the study of gossip-
style update diffusion in a Byzantine environment [20]. Their
analysis was fundamentally different from previous ones be-
cause correct processes needed to verify the veracity of an
update without using digital signatures. Later, Malkhi et
al. [21] and Minsky et al. [22] independently improved upon
this work by annotating propagation paths onto updates.

Later works on Byzantine gossip protocols differ from these
first efforts by relying on cryptographic primitives. Johansen
et al. designed Fireflies [13], a Byzantine fault-tolerant mem-
bership management protocol that allows processes to main-
tain a reasonably current view of the system’s members.
Haridasan and Van Renesse implement SecureStream [11], a
live streaming system built on top of Fireflies. Concurrently,
Li et al. designed BAR Gossip [19], a live streaming protocol
that combines elements from the Byzantine fault-tolerance
literature and the game theory literature to tolerate Byzan-
tine and rational processes.

A common technique towards weakening assumptions in net-
work protocols is to design them so that they adapt to chang-
ing environments. For example, Rodrigues et al. present a
gossip-based broadcast protocol that automatically adjusts
the per-node emission rate to a level that the gossip proto-
col can maintain without overflowing message buffers [24].
Previous gossip protocols tacitly assumed that the rate of
emission is sufficiently low to avoid such congestion. In or-
der to increase the rate of emissions Kouznetsov et al. [18]
proposed age-based purging of message buffers. Subsequent
work [16] also analyzed appropriate buffer sizes depending
on the emission rate and evaluated buffer sizes in combina-
tion with different purging strategies.

3. HIDDEN ASSUMPTIONS IN GOSSIP PRO-
TOCOLS

Any protocol makes certain assumptions about the environ-
ment in which it is deployed in order to guarantee certain
properties. These include assumptions about network la-
tency and bandwidth, processing time, failures, and so on. If
such assumptions are made explicit, then the burden lies on
the deployer to make sure that the assumptions are satisfied.
However, in this section we present a set of five commonly
made assumptions that are typically not made explicit. Yet,
gossip protocols rely on these assumptions just as much as
they rely on explicit ones.

Assumption 3.1. In a gossip protocol, participants gos-
sip with one or more partners at fixed time intervals.

This assumption is technically a synchrony assumption. That
is, the clocks at the different processes have the same rate
of progress, and the processes gossip in real-time and are
not arbitrarily slow. In addition, while most protocols allow
for message loss, it is assumed that a certain percentage of
messages is delivered within a round, and thus the network
is also assumed to be synchronous.

In practice, neither the processes nor the network can be as-
sumed to be synchronous, and arbitrary delays happen reg-
ularly. If, for example, gossip intervals were made very short
compared to network latencies and CPU processing times,
then most published analyses of gossip would certainly not
apply. On the other hand, increasing this delay impacts the
latency of gossip dissemination. Even with a generous gos-
sip interval unfounded synchrony assumptions could lead to
unexpected problems, such as unexpected bursts of message
loss of delay that invalidate the analysis of delivery proba-
bility and/or latency.

A synchrony assumption can even purposely be invalidated
by a malicious Denial-of-Service attack, either at the net-
work level, by increasing network latencies, or at the appli-
cation level, by creating large amounts of information to be
gossiped.

Assumption 3.2. There is a bound on how many updates
are concurrently propagated.

This assumption relates to the amount of resources that
processes need to provide and may impact gossip’s scalabil-
ity. Most gossip protocols assume that processes have suffi-
cient resources available and that gossip never exceeds these
limits—hence, they typically do not consider what happens
to a gossip protocol whose demands grow to require more re-
sources than many of the participants are willing to budget
for.

For instance, if each process generates new updates at a
fixed rate, then, to keep track of the updates that have been
already applied, each process will have to allocate buffers
whose size grows linearly with the number of processes in
the system.

15



Even if we assume there are sufficiently many resources avail-
able for storing information, it is hard to ignore gossip’s
communication costs. Too many messages may reduce the
available bandwidth and increase latencies. There is a rela-
tion to Assumption 3.1. If the rate at which information is
injected into the system exceeds the capacity of gossip, dis-
semination delays will continuously grow. Moreover, buffer
exhaustion may lead to losing the memory of old events: in
an asynchronous system, these events could then be mis-
taken for new updates and applied repeatedly.

