
Separating Agreement from Execution for
Byzantine Fault Tolerant Services

Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, Mike Dahlin
Laboratory for Advanced Systems Research

Department of Computer Sciences
The University of Texas at Austin

ABSTRACT
We describe a new architecture for Byzantine fault tolerant
state machine replication that separates agreement that or-
ders requests from execution that processes requests. This
separation yields two fundamental and practically signifi-
cant advantages over previous architectures. First, it re-
duces replication costs because the new architecture can tol-
erate faults in up to half of the state machine replicas that
execute requests. Previous systems can tolerate faults in at
most a third of the combined agreement/state machine repli-
cas. Second, separating agreement from execution allows a
general privacy firewall architecture to protect confidential-
ity through replication. In contrast, replication in previous
systems hurts confidentiality because exploiting the weak-
est replica can be sufficient to compromise the system. We
have constructed a prototype and evaluated it running both
microbenchmarks and an NFS server. Overall, we find that
the architecture adds modest latencies to unreplicated sys-
tems and that its performance is competitive with existing
Byzantine fault tolerant systems.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Distributed systems; D.4.6
[Operating Systems]: Information flow controls

General Terms
Performance, Security, Reliability

Keywords
Byzantine fault tolerance, confidentialiy, reliability, security,
state machine replication, trustworthy systems

1. INTRODUCTION
This paper explores how to improve the trustworthiness

of software systems by using redundancy to simultaneously

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

enhance integrity, availability, and confidentiality. By in-
tegrity, we mean that a service processes users’ requests
correctly. By availability, we mean that a service operates
without interruption. By confidentiality, we mean that a
service only reveals the information a user is authorized to
see.

Our goal is to provide these guarantees despite malicious
attacks that exploit software bugs. Despite advances in
applying formal verification techniques to practical prob-
lems [27, 36], there is little near-term prospect of eliminating
bugs from increasingly complex software systems. Yet, the
growing importance of software systems makes it essential
to develop ways to tolerate attacks that exploit such errors.
Furthermore, the increasing deployment of access-anywhere
network services raises both challenges—access-anywhere
can mean attack-from-anywhere—and opportunities—when
systems are shared by many users, they can devote signifi-
cant resources to hardening themselves to attack.

Recent work has demonstrated that Byzantine fault tol-
erant (BFT) state machine replication is a promising tech-
nique for using redundancy to improve integrity and avail-
ability [38] and that it is practical in that it adds modest
latency [11], can proactively recover from faults [12], and
can make use of existing software diversity to exploit “op-
portunistic n-version programming” [40].

Unfortunately, two barriers limit widespread use of these
techniques to improve security. First, although existing gen-
eral BFT systems improve integrity and availability, they
hurt confidentiality. In particular, although either increas-
ing the number of replicas or making the implementations
of replicas more diverse reduces the chance that an attacker
compromises enough replicas to bring down a service, each
also increases the chance that at least one replica has an
exploitable bug—and an attacker need only compromise the
weakest replica in order to endanger confidentiality. Second,
BFT systems require more than three-fold replication to
work correctly [7]; for instance, tolerating just a single faulty
replica requires at least four replicas. Even with opportunis-
tic n-version programming and falling hardware costs, this
replication cost is significant, and reducing the replication
required would significantly increase the practicality of BFT
replication.

In this paper, we explore a new general BFT replication
architecture to address these two problems. The key prin-
ciple of this architecture is to separate agreement from ex-
ecution. State machine replication relies on first agreeing
on a linearizable order of all requests [28, 29, 43] and then
executing these requests on all state machine replicas. Ex-

isting BFT state machine systems tightly couple these two
functions, but cleanly separating agreement and execution
yields two fundamental advantages.

First, our architecture reduces replication costs because
the new architecture can tolerate faults in up to half of the
state machine replicas responsible for executing requests.
In particular, while our system still requires 3f + 1 agree-
ment replicas to order requests using f -resilient Byzantine
agreement, it only requires a simple majority of correct ex-
ecution replicas to process the ordered requests. This dis-
tinction is crucial because execution replicas are likely to be
much more expensive than agreement replicas both in terms
of hardware—because of increased processing, storage, and
I/O—and, especially, in terms of software. When n-version
(or opportunistic n-version) programming is used to elimi-
nate common-mode failures across replicas, the agreement
nodes are part of a generic library that may be reused across
applications, while the cost of replicating execution code
must be paid by each different service.

Second, separating agreement from execution leads to a
practical and general privacy firewall architecture to protect
confidentiality through Byzantine replication. In existing
state machine replication architectures, a voter co-located
with each client selects from among replica replies. Voters
are co-located with clients to avoid introducing a new sin-
gle point of failure when integrity and availability are the
goals [43], but when confidentiality is also a goal, existing
architectures allow a malicious client to observe confidential
information leaked by faulty servers. In our system, a redun-
dant set of privacy firewall nodes restricts communication
from the execution nodes (where confidential information is
manipulated and stored) to filter out incorrect replies before
they reach the agreement nodes or the clients.

Note that like the BFT systems on which we build [11,
12, 40], our approach can replicate state machines where
execution nodes can perform arbitrary computations on or
modifications of the system’s internal state. In contrast,
Byzantine storage systems based on quorum replication [33]
can encrypt data to prevent servers from leaking it, but such
protocols do not support more general services that require
servers to manipulate the contents of stored data.

We have constructed a prototype system that separates
agreement from execution and that implements a privacy
firewall. Overall, we find its performance to be competitive
with previous systems [11, 12, 40]. With respect to latency,
for example, our system is 16% slower than BASE [40] for
the modified Andrew-500 benchmark with the privacy fire-
wall. With respect to processing overhead and overall sys-
tem cost, several competing factors affect the comparison.
On one hand, the architecture allows us to reduce the num-
ber of execution servers and the resources consumed to exe-
cute requests. On the other hand, when the privacy firewall
is used, the system must pay additional cost for the extra
firewall nodes and for a relatively expensive threshold sig-
nature operation, though the latter cost can be amortized
across multiple replies by signing “bundles” containing mul-
tiple replies. Overall, our overheads are higher than previous
systems when applications do little processing and when ag-
gregate load (and therefore bundle size) is small, and our
overheads are lower in the opposite situations.

In evaluating our privacy firewall architecture, we find
that nondeterminism in some applications and in the net-
work raises significant challenges for ensuring confidentiality

because an adversary can potentially influence nondetermin-
istic outputs to achieve a covert channel for leaking informa-
tion. For the applications we examine, we find that agree-
ment nodes can resolve application nondeterminism obliv-
iously, without knowledge of the inputs or the application
state and therefore without leaking confidential information.
However, more work is needed to determine how broadly
applicable this approach is. For nondeterminism that stems
from the asynchrony of our system model and unreliabil-
ity of our network model (e.g., reply timing, message or-
der, and retransmission counts), we show that our system
provides output symbol set confidentiality, which is similar
to possibilistic non-interference [35] from the programming
languages literature. We also outline ways to restrict such
network nondeterminism, but future work is needed to un-
derstand the vulnerability of systems to attacks exploiting
network nondeterminism and the effectiveness of techniques
to reduce this vulnerability.

The main contribution of this paper is to present the
first study to systematically apply the principle of sepa-
ration of agreement and execution to (1) reduce the repli-
cation cost and (2) enhance confidentiality properties for
general Byzantine replicated services. Although in retro-
spect this separation is straightforward, all previous general
BFT state machine replication systems have tightly coupled
agreement and execution, have paid unneeded replication
costs, and have increased system vulnerability to confiden-
tiality breaches.

In Section 2, we describe our system model and assump-
tions. Then, Section 3 describes how we separate agreement
from execution and Section 4 describes our confidentiality
firewall architecture. Section 5 describes and evaluates our
prototype. Finally Section 6 puts related work in perspec-
tive and Section 7 summarizes our conclusions.