Although it can be unacceptable for many applications, such
behavior can easily occur if some processes slightly diverge
from their expected execution steps. In particular, in a sys-
tem where communication partners change dynamically it is
hard to distinguish between processes which are malicious
and processes that simply do not have accurate time. Pro-
cesses can overload the system by sending messages at a
slightly higher rate than they are expected to sent.

Assumption 3.3. Every gossip interaction is independent
of concurrent gossiping between other processes.

In reality, gossip messages are transfered over the underlying
physical communication graph. As a result, various commu-
nication failures are often correlated, but most analyses of
gossip assume that message loss failures are independently
distributed (if not identically). In practice, a single link
failure could result in a large amount of dependent message
loss.

Even in the absence of link failures, loss is often caused
by queue overflows at routers, and indeed random gossip-
ing between end-hosts could result in a highly uneven load
on routers in the physical network. Such uneven load can
also be caused by external traffic, which can either be of an
unintended or malicious nature.

Finally, there is often a considerable amount of heterogene-
ity in real distributed systems. Not all processes are the
same, not all links are the same, and not all routers are the
same. In the face of these real-world difficulties, a math-
ematical analysis is often intractable. Simulations, on the
other hand, may not give all the insights necessary to pre-
dict how gossip will behave when subject to a particular
environment.

Assumption 3.4. Any two processes can discover each
other independently of the gossip mechanism.

It is clear that any gossip protocol needs some kind of boot-
strap mechanism whereby newly joining processes can dis-
cover one another. However, it is perhaps not obvious that
this mechanism has to be available continuously. Gossip is
often touted to work well in the face of transient network
partitions. If a network is partitioned, each section can make
progress independently through gossip. When the partition
resolves, gossip can repair extant inconsistencies. We pose
that making this work satisfactorily in practice depends on
a discovery service.

To wit, consider a system with a large number of processes.
Because of a network failure, a site with a few processes is
disconnected from the rest of the membership. Now con-
sider what will happen within this site. As each process
chooses its gossip partners randomly, most attempts at gos-
sip will fail and dissemination of information among these
few processes will take exceedingly long.

It is therefore necessary that these processes may refer back
to a discovery service in order to rediscover each other. At
the same time, for efficiency it is important that the pro-
cesses cease trying to gossip with the partners they can no
longer reach. But herein lies a problem as well. If they do
so and the network partition heals subsequently, gossip by
itself may fail to rejoin the disconnected processes. Again,
the system relies on a discovery service to reconnect the
processes.

Assumption 3.5. Processes select gossip partners within
a round in an unpredictable random-like fashion.

Random partner selection seems to be an essential aspect of
gossip protocols. If this selection is not random then an ap-
plication could be adversely affected. For instance, the mix-
ing time could be slowed down considerably, some processes
may receive messages less reliably than other processes, or
processes may become partitioned. In some environments,
using a suitable pseudo-random generator is sufficient for
partner selection. In settings in which processes behave self-
ishly, however, there may be incentive for a process to not
use such a generator.

Consider a selfish process S interested in the data from pro-
cess T . Nothing prevents S from initiating gossip with T
each round to get early access to T ’s data, and subsequently,
S may be uninterested in gossiping with other neighbors.
When processes select partners in an unregulated way, we
lose our ability to guarantee traditional properties like log-
arithmic mixing time and resilience to failures.

Discussion. We do not claim that the above list of assump-
tions is comprehensive. There are often other hidden but ob-
vious assumptions in any protocol. For example, if processes
choose partners uniformly at random, memory overheads on
processes would grow linearly in the number of processes.
While this overhead matters little on current desktop ma-
chines, the memory on nodes in a sensor network could be
severely limited. The point is that for every gossip deploy-
ment, we need to revisit our assumptions, and justify them
in the appropriate light.

4. CHALLENGES
By revisiting the hidden assumptions of Section 3 we now
propose research challenges in maintaining, and in some
cases restoring, gossip’s robustness properties.

• Assumption 3.1 states that many gossip protocols rely
on synchrony assumptions. A natural evolution of re-
search in distributed systems is to understand possibil-
ities and impossibilities if we move to a weaker system

16



model. For example, research on consensus protocols
has studied the impact if we move from a synchronous
to an asynchronous system model, or if we take a dif-
ferent failure model into account. This way it was
possible to establish many important research results.
For instance, in the context of consensus it is impos-
sible to guarantee termination, even for a single crash
failure. This could also be natural direction for gos-
sip protocols towards a better understanding of the
guarantees we can hope for when changing the sys-
tem model. What are the failures we could cope with
if we apply gossip in an asynchronous model relying
on fair links. Is it still possible to guarantee that dis-
semination of updates reach every correct process with
probability 1?