2. SYSTEM MODEL AND ASSUMPTIONS
We consider a distributed asynchronous system where nodes

may operate at arbitrarily different speeds and where there
is no a priori bound on message delay [28]. We also assume
an unreliable network that can discard, delay, replicate, re-
order, and alter messages. More specifically, our protocols
ensure safety regardless of timing, crash failures, message
omission, message reordering, and message alterations that
do not subvert our cryptographic assumptions defined be-
low. Note, however, that it is impossible to guarantee live-
ness unless some assumptions are made about synchrony
and message loss [18]. Our system makes progress if the rel-
atively weak bounded fair links assumption holds. We define
a bounded fair links network as a network that provides two
guarantees. First, it provides the fair links guarantee: if a
message is sent infinitely often to a correct receiver then it
is received infinitely often by that receiver. Second, there
exists some delay T such that if a message is retransmit-
ted infinitely often to a correct receiver according to some
schedule from time t0, then the receiver receives the message
at least once before time t0 + T ; note that the participants
in the protocol need not know the value of T . This assump-
tion appears reasonable in practice assuming that network
partitions are eventually repaired.

We assume a Byzantine fault model for machines and a
strong adversary. Faulty machines can exhibit arbitrary be-
havior. For example, they can crash, lose data, alter data,
and send incorrect protocol messages. Furthermore, we as-

sume an adversary who can coordinate faulty nodes in ar-
bitrary ways. However, we restrict this weak assumption
about machine faults with two strong assumptions. First,
we assume that some bound on the number of faulty servers
is known; for example a given configuration might assume
that at most f of n servers are faulty. Second, we assume
that no machine can subvert the assumptions about crypto-
graphic primitives described in the following paragraphs.

Our protocol assumes cryptographic primitives with sev-
eral important properties. We assume a cryptographic au-
thentication certificate that allows a subset containing k nodes
out of a set S of nodes to operate on message X to produce
an authentication certificate 〈X〉S,D,k that any node in some
set of destination nodes D can regard as proof that k distinct
nodes in S said [8] X . To provide a range of performance
and privacy trade-offs, our protocol supports three alterna-
tive implementations of such authentication certificates that
are conjectured to have the desired properties if a bound
is assumed on the adversary’s computational power: pub-
lic key signatures [39], message authentication code (MAC)
authenticators [11, 12, 47], and threshold signatures [16].

In order to support the required cryptographic primitives,
we assume that correct nodes know their private keys (un-
der signature and threshold signature schemes) or shared
secret keys (under MAC authenticator schemes) and that if
a node is correct then no other node knows its private keys.
Further, we assume that if both nodes sharing a secret key
are correct, then no other node knows their shared secret
key. We assume that public keys are distributed so that the
intended recipients of messages know the public keys needed
to verify messages they receive.

Note that in practice, public key and threshold signatures
are typically implemented by computing a cryptographic di-
gest of a message and signing the digest, and MACs are
implemented by computing a cryptographic digest of a mes-
sage and a secret. We assume that a cryptographic digest
of a message X produces a fixed-length collection of bits
D(X) such that it is computationally infeasible to generate
a second message X ′ with the same digest D(X ′) = D(X)
and such that it is computationally infeasible to calculate
X given D(X). Because digest values are of fixed length,
it is possible for multiple messages to digest to the same
value, but the length is typically chosen to be large enough
to make this probability negligible. Several existing digest
functions such as SHA1 [44] are believed to have these prop-
erties assuming that the adversary’s computational power is
bounded.

To allow servers to buffer information regarding each
client’s most recent request, we assume a finite universe of
authorized clients that send authenticated requests to the
system. For signature-based authenticators, we assume that
each authorized client knows its own public and private keys,
that each server knows the public keys of all authorized
clients, and that if a client is correct, no other machine
knows its private key. For MAC-based authenticators, we
assume each client/server pair shares a secret and that if
both machines are correct, no other node knows the secret.
For simplicity, our description assumes that a correct client
sends a request, waits for the reply, and sends its next re-
quest, but it is straightforward to extend the protocol to al-
low each client to have k outstanding requests. The system
tolerates an arbitrary number of Byzantine-faulty clients in
that non-faulty clients observe a consistent system state re-

Agreement Cert.
Request Cert.

Agreement Cert.
Request Cert.

P

P

P

C

E E

EE
A

C

A

A

A

Certificate
Reply

Certificate
Request Reply

Certificate
Reply
Certificate

Reply
CertificateCertificate

Request Request
Certificate

Certificate
Agreement

Reply
Certificate

Certificate
Request

E EEE

AAAA

EEE

A A A A

P

Reply
CertificateAgreement/Execution

C

(c)(b)(a)

Agreement Agreement

Execution Execution (Optimized)

Priv. Firewall

Figure 1: High level architecture of (a) traditional
Byzantine fault tolerant state machine replication,
(b) separate Byzantine fault tolerant agreement and
execution, and (c) new optimizations enabled by the
separation of agreement and execution.

gardless of the actions of faulty clients. Note that a careless,
malicious, or faulty client can issue disruptive requests that
the system executes (in a consistent way). To limit such
damage, applications typically implement access control al-
gorithms that restrict which actions can be taken by which
clients.

The basic system replicates applications that behave as
deterministic state machines. Given a current state C and
an input I, all non-faulty copies of the state machine tran-
sition to the same subsequent state C ′. We also assume
that all correct state machines have a checkpoint(C) func-
tion that operates on the state machine’s current state and
produces sequence of bits B. State machines also have a
restore(B) function that operates on a sequence of bits and
returns a state machine state such that if a correct machine
executes checkpoint(C) to produce some value B, then any
correct machine that executes restore(B) will then be in
state C. We discuss how to abstract nondeterminism and
minor differences across different state machine replicas [40]
in Section 3.1.4.

3. SEPARATING AGREEMENT FROM
EXECUTION

Figure 1(a) illustrates a traditional Byzantine fault tol-
erant state machine architecture that combines agreement
and execution [11, 12, 40]. In such systems, clients send
authenticated requests to the 3f + 1 servers in the system,
where f is the maximum number of faults the system can
tolerate. The servers then use a three-phase protocol to gen-
erate cryptographically verifiable proofs that assign unique
sequence numbers to requests. Each server then executes
requests in sequence-number order and sends replies to the
clients. A set of f + 1 matching replies represents a reply
certificate that a client can regard as proof that the request
has been executed and that the reply is correct.

Figure 1(b) illustrates our new architecture that separates
agreement and execution. The observation that enables this
separation is that the agreement phase of the traditional
architecture produces a cryptographically-verifiable proof of
the ordering of a request. This agreement certificate can be
verified by any server, so it is possible for execution nodes
to be separate from agreement nodes.

Figure 1(c) illustrates two enhancements enabled by the
separation of execution and agreement.

1. We can separately optimize the agreement and exe-
cution clusters. In particular, it takes a minimum of
3f + 1 servers to reach agreement in an asynchronous
system that can suffer f Byzantine faults [7]. But,
once incoming requests have been ordered, a simple
majority of correct servers suffices to mask Byzantine
faults among execution servers—2g+1 replicas can tol-
erate g faults. Note that the agreement and execution
servers can be separate physical machines, or they can
share the same physical machines.

Reducing the number of state machine execution repli-
cas needed to tolerate a given number of faults can
reduce both software and hardware costs of Byzantine
fault tolerance. Software costs are reduced for systems
using n-version programming to reduce the correlation
of failures across replicas because the 3f +1 agreement
replicas run a generic library that can be reused across
applications, and only 2g +1 application-specific state
machine implementations are needed. Hardware costs
are reduced because fewer replicas of the request are
processed, fewer I/Os are performed, and fewer copies
of the state are stored.

2. We can insert a privacy firewall between the agree-
ment nodes and the execution nodes to filter minority
answers from replies rather than sending these incor-
rect replies to clients. This filtering allows a Byzantine
replicated system to protect confidentiality of state
machine data in the face of faults. Note that this con-
figuration requires agreement and execution nodes to
by physically separate and to communicate only via
confidentiality nodes.

The rest of this section describes a protocol that sepa-
rates agreement from execution. Section 4 then describes
the privacy firewall.