• Revisiting Assumption 3.2 highlights a difficulty of re-
source constraint approaches. In the context of event
dissemination a fairly small increase in the message
rate can be sufficient to overload buffers and, even
worse, overload the entire event dissemination system
such that latencies grow without bounds. As proposed
by Rodrigues et al. [24], one could use adaptation in
order to control the emission rate of events for all pro-
cesses. An alternative approach to enforce expected
behavior would be to establish some resource manage-
ment scheme which grants that only a particular set
of processes can access the resources. Decentralized
and dynamic resource management schemes to support
scalability were discussed by Gidenstam et al. [10].
Would this also be an option for gossip protocols where
only a few processes have a token to add new informa-
tion, whilst the others can only listen to new updates?
Could we use resource management to establish alter-
native ways to address consistency for applications?
Can we ensure that the resources are managed decen-
tralized in a fair manner and what happens if we need
to manage resources when processes behave selfishly
or otherwise maliciously?

• In Assumption 3.3 we find that in many cases the se-
lection of gossip partners show dependencies with re-
spect to the underlying communication graph, that is,
failures could be correlated and communication delays
may be unevenly distributed. However, it is still possi-
ble to set up logical but partially connected communi-
cation meshes on which it is possible to gossip success-
fully. How should those meshes be designed so that
interactions between the logical links are minimized?
Alternatively, can Internet routers support the illusion
of independent gossips using something similar, say, to
Random Early Detection (RED) [9]? Can we guaran-
teethat all members are treated fairly, and none are
starved for delivery.

• Looking at Assumption 3.4 we can see that discov-
ery is an important part of a deployed gossip mech-
anism. Still there does not exist much research de-
voted towards this issue. It would appear that a sys-
tem addressing discovery should be aware of the physi-
cal topology of the network, and sufficiently decentral-
ized in order to make sure that every node can access
the discovery service at any time. While such a ser-
vice may use gossip internally (for example, Astrolabe

comes close to such a system [25]), it would seem that
there is a chicken-and-egg problem.

• Many have taken gossip as a scalable and robust way
to disseminate information in a peer-to-peer environ-
ment. Yet, at Internet scale in which each machine
corresponds to a user and many users are selfish (wit-
ness file-sharing activity), we need ways to enforce our
partner selection algorithms. Unfortunately, it is not
obvious how to check that a process is selecting part-
ners appropriately because this selection is often non-
deterministic. Li et al. [19] enforce proper partner se-
lection in their gossip protocol by using cryptograph-
ically generated choices. Their algorithm allows the
recipient of a gossip request to check that the sender
selected appropriately, and if not, to reject the request.
A limitation of Li et al.’s approach is that the check-
ing step relies on all processes sharing the same static
global membership list. Is it possible to combine el-
ements from Li et al.’s approach with the large body
of literature on maintaining partial membership lists?
Furthermore, can partner selections be biased in check-
able ways to account for changing network topologies?

5. CONCLUSIONS
Like many other protocols, gossip protocols rely on a set
of assumptions. Exposing these assumptions is crucial to
understanding the robustness of the protocols that rely on
them. We reviewed several assumptions made by gossip pro-
tocols, and explored the impact of invalidating the assump-
tions. This in turn suggested various research directions.

6. REFERENCES
[1] A. Allavena, A. Demers, and J. E. Hopcroft.

Correctness of a gossip based membership protocol. In
Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing
(PODC ’05), pages 292–301. ACM Press, 2005.

[2] G. Badishi, I. Keidar, and A. Sasson. Exposing and
eliminating vulnerabilities to denial of service attacks
in secure gossip-based multicast. IEEE Transactions
on Dependable and Secure Computing, 3(1):45, 2006.

[3] N. T. J. Bailey. The Mathematical Theory of
Infectious Diseases and its Applications. Griffin, 2nd
edition, 1975.

[4] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Transactions on Computer Systems, 17(2):41–88, May
1999.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing,
pages 1–12. ACM Press, 1987.