3.1 Inter-cluster protocol
We first provide a cluster-centric description of the pro-

tocol among the client, agreement cluster, and execution
cluster. Here, we treat the agreement cluster and execution
cluster as opaque units that can reliably take certain actions
and save certain state. In Sections 3.2 and 3.3 we describe
how individual nodes within these clusters act to ensure this
behavior.

3.1.1 Client behavior
To issue a request, a client sends a request certificate to

the agreement cluster. In our protocol, request certificates
have the form 〈REQUEST, o, t, c〉c,A,1 where o is the oper-
ation requested, t is the timestamp, and c is the client that
issued the request; the message is certified by the client c to
agreement cluster A and one client’s certification is all that
is needed.1 A correct client issues monotonically increasing
timestamps; if a faulty client’s clock runs backwards, its own
requests may be ignored, but no other damage is done.

After issuing a request, a client waits for a reply certificate
certified by at least g+1 execution servers. In our protocol a
reply certificate has the form: 〈REPLY, v, n, t, c, E, r〉E,c,g+1

1
Note that our message formats and protocol closely follow Castro

and Liskov’s [11, 12].

where v was the view number in the agreement cluster when
it assigned a sequence number to the request, n is the re-
quest’s sequence number, t is the request’s timestamp, c is
the client’s identity, r is the result of the requested opera-
tion, and E is the set of execution nodes of which at least
g + 1 must certify the message to c.

If after a timeout the client has not received the complete
reply certificate, it retransmits the request to all agreement
nodes. Castro and Liskov suggest two useful optimizations
to reduce communication [11]. First, a client initially sends
a request to the agreement server that was the primary dur-
ing the view v of the most recent reply received; retransmis-
sions go to all agreement servers. Second, a client’s request
can designate a specific agreement node to send the reply
certificate or can contain the token ALL, indicating that
all agreement servers should send. The client’s first trans-
mission designates a particular server, while retransmissions
designate ALL.

3.1.2 Agreement cluster behavior
The agreement cluster’s job is to order requests, send

them to the execution cluster, and relay replies from the
execution cluster to the client. The agreement cluster acts
on two messages—the intra-cluster protocols discussed later
will explain how to ensure that these actions are taken reli-
ably.

First, when the agreement cluster receives a valid client
request certificate 〈REQUEST, o, t, c〉c,A,1 the cluster pro-
ceeds with three steps, the first of which is optional.

1. Optionally, check cachec for a cached reply certificate
with the same client c and a timestamp that is at least
as large as the request’s timestamp t. If such a reply
is cached, send it to the client and stop processing
the request. cachec is an optional data structure that
stores the reply certificate for the most recent request
by client c. cachec is a performance optimization only,
required for neither safety nor liveness, and any cachec

entry may be discarded at any time.

2. Generate an agreement certificate that binds the
request to a sequence number n. In our pro-
tocol, the agreement certificate is of the form
〈COMMIT, v, n, d,A〉A,E,2f+1 where v and n are the
view and sequence number assigned by the agreement
three phase commit protocol, d is the digest of the
client’s request (d = D(m)), and the certificate is au-
thenticated by at least 2f +1 of the agreement servers
A to the execution servers E .

Note that if the request’s timestamp is no larger than
the timestamp of a previous client request, then the
agreement cluster still assigns the request a new se-
quence number. The execution cluster will detect the
old timestamp t, assume such requests are retransmis-
sions of earlier requests, and treat them as described
below.

3. Send the request certificate and the agreement certifi-
cate to the execution cluster.

Second, when the agreement cluster receives a reply certifi-
cate 〈REPLY, v, n, t, c, E, r〉E,c,g+1 it relays the certificate to
the client. Optionally, it may store the certificate in cachec.

In addition to these two message-triggered actions, the
agreement cluster performs retransmission of requests and

agreement certificates if a timeout expires before it receives
the corresponding reply certificate. Unlike the traditional
architecture in Figure 1(a), communication between the
agreement cluster and execution cluster is unreliable. And,
although correct clients should repeat requests when they
do not hear replies, it would be unwise to depend on (un-
trusted) clients to trigger the retransmissions needed to fill
potential gaps in the sequence number space at execution
nodes. For each agreement certificate, the timeout is set
to an arbitrary initial value and then doubled after each
retransmission. To bound the state needed to support re-
transmission, the agreement cluster has at most P requests
outstanding in the execution pipeline and does not generate
agreement certificate n until it has received a reply with a
sequence number of at least n − P .

3.1.3 Execution cluster behavior
The execution cluster implements application-specific state

machines to process requests in the order determined by the
agreement cluster.

To support exactly-once semantics, the execution cluster
stores Replyc, the last reply certificate sent to client c.

When the execution cluster receives both a valid request
〈REQUEST, o, t, c〉c,A,1 and a valid agreement certificate
〈COMMIT, v, n, d,A〉A,E,2f+1 for that request, the cluster
waits until all requests with sequence numbers smaller than
n have been received and executed. Then, if the request’s se-
quence number exceeds by one the highest sequence number
executed so far, the cluster takes one of three actions.

1. If the request’s timestamp exceeds the timestamp of
the reply in Replyc, then the cluster executes the new
request, updates Replyc, and sends the reply certificate
to the agreement cluster.

2. If the request’s timestamp equals Replyc’s timestamp,
the request is a client-initiated retransmission of an old
request, so the cluster generates, caches, and sends a
new reply certificate containing the cached timestamp
t′, the cached reply body r′, the request’s view v, and
the request’s sequence number n.

3. If the request’s timestamp is smaller than Replyc’s
timestamp, the cluster must acknowledge the new se-
quence number so that the agreement cluster can con-
tinue to make progress, but it should not execute the
lower-timestamped client request; therefore, the clus-
ter acts as in the second case and generates, caches,
and sends a new reply certificate containing the cached
timestamp t′, the cached reply body r′, the request’s
view v, and the request’s sequence number n.

The above three cases are relevant when the execution clus-
ter processes a new sequence number. If, on the other hand,
a request’s sequence number is not larger than the highest
sequence number executed so far, the execution cluster as-
sumes the request is a retransmission from the agreement
cluster, and it retransmits the client’s last reply certificate
from Replyc; this reply is guaranteed to have a sequence
number at least as large as the request’s sequence number.

Note that in systems not using the privacy firewall archi-
tecture described in Section 4, a possible optimization is for
the client to send the request certificate directly to both the
agreement cluster and the execution cluster and for the exe-

cution cluster to send reply certificates directly to both the
agreement cluster and the client.

3.1.4 Non-determinism
The state machines replicated by the system must be de-

terministic to ensure that their replies to a given request
match and that their internal states do not diverge. How-
ever, many important services include some nondetermin-
ism when executing requests. For example, in the network
file system NFS, different replicas may choose different file
handles to identify a file [40] or attach different last-access
timestamps when a file is read [11]. To address this issue,
we extend the standard technique [11, 12, 40] of resolving
nondeterminism which has the agreement phase select and
sanity check any nondeterministic values needed by a re-
quest. To more cleanly separate (generic) agreement from
(application-specific) execution, our agreement cluster is re-
sponsible for generating nondeterministic inputs that the
execution cluster deterministically maps to any application-
specific values it needs.

For the applications we have examined, the agreement
cluster simply includes a timestamp and a set of pseudo-
random bits in each agreement certificate; similar to the
BASE protocol, the primary proposes these values and the
other agreement nodes sanity-check them and refuse to agree
to unreasonable timestamps or incorrect pseudo-random
number generation. Then, the abstraction layer [40] at the
execution nodes executes a deterministic function that maps
these inputs to the values needed by the application. We be-
lieve that this approach will work for most applications, but
future work is needed to determine if more general mecha-
nisms are needed.

3.2 Internal agreement cluster protocol
Above, we describe the high-level behavior of the agree-

ment cluster as it responds to request certificates, reply cer-
tificates, and timeouts. Here we describe the internal details
of how the nodes in our system behave to meet these require-
ments.