[6] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
A.-M. Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. ACM Transaction on
Computer Systems, 21(4):341 – 374, 2003.

[7] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulié. Epidemic information dissemination in
distributed systems. IEEE Computer, 37(5):60–67,
2004.

17



[8] P. T. Eugster, R. Guerraoui, and P. Kouznetsov.
D-reliable broadcast: A probabilistic measure of
broadcast reliability. In Proceedings of the 24th IEEE
International Conference on Distributed Computing
Systems (ICDCS 2004), 24-26 March, Hachioji,
Tokyo, Japan, pages 636–643, 2004.

[9] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans.
Netw., 1(4):397–413, 1993.

[10] A. Gidenstam, B. Koldehofe, M. Papatriantafilou, and
P. Tsigas. Dynamic and fault-tolerant cluster
management. In Proceedings of the Fith IEEE
International Conference on Peer-to-Peer Computing,
pages 237–244. IEEE, Aug. 2005.

[11] M. Haridasan and R. van Renesse. Defense against
intrusion in a live streaming multicast system. In
Proceedings of the Sixth IEEE International
Conference on Peer-to-Peer Computing (P2P ’06),
pages 185–192, Washington, DC, USA, 2006. IEEE
Computer Society.

[12] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service:
Experimental evaluation of unstructured gossip-based
implementations. In Proceedings of the
ACM/IFIP/USENIX 5th International Middleware
Conference, pages 79 – 98, 2004.

[13] H. Johansen, A. Allavena, and R. van Renesse.
Fireflies: Scalable support for intrusion-tolerant
overlay networks. In W. Zwaenepoel, editor,
Proceedings of Eurosys 2006. ACM European Chapter,
April 2006.

[14] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vöcking. Randomized rumor spreading. In
Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, pages 565–574.
IEEE Computer Society Press, Nov. 2000.

[15] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh.
Probabilistic reliable dissemination in large-scale
systems. IEEE Transactions on Parallel and
Distributed Systems, 14(3):248–258, Mar. 2003.

[16] B. Koldehofe. Buffer management in probabilistic
peer-to-peer communication protocols. In Proceedings
of the 22nd Symposium on Reliable Distributed
Systems (SRDS ’03), pages 76–85. IEEE, Oct. 2003.

[17] B. Koldehofe. Simple gossiping with balls and bins.

Studia Informatica Universalis, 3(1):43–60, 2004.

[18] P. Kouznetsov, R. Guerraoui, S. B. Handurukande,
and A.-M. Kermarrec. Reducing noise in gossip-based
reliable broadcast. In Proceedings of the 20th IEEE
Symposium on Reliable Distributed Systems (SRDS
’01), pages 186–189. IEEE, Oct. 2001.

[19] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy,
L. Alvisi, and M. Dahlin. BAR gossip. In Proceedings
of the 2006 USENIX Operating Systems Design and
Implementation (OSDI’06), Nov. 2006.

[20] D. Malkhi, Y. Mansour, and M. K. Reiter. On
diffusing updates in a byzantine environment. In
Proceedings of the 18th IEEE Symposium on Reliable
Distributed Systems (SRDS ’99), page 134,
Washington, DC, USA, 1999. IEEE Computer Society.

[21] D. Malkhi, E. Pavlov, and Y. Sella. Optimal
unconditional information diffusion. In Proceedings of
the 15th International Conference on Distributed
Computing (DISC ’01), pages 63–77, London, UK,
2001. Springer-Verlag.

[22] Y. M. Minsky and F. B. Schneider. Tolerating
malicious gossip. Distributed Computing, 16(1):49–68,
2003.

[23] B. Pittel. On spreading a rumor. SIAM Journal on
Applied Mathematics, 47(1):213–223, Feb. 1987.

[24] L. Rodrigues, S. Handurukande, J. Pereira,
R. Guerraoui, and A. Kermarrec. Adaptive
gossip-based broadcast. In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN), San Francisco, CA, June 2003.

[25] R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed
systems monitoring, management, and data mining.
ACM Transactions on Computer Systems, 21(3), May
2003.

[26] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-based failure detection service. In Proceedings
of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing
(Middleware’98), pages 55–70, England, September
1998.

[27] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon:
Inexpensive membership management for
unstructured p2p overlays. Journal of Network and
Systems Management, 13(2):197–217, June 2005.

18