For simplicity, our implementation uses Rodrigues et al.’s
BASE (BFT with Abstract Specification Encapsulation) li-
brary [40], which implements a replicated Byzantine state
machine by receiving, sequencing, and executing requests.
We treat BASE as a Byzantine agreement module that han-
dles the details of three-phase commit, sequence number as-
signment, view changes, checkpoints, and garbage collecting
logs [11, 12, 40]. In particular, clients send their requests to
the BASE library on the agreement nodes to bind requests
to sequence numbers. But, when used as our agreement li-
brary, the BASE library does not execute requests directly
against the application state machine, which is in our execu-
tion cluster. Instead, we install a message queue (described
in more detail below) as the BASE library’s local state ma-
chine, and the BASE library “executes” a request by calling
msgQueue.insert(request certificate, agreement certificate).
From the point of view of the existing BASE library, when
this call completes, the request has been executed. In reality,
this call enqueues the request for asynchronous processing
by the execution cluster, and the replicated message queues
ensure that the request is eventually executed by the execu-
tion cluster. Our system makes four simple changes to the
existing BASE library to accommodate this asynchronous
execution.

1. First, whereas the original library sends the result of
the local execution of a request to the client, the mod-
ified library does not send replies to clients; instead, it
relies on the message queue to do so.

2. Second, to ensure that clients can eventually receive
the reply to each of their requests, the original BASE
library maintains a cache of the last reply sent to each
client and sends the cached value when a client retrans-
mits a request. But when the modified library receives
repeated requests from a client, it does not send the
locally stored reply since the locally stored reply is the
result of the enqueue operation, not the result of the
executing the body of the client’s request. Instead,
it calls msgQueue.retryHint(request certificate), telling
the message queue to send the cached reply or to retry
the request.

3. Third, BASE periodically generates consistent check-
points from its replicas’ internal state so that buffered
messages can be garbage collected while ensuring that
nodes that have fallen behind or that have recovered
from a failure can resume operation from a check-
point [11, 12, 40]. In order to achieve a consistent
checkpoint at some sequence number n across mes-
sage queue instances despite their asynchronous inter-
nal operation, the modified BASE library calls ms-
gQueue.sync() after inserting message n. This call re-
turns after bringing the local message queue state to
a consistent state as required by the BASE library’s
checkpointing and garbage collection algorithms.

4. Fourth, the sequence number for each request is de-
termined according to the order in which it is inserted
into the message queue.

3.2.1 Message queue design
Each node in the agreement cluster has an instance of

a message queue as its local state machine. Each message
queue instance stores maxN , the highest sequence number
in any agreement certificate received, and pendingSends, a
list of request certificates, agreement certificates, and time-
out information for requests that have been sent but for
which no reply has been received. Optionally, each instance
may also store cachec, the reply certificate for the highest-
numbered request by client c.

When the library calls msgQueue.insert(request certifi-
cate, agreement certificate), the message queue instance stores
the certificates in pendingSends, updates maxN , and multi-
casts both certificates to all nodes in the execution cluster.
It then sets a per-request timer to the current time plus an
initial time-out value. As an optimization, when a message
is first inserted, only the current primary needs to send it
to the execution cluster; in that case, all nodes retransmit if
the timeout expires before they receive the reply. In order
to bound the state needed by execution nodes for buffering
recent replies and out of order requests, a pipeline depth P

bounds the number of outstanding requests; an insert() call
for sequence number n blocks (which prevents the node from
participating in the generation of sequence numbers higher
than n) until the node has received a reply with a sequence
number at least n − P .

When an instance of the message queue receives a valid
reply certified by g + 1 execution cluster nodes, it deletes

from pendingSends the request and agreement certificates
for that request and for all requests with lower sequence
numbers; it also cancels the retransmission timer for those
requests. The message queue instance then forwards the
reply to the client. Optionally, the instance updates cachec

to store the reply certificate for client c.
When the modified BASE library calls retryHint(request

certificate) for a request r from client c with timestamp t,
the message queue instance first checks to see if cachec con-
tains a reply certificate with a timestamp of at least t. If
so, it sends the reply certificate to the client. Otherwise, if
a request and agreement certificate with matching c and t

are available in pendingSends, then the queue resends the
certificates to the execution cluster. Finally, if neither the
cache nor the pendingSends contains a relevant reply or
request for this client-initiated retransmission request, the
message queue uses BASE to generate a new agreement cer-
tificate with a new sequence number for this old request and
then calls insert() to transmit the certificates to the execu-
tion cluster.

When the retransmission timer expires for a message in
pendingSends, the instance resends the request and agree-
ment certificates and updates the retransmission timer to
the current time plus twice the previous timeout interval.

Finally, when the modified BASE library calls msg-
Queue.sync(), the message queue stops accepting insert()
requests or generating new agreement certificates and waits
to receive a reply certificate for a request with sequence
number maxN or higher. Once it processes such a reply
and pendingSends is therefore empty, the sync() call returns
and the message queue begins accepting insert() calls again.
Note that cache may differ across servers and is not included
in checkpoints.

3.3 Internal execution cluster protocol
Above, we defined the high-level execution cluster’s be-

havior in response to request and agreement certificates.
Here, we describe execution node behaviors that ensure these
requirements are met.

Each node in the execution cluster maintains the applica-
tion state, a pending request list of at most P received but
not yet executed requests (where P is the maximum pipeline
depth of outstanding requests by the execution cluster), the
largest sequence number that has been executed maxN , and
a table reply where replyc stores the node’s piece of its most
recent reply certificate for client c. Each node also stores the
most recent stable checkpoint, which is a checkpoint across
the application state and the reply table that is certified by
at least g+1 execution nodes. Nodes also store zero or more
newer checkpoints that have not yet become stable.

When a node receives a valid request certificate certified
by a client c and a valid agreement certificate certified by
at least 2f + 1 agreement nodes, it stores the certificates
in the pending request list. Then, once all requests with
lower sequence numbers have been received and processed,
the node processes the request. If the request has a new
sequence number (i.e., n = maxN + 1), the node takes one
of two actions: (1) if t > t′ (where t is the request’s times-
tamp and t′ is the timestamp of the reply in replyc), then the
node handles the new request by updating maxN , executing
the new request, generating the node’s share of the full re-
ply certificate, storing the partial reply certificate in replyc,
and sending the partial reply certificate to all nodes in the

agreement cluster; or (2) if t ≤ t′, then the node handles the
client-initiated retransmission request by updating maxN

and generating, caching, and sending a new partial reply
certificate containing the cached timestamp t′, the cached
reply body r′, the request’s view v, and the request’s se-
quence number n. On the other hand, if the request has
an old sequence number (i.e., n ≤ maxN), the node simply
resends the partial reply certificate in replyc, which is guar-
anteed to have a sequence number at least as large as the
request’s sequence number.

3.3.1 Liveness and retransmission
To eliminate gaps in the sequence number space caused

by the unreliable communication between the agreement and
execution clusters, the system uses a two-level retransmis-
sion strategy. For a request with sequence number n, re-
transmissions by the agreement cluster ensure that eventu-
ally at least one correct execution node receives and executes
request n, and an internal execution cluster retransmission
protocol ensures once that happens, all correct execution
nodes eventually learn of request n or of some stable check-
point newer than n. In particular, if an execution node re-
ceives request n but not request n−1, it multicasts to other
nodes in the execution cluster a retransmission request for
the missing sequence number. When a node receives such a
message, it replies with the specified request and agreement
certificates unless it has a stable checkpoint with a higher se-
quence number, in which case it sends the proof of stability
for that checkpoint (see below.)

3.3.2 Checkpoints and garbage collection
The execution nodes periodically construct checkpoints to

allow them to garbage collect their pending request logs.
Note that the inter-cluster protocol is designed so that
garbage collection in the execution cluster requires no ad-
ditional coordination with the agreement cluster and vice
versa. Execution nodes generate checkpoints at prespecified
sequence numbers (e.g., after executing request n where n

mod CP FREQ = 0). Nodes checkpoint both the applica-
tion state and their replyc list of replies to clients, but they
do not include their pending request list in checkpointed
state. As in previous systems [11, 12, 40], to reduce the cost
of producing checkpoints, nodes can make use of copy on
write and incremental cryptography [5].

After generating a checkpoint, execution servers assemble
a proof of stability for it. When server i produces check-
point C for sequence number n, it computes a digest of
the checkpoint d = D(C) and authenticates its view of
the checkpoint to the rest of the cluster by multicasting
〈CHECKPOINT, n, d〉i,E,1 to all execution nodes. Once
a node receives g + 1 such messages, it assembles them into
a full checkpoint certificate:〈CHECKPOINT, n, d〉E,E,g+1

Once a node has a valid and complete checkpoint cer-
tificate for sequence number n, it can garbage collect state
by discarding older checkpoints, discarding older checkpoint
certificates, and discarding older agreement and request cer-
tificates from the pending request log.

3.4 Correctness
Due to space constraints, we outline our main results here

and defer the proof to an extended technical report [51]. We
show that the high level protocol provides safety and liveness
if the clusters behave as specified. The node actions speci-

fied in our agreement cluster and execution cluster designs
ensure that the clusters discharge their requirements.

The system2 is safe in that a client receives a reply
〈REPLY, v, n, t, c, E, r〉E,c,g+1 only if (a) earlier the client is-
sued a request 〈REQUEST, on, t, c〉c,A,1, (b) the reply value
r reflects the output of state machine in state Qn−1 execut-
ing request operation on, (c) there exists some set of opera-
tions O such that state Qn−1 is the state reached by starting
at initial state Q0 and sequentially executing each request oi

(0 ≤ i < n) in O as the ith operation on the state machine,
and (d) a valid reply certificate for any subsequent request
reflects a state in which the execution of oi is the i’th action
by the state machine (0 ≤ i ≤ n).

This safety follows from the fact that the agreement clus-
ter only generates agreement certificates for valid client re-
quests and never assigns the same sequence number to two
different requests. Then, the execution cluster only executes
requests in the order specified by the agreement certificates.

The system is live in that if a client c sends a request with
timestamp t, where timestamp t exceeds any timestamp in
any previous request by c, and the client repeatedly sends
that request and no other request until it receives a reply,
then eventually it will receive a valid reply for that request.

This liveness follows from the liveness of the underlying
agreement subsystem, BASE. Once the agreement cluster
assigns a sequence number to a request, the execution cluster
must eventually receive and execute it. After that, if the
client keeps sending its request, eventually it will receive
the reply.

4. PRIVACY FIREWALL
Traditional BFT systems face a fundamental tradeoff be-

tween increasing availability and integrity on the one hand
and strengthening confidentiality on the other. Increasing
diversity across replicas (e.g., increasing the number of repli-
cas or increasing the heterogeneity across implementations
of different replicas [2, 25, 48]) improves integrity and avail-
ability because it reduces the chance that too many repli-
cas simultaneously fail. Unfortunately, it also increases the
chance that at least one replica contains an exploitable bug.
An attacker may gain access to the confidential data by at-
tacking the weakest replica.

Compounding this problem, as Figure 2(a) illustrates, tra-
ditional replicated state machine architectures delegate the
responsibility of combining the state machines’ outputs to
a voter at the client. Fate sharing between the client and
the voter ensures that the voter does not introduce a new
single point of failure; to quote Schneider [43], “the voter—
a part of the client—is faulty exactly when the client is, so
the fact that an incorrect output is read by the client due to
a faulty voter is irrelevant” because a faulty voter is then
synonymous with a faulty client.

Although such a model is appropriate for services where
availability and integrity are the goals, it fails to address
confidentiality for access-anywhere services. In particular,
if an attacker manages to compromise one replica in such a
system, the compromised replica may send confidential data

2
Here we describe the properties of a system whose agreement clus-

ter includes a cache (cachec) storing the reply to client c’s highest-
timestamped request. If this optional cache is not included, the prop-
erty is similar but more complex in that replies to retransmissions may
contain a sequence number n that exceeds the sequence number m

that was used to serialize execution.

A A A A

C

E EE

A A A A

C

E EE

(c)(b)(a)

A

A

A

C

A
E E

EE

V
C

E EE

F F F

A A A
FF F

A
F

F F F

Secret
TopReplyReply

Reply Reply Reply
Reply

ReplyReply

Reply Reply Reply
Rats!

Reply

Secret
Top

Reply

Reply Reply

Reply Reply Secret
Top

Reply Secret
TopReply

Reply Reply
Reply Rats!

Reply Reply Reply

Figure 2: Illustration of confidentiality filtering properties of (a) traditional BFT architectures, (b) architec-
tures that separates agreement and execution, and (c) architectures that separate agreement and execution
and that add additional privacy firewall nodes.

back to the attacker.
Solving this problem seems difficult. If we move the voter

away from the client, we lose fate sharing, and the voter
becomes a single point of failure. And, it is not clear how
to replicate the voter to eliminate this single point of failure
without miring ourselves in endless recursion (“Who votes
on the voters?”).

As illustrated by Figure 2(b), the separation of agreement
from execution provides the opportunity to reduce a sys-
tem’s vulnerability to compromising confidentiality by hav-
ing the agreement nodes filter incorrect replies before send-
ing reply certificates to clients. It now takes a failure of
both an agreement node and an execution node to compro-
mise privacy if we restrict communications so that (1) clients
can communicate with agreement nodes but not execution
nodes and (2) request and reply bodies are encrypted so
that clients and execution nodes can read them but agree-
ment nodes cannot. In particular, if all agreement nodes are
correct, then the agreement nodes can filter replies so that
only correct replies reach the client. Conversely, if all exe-
cution nodes are correct, then faulty agreement nodes can
send information to clients, but not information regarding
the confidential state of the state machine.

Although this simple design improves confidentiality, it
is not entirely satisfying. First, it can not handle multiple
faults: a single fault in both the agreement and execution
clusters can allow confidential information to leak. Second,
it allows an adversary to leak information via steganography,
for instance by manipulating membership sets in agreement
certificates.

In the rest of this section, we describe a general confi-
dentiality filter architecture—the privacy firewall. If the
agreement and execution clusters have a sufficient number
of working machines, then a privacy firewall of h + 1 rows
of h + 1 filters per row can tolerate up to h faults while
still providing availability, integrity, and confidentiality. We
first define the protocol. We then explain the rationale be-
hind specific design choices. Finally, we state the end-to-
end confidentiality guarantees provided by the system, high-
light the limitations of these guarantees, and discuss ways
to strengthen these guarantees.

4.1 Protocol definition
Figure 2(c) shows the organization of the privacy firewall.

We insert filter nodes F between execution servers E and
agreement nodes A to pass only information sent by correct
execution servers. Filter nodes are arranged into an array
of h + 1 rows of h + 1 columns; if the number of agreement
nodes is at least h + 1, then the bottom row of filters can
be merged with the agreement nodes by placing a filter on
each server in the agreement cluster. Information flow is
controlled by restricting communication to only the links
shown in Figure 2(c). Each filter node has a physical net-
work connection to all filter nodes in the rows above and
below but no other connections. Request and reply bodies
(the o and r fields in the request and reply certificates de-
fined above) are encrypted so that the client and execution
nodes can read them but agreement nodes and firewall nodes
cannot.

Each filter node maintains maxN , the maximum sequence
number in any valid agreement certificate or reply certificate
seen, and staten, information relating to sequence number
n. Staten contains null if request n has not been seen, con-
tains seen if request n has been seen but reply n has not, and
contains a reply certificate if reply n has been seen. Nodes
limit the size of staten by discarding any entries whose se-
quence number is below maxN −P where P is the pipeline
depth that bounds the number of requests that the agree-
ment cluster can have outstanding (see Section 3.1.2).

When a filter node receives from below a valid request
certificate and agreement certificate with sequence number
n, it ignores the request if n < maxN − P . Otherwise,
it first updates maxN and garbage collects entries in state

with sequence numbers smaller than maxN − P . Finally
it sends one of two messages. If staten contains a reply
certificate, the node multicasts the stored reply to the row
of filter nodes or agreement nodes below. But, if staten does
not yet contain the reply, the node sets staten = seen and
multicasts the request and agreement certificates to the next
row above. As an optimization, nodes in all but the top row
of filter nodes can unicast these certificates to the one node
above them rather than multicasting.

Although request and agreement certificates flowing up
can use any form of certificate including MAC-based authen-

ticators, filter nodes must use threshold cryptography [16]
for reply certificates they send down. When a filter node in
the top row receives g + 1 partial reply certificates signed
by different execution nodes, it assembles a complete reply
certificate authenticated by a single threshold signature rep-
resenting the execution nodes’ split group key. Then, after a
top-row filter node assembles such a complete reply certifi-
cate with sequence number n or after any other filter node
receives and cryptographically validates a complete reply
certificate with sequence number n, the node checks staten.
If n < maxN −P then the reply is too old to be of interest,
and the node drops it; if staten = seen, the node multicasts
the reply certificate to the row of filter nodes or agreement
nodes below and then stores the reply in staten; or if staten

already contains the reply or is empty, the node stores reply
certificate n in staten but does not multicast it down at this
time.

The protocol described above applies to any determinis-
tic state machine. We describe in Section 3.1.4 how agree-
ment nodes pick a timestamp and random bits to obliviously
transform non-deterministic state machines into determin-
istic ones without having to look at the content of requests.
Note that this approach may allow agreement nodes to infer
something about the internal state of the execution cluster,
and balancing confidentiality and non-determinism in its full
generality appears hard. To prevent the agreement cluster
from even knowing what random value is used by the exe-
cution nodes, execution nodes could cryptographically hash
the input value with a secret known only to the execution
cluster; we have not yet implemented this feature. Still, a
compromised agreement node can determine the time that
a request enters the system, but as Section 4.3 notes, that
information is already available to agreement nodes.

4.2 Design rationale
The privacy firewall architecture provides confidentiality

through the systematic application of three key ideas: (1)
redundant filters to ensure filtering in the face of failures,
(2) elimination of non-determinism to prevent explicit or
steganographic communication through a correct filter, and
(3) restriction of communication to enforce filtering of con-
fidential data sent from the execution nodes.

4.2.1 Redundant filters
The array of h + 1 rows of h + 1 columns ensures the

following two properties as long as there are no more than
h failures: (i) there exists at least one correct path between
the agreement nodes and execution nodes consisting only of
correct filters and (ii) there exists one row (the correct cut)
consisting entirely of correct filter nodes.

Property (i) ensures availability by guaranteeing that re-
quests can always reach execution nodes and replies can al-
ways reach clients. Observe that availability is also neces-
sary for preserving confidentiality, because a strategically
placed rejected request could be used to communicate confi-
dential information by introducing a termination channel [42].

Property (ii) ensures a faulty node can either access con-
fidential data or communicate freely with clients but not
both. Faulty filter nodes above the correct cut might have
access to confidential data, but the filter nodes in the cor-
rect cut ensure that only replies that would be returned by
a correct server are forwarded. And, although faulty nodes
below the correct cut might be able to communicate any in-

formation they have, they do not have access to confidential
information.

4.2.2 Eliminating non-determinism
Not only does the protocol ensure that a correct filter node

transmits only correct replies (vouched for by at least g + 1
execution nodes), it also eliminates nondeterminism that an
adversary could exploit as a covert channel by influencing
nondeterministic choices.

The contents of each reply certificate is a deterministic
function of the request and sequence of preceeding requests.
The use of threshold cryptography makes the encoding of
each reply certificate deterministic and prevents an adver-
sary from leaking information by manipulating certificate
membership sets. The separation of agreement from execu-
tion is also crucial for confidentiality: agreement nodes out-
side the privacy firewall assign sequence numbers so that the
non-determinism in sequence number assignment can not be
manipulated as a covert channel for transmitting confiden-
tial information.

In addition to these restrictions to eliminate non-
determinism in message bodies, the system also restricts
(but as Section 4.3 describes, does not completely eliminate)
non-determinism in the network-level message retransmis-
sion. The per-request state table allows filter nodes to re-
member which requests they have seen and send at most one
(multicast) reply per request message. This table reduces
the ability of a compromised node to affect the number of
copies of a reply certificate that a downstream firewall node
sends.

4.2.3 Restricting communication
The system restricts communication by (1) physically con-

necting firewall nodes only to the nodes directly above and
below them and (2) encrypting the bodies of requests and
replies. The first restriction enforces the requirement that
all communication between execution nodes and the outside
world flow through at least one correct firewall. The second
restriction prevents nodes below the correct cut of firewall
nodes from accumulating and revealing confidential state by
observing the bodies of requests and replies.

4.3 Filter properties and limitations
In an extended technical report [51] we prove that there

exists a correct cut of firewall nodes through which all in-
formation communicated from the execution servers passes
and that this correct cut provides output set confidential-
ity in that any sequence of outputs of our correct cut is
also a legal sequence of outputs of a correct unreplicated
implementation of the service accessed via an asynchronous
unreliable network that can discard, delay, replicate, and
reorder messages. More formally, suppose that C is a cor-
rect unreplicated implementation of a service, S0 is the ab-
stract [40] initial state, I is a sequence of input requests, and
O the resulting sequence of output replies transmitted on an
asynchronous unreliable network to a receiver. The network
can delay, replicate, reorder, and discard these replies; thus
the receiver observes an output sequence O′ that belongs
to a set of output sequences O, where each O′ in O in-
cludes only messages from O. Because the correct cut of
our replicated system is output set confidential with respect
to C, then given the same initial abstract state S0 and in-
put I its output O′′ also belongs to O. This property follows

from the operation of each firewall node, which ensures that
each output message is a deterministic function of the pre-
ceeding inputs, and from the firewall replication and topol-
ogy, which ensures that a correct cut filters all requests and
replies (safety) and that the correct path between agreement
nodes and execution nodes is always available (liveness).

Because our system replicates arbitrary black-box state
machines, the above definition describes confidentiality with
respect to the behavior of a single correct server. The defini-
tion does not specify anything about the internal behaviors
of or the policies enforced by the replicated state machine,
so it is more flexible and less strict than the notion of non-
interference [42], which is sometimes equated with confiden-
tiality in the literature and which informally states that the
observable output of the system has no correlation to the
confidential information stored in the system. Our output
set confidentiality guarantee is similar in spirit to the notion
of possibilistic non-interference [35], which characterizes the
behavior of a nondeterministic program by the set of possi-
ble results and requires that the set of possible observable
outputs of a system be independent of the confidential state
stored in the system.

A limitation is that although agreement nodes do not have
access to the body of requests, they do need access to the
identity of the client (in order to buffer information about
each client’s last request), the arrival times of the requests
and replies, and the encrypted bodies of requests and replies.
Faulty agreement or filter nodes in our system could leak
information regarding traffic patterns. For example, a ma-
licious agreement node could leak the frequency that a par-
ticular client sends requests to the system or the average
size of a client’s requests. Techniques such as forwarding
through intermediaries and padding messages can reduce
a system’s vulnerability to traffic analysis [13], though for-
warding can add significant latencies and significant message
padding may be needed for confidentiality [46].

Also note that although output set confidentiality ensures
that the set of output messages is a deterministic function
of the sequence of inputs, the nondeterminism in the timing,
ordering, and retransmission of messages might be manipu-
lated to furnish covert channels that communicate informa-
tion from above the correct cut to below it. For example,
a compromised node directly above the correct cut of fire-
walls might attempt to influence the timing or sequencing
of replies forwarded by the nodes in the correct cut by for-
warding replies more quickly or less quickly than its peers,
sending replies out of order, or varying the number of times
it retransmits a particular reply. Given that any resulting
output sequence and timing is a “legal” output that could
appear in an asynchronous system with a correct server and
an unreliable network, it appears fundamentally difficult for
firewall nodes to completely eliminate such channels.

It may, however, be possible to systematically restrict such
channels by engineering the system to make it more difficult
for an adversary to affect the timing, ordering, and replica-
tion of symbols output by the correct cut. The use of the
state table to ensure that each reply is multicast at most
once per request received is an example of such a restric-
tion. This rule makes it more difficult for a faulty node to
encode information in the number of copies of a reply sent
through the correct cut and approximates a system where
the number of times a reply is sent is a deterministic func-
tion of the number of times a request is sent. But, with an

asynchronous unreliable network, this approximation is not
perfect—a faulty firewall node can still slightly affect the
probability that a reply is sent and therefore can slightly
affect the expected number of replies sent per request (e.g.,
not sending a reply slightly increases the probability that all
copies sent to a node in the correct cut are dropped; sending
a reply multiple times might slightly reduce that probabil-
ity). Also note that for simplicity the protocol described
above does not use any additional heuristic to send replies
in sequence number order, though similar processing rules
could be added to make it more difficult (though not impos-
sible in an asynchronous system) for a compromised node
to cause the correct cut to have gaps or reorderings in the
sequence numbers of replies it forwards.

Restricting the nondeterminism introduced by the net-
work seems particularly attractive when a firewall network
is deployed in a controlled environment such as a machine
room. For example, if the network can be made to deliver
messages reliably and in order between correct nodes, then
the correct cut’s output sequence can always follow sequence
number order. In the limit, if timing and message-delivery
nondeterminism can be completely eliminated, then covert
channels that exploit network nondeterminism can be elim-
inated as well. In the extended technical report [51], we
describe a variation of the protocol that assumes that agree-
ment nodes and clients continue to operate under the asyn-
chronous model but that execution and firewall nodes oper-
ate under a synchronous model with a time bound on state
machine processing, firewall processing, and message deliv-
ery between correct nodes. This protocol variation extends
the state table to track when requests arrive and uses this
information and system time bounds to restrict when replies
are transmitted. Then, as long as the time bounds are met
by correct nodes and links between correct nodes, the system
is fully confidential with respect to a single correct server
in that the only information output by the correct cut of
firewall nodes is the information that would be output by
a single correct server. If, on the other hand, the timing
bounds are violated, then the protocol continues to be safe
and live and provides output symbol set confidentiality.

5. EVALUATION
In this section, we experimentally evaluate the latency,

overhead, and throughput of our prototype system under
microbenchmarks. We also examine the system’s perfor-
mance acting as a network file system (NFS) server.

5.1 Prototype implementation
We have constructed a prototype system that separates

agreement and replication and that optionally provides a
redundant privacy firewall. As described above, our pro-
totype implementation builds on Rodrigues et al.’s BASE
library [40].

Our evaluation cluster comprises seven 933Mhz Pentium-
III and two 500MHz Pentium-III machines, each with 128MB
of memory. The machines run Redhat Linux 7.2 and are
connected by a 100 Mbit ethernet hub.

Note that three aspects of our configuration would not
be appropriate for production use. First, both the underly-
ing BASE library and our system store important persistent
data structures in memory and rely on replication across
machines to ensure this persistence [3, 11, 14, 32]. Unfortu-
nately, the machines in our evaluation cluster do not have

40/40 40/4096 4096/40
0

5

10

15

20

25

L
at

en
cy

 (
m

s)

Workload (send/recv)

Algorithm

BASE/Same/MAC
Separate/Same/MAC
Separate/Different/MAC
Separate/Different/Thresh
Priv/Different/Thresh

Figure 3: Latency for null-server benchmark for
three request/reply sizes.

uninterruptible power supplies, so power failures are a po-
tentially significant source of correlated failures across our
system that could cause our current configuration to lose
data. Second, our privacy firewall architecture assumes a
network configuration that physically restricts communica-
tion paths between agreement machines, privacy filter ma-
chines, and execution machines. Our current configuration
uses a single 100 Mbit ethernet hub and does not enforce
these restrictions. We would not expect either of these dif-
ferences to affect the results we report in this section. Third,
to reduce the risk of correlated failures the nodes should
be running different operating systems and different imple-
mentations of the agreement, privacy, and execution cluster
software. We only implemented these libraries once and we
use only one version of the application code.

5.2 Latency
Past studies have found that Byzantine fault tolerant state

machine replication adds modest latency to network appli-
cations [11, 12, 40]. Here, we examine the same latency mi-
crobenchmark used in these studies. Under this microbench-
mark, the application reads a request of a specified size
and produces a reply of a specified size with no additional
processing. We examine request/reply sizes of 40 bytes/40
bytes, 40 bytes/4 KB, and 4 KB/40 bytes.

Figure 3 shows the average latency (all run within 5%)
for ten runs of 200 requests each. The bars show per-
formance for different system configurations with the algo-
rithm/machine configuration/authentication algorithm indi-
cated in the legend. BASE/Same/MAC is the BASE li-
brary with 4 machines hosting both the agreement and ex-
ecution servers and using MAC authenticators; Separate/-
Same/MAC shows our system that separates agreement and
replication with agreement running on 4 machines and with
execution running 3 of the same set of machines and us-
ing MAC authenticators; Separate/Different/MAC moves
the execution servers to 3 machines physically separate from
the 4 agreement servers; Separate/Different/Thresh uses the
same configuration but uses threshold signatures rather than
MAC authenticators for reply certificates; finally, Priv/Dif-
ferent/Thresh adds an array of privacy firewall servers be-
tween the agreement and execution cluster with a bottom
row of 4 privacy firewall servers sharing the agreement ma-

chines and an additional row of 2 firewall servers separate
from the agreement and execution machines.

The BASE library imposes little latency on requests, with
request latencies of 0.64ms, 1.2ms, and 1.6ms for the three
workloads. Our current implementations of the library that
separates agreement from replication has higher latencies
when running on the same machines—4.0ms, 4.3ms, and
5.3ms. The increase is largely caused by two inefficiencies
in our current implementation: (1) rather than using the
agreement certificate produced by the BASE library, each of
our message queue nodes generates a piece of a new agree-
ment certificate from scratch, (2) in our current prototype,
we do a full all-to-all multicast of the agreement certificate
and request certificate from the agreement nodes to the ex-
ecution nodes, of the reply certificate from the execution
nodes to the agreement nodes, and (3) our system does not
use hardware multicast. We have not implemented the opti-
mizations of first having one node send and having the other
nodes send only if a timeout occurs, and we have not imple-
mented the optimization of clients sending requests directly
to the execution nodes. However, we added the optimization
that the execution nodes send their replies directly to the
clients. Separating the agreement machines from the execu-
tion machines adds little additional latency. But, switching
from MAC authenticator certificates to threshold signature
certificates increases latencies to 18ms, 19ms, and 20ms for
the three workloads. Adding a two rows of privacy firewall
filters (one of which is co-located with the agreement nodes)
adds a few additional milliseconds.

As expected, the most significant source of latency in the
architecture is public key threshold cryptography. Produc-
ing a threshold signature takes 15ms and verifying a signa-
ture takes 0.7ms on our machines. Two things should be
noted to put these costs in perspective. First, the latency
for these operations is comparable to I/O costs for many
services of interest; for example, these latency costs are sim-
ilar to the latency of a small number of disk seeks and are
similar to or smaller than wide area network round trip la-
tencies. Second, signature costs are expected to fall quickly
as processor speeds increase; the increasing importance of
distributed systems security may also lead to widespread de-
ployment of hardware acceleration of encryption primitives.
The FARSITE project has also noted that technology trends
are making it feasible to include public-key operations as a
building block for practical distributed services [1].

5.3 Throughput and cost
Although latency is an important metric, modern services

must also support high throughput [49]. Two aspects of
the privacy firewall architecture pose challenges to provid-
ing high throughput at low cost. First, the privacy firewall
architecture requires a larger number of physical machines
in order to to physically restrict communication. Second,
the privacy firewall architecture relies on relatively high-
overhead public key threshold signatures for reply certifi-
cates. Two factors mitigate these costs.

First, although the new architecture can increase the to-
tal number of machines, it also can reduce the number of
application-specific machines required. Application-specific
machines may be more expensive than generic machines
both in terms of hardware (e.g., they may require more stor-
age, I/O, or processing resources) and in terms of software
(e.g., they may require new versions of application-specific

software.) Thus, for many systems we would expect the ap-
plication costs (e.g., the execution servers) dominate. Like
router and switch box costs today, agreement node and pri-
vacy filter boxes may add a relatively modest amount to
overall system cost. Also, although filter nodes must run on
(h + 1)2 nodes (and this is provably the minimal number to
ensure confidentiality [51]), even when the privacy firewall
architecture is used, the number of machines is relatively
modest when the goal is to tolerate a small number of faults.
For example, to tolerate up to one failure among the execu-
tion nodes and one among either the agreement or privacy
filter servers, the system would have four generic agreement
and privacy filter machines, two generic privacy filter ma-
chines, and three application-specific execution machines.
Finally, in configurations without the privacy firewall, the
total number of machines is not necessarily increased since
the agreement and execution servers can occupy the same
physical machines. For example, to tolerate one fault, four
machines can act as agreement servers while three of them
also act as execution replicas.

Second, a better metric for evaluating the hardware costs
of the system than the number of machines is the overhead
imposed on each request relative to an unreplicated system.
On the one hand, by cleanly separating agreement from ex-
ecution and thereby reducing the number of execution repli-
cas a system needs, the new architecture often reduces this
overhead compared to previous systems. On the other hand,
the addition of privacy firewall filters and their attendant
public key encryption add significant costs. Fortunately,
these costs can be amortized across batches of requests. In
particular, when load is high the BASE library on which
we build bundles together requests and executes agreement
once per bundle rather than once per request. Similarly,
by sending bundles of requests and replies through the pri-
vacy firewall nodes, we allow the system to execute public
key operations on bundles of replies rather than individual
replies.

To put these two factors in perspective, we consider a sim-
ple model that accounts for the application execution costs
and cryptographic processing overheads across the system
(but not other overheads like network send/receive.) The
relativeCost of executing a request is the cost of executing
the request on a replicated system divided by the cost of
executing the request on an unreplicated system. For our
system and the BASE library,

relativeCost =
numExec·procapp+overheadreq+

overheadbatch
numP erBatch

procapp
.

The cryptographic processing overhead has three flavors:
MAC-based authenticators, public threshold-key signing,
and public threshold-key verifying. To tolerate 1 fault, the
BASE library requires 4 execution replicas, and it does 8
MAC operations per request3 and 36 MAC operations per
batch. Our architecture that separates agreement from
replication requires 3 execution replicas and does 7 MAC
operations per request and 39 MAC operations per batch4.
Our privacy firewall architecture requires 3 execution repli-

3
Note that when authenticating the same message to or from a num-

ber of nodes the work of computing the digest on the body of a mes-
sage can be re-used for all communication partners [11, 12]. For the
small numbers of nodes involved in our system, we therefore charge
1 MAC operation per message processed by a node regardless of the
number of sources it came from or destinations it goes to.
4
Our unoptimized prototype does 44 MAC operations per batch both

with and without the privacy firewall.

1

10

100

1 10 100

R
el

at
iv

e
C

os
t (

(a
pp

 +
 o

ve
rh

ea
d)

/a
pp

)

Application Processing (ms/request)

No replication
Sep/Priv (batch=1)

Sep/Priv (batch=10)
Sep/Priv (batch=100)

Sep (batch=1)
Sep (batch=10)

Sep (batch=100)
BASE (batch=1)

BASE (batch=10)
BASE (batch=100)

Figure 4: Estimated relative processing costs includ-
ing application processing and cryptographic over-
head for an unreplicated system, privacy firewall
system, separate agreement and replication system,
and BASE system for batch sizes of 1, 10, and 100
requests/batch.

cas and does 7 MAC operations per request and 39/3/6
MAC operations/public key signatures/public key verifica-
tions per batch.

Given these costs, the lines in Figure 4 show the relative
costs for BASE (dot-dash lines), separate agreement and
replication (dotted lines), and privacy firewall (solid lines)
for batch sizes of 1, 10, and 100 requests/batch. The (un-
replicated) application execution time varies from 1ms per
request to 100ms per request on the x axis. We assume that
MAC operations cost 0.2ms (based on 50MB/s secure hash-
ing of 1KB packets), public key threshold signatures cost
15ms (as measured on our machines for small messages),
and public key verification costs 0.7ms (measured for small
messages.)

Without the privacy firewall overhead, our separate ar-
chitecture has a lower cost than BASE for all request sizes
examined. As application processing increase, application
processing dominates, and the new architectures gain a 33%
advantage over the BASE architecture. With small requests
and without batching, the privacy firewall does greatly in-
crease cost. But with batch sizes of 10 (or 100), process-
ing a request under the privacy firewall architecture costs
less than under BASE replication for applications whose re-
quests take more than 5ms (or 0.2ms).

The simple model discussed above considers only encryp-
tion operations and application execution and summarizes
total overhead. We now experimentally evaluate the peak
throughput and load of our system. In order to isolate the
overhead of our prototype, we evaluate the performance of
the system when executing a simple Null server that receives
1 KB requests and returns 1 KB replies with no additional
application processing. We program a set of clients to issue
requests at a desired frequency and vary that frequency to
vary the load on the system.

Figure 5 shows how the latency for a given load varies
with bundle size. When bundling is turned off, throughput
is limited to 62 requests/second, at which point the exe-
cution servers are spending nearly all of their time signing
replies. Doubling the bundle size to 2 approximately dou-
bles the throughput. Bundle sizes of 3 or larger give peak

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180

R
es

po
ns

e
tim

e
(m

s)

Load (req/s)

Bundle=1
Bundle=2
Bundle=3
Bundle=5

Figure 5: Microbenchmark response time as offered
load and request bundling varies.

Phase No Replication BASE Firewall

1 7 7 19
2 225 598 1202
3 239 1229 862
4 536 1552 1746
5 3235 4942 5872

TOTAL 4244 8328 9701

Figure 6: Andrew-500 benchmark times in seconds.

throughputs of 160-170 requests/second; beyond this point,
the system is I/O limited and the servers have idle capac-
ity. For example, with a bundle size of 10 and a load of
160 requests/second, the CPU utilization of the most heav-
ily loaded execution machine is 30%. Note that our current
prototype uses a static bundle size, so increasing bundle sizes
increases latency at low loads. The existing BASE library
limits this problem by using small bundles when load is low
and increasing bundle sizes as load increases. Our current
prototype uses fixed-sized bundles to avoid the need to adap-
tively agree on bundle size; we plan to augment the interface
between the BASE library and our message queues to pass
the bundle size used by the BASE agreement cluster to the
message queue.

5.4 Network file system
For comparison with previous studies [11, 12, 40], we

examine a replicated NFS server under the modified An-
drew500 benchmark, which sequentially runs 500 copies of
the Andrew benchmark [11, 21]. The Andrew benchmark
has 5 phases: (1) recursive subdirectory creation, (2) copy
source tree, (3) examine file attributes without reading file
contents, (4) reading the files, and (5) compiling and linking
the files.

We use the NFS abstraction layer by Rodrigues, et al. to
resolve nondeterminism by having the primary agreement
node supply timestamps for modifications and file handles
for newly opened files. We run each benchmark 10 times and
report the average for each configuration. In these experi-
ments, we assume hardware support in performing efficient
threshold signature operations [45].

Figure 6 summarizes these results. Performance for the
benchmark is largely determined by file system latency, and

Phase BASE faulty server faulty ag. node

1 12 19 33
2 1426 1384 1553
3 1196 1010 1102
4 1755 1898 2180
5 5374 6050 7071

TOTAL 9763 10361 11939

Figure 7: Andrew-500 benchmark times in seconds
with failures.

our firewall system’s performance is about 16% slower than
BASE. Also note that BASE is more than a factor of two
slower than the no replication case; this difference is higher
than the difference reported in [40] where a 31% slowdown
was observed. We have worked with the authors of [40] and
determined that much of the difference can be attributed
to different versions of BASE and Linux used in the two
experiments.

Figure 7 shows the behavior of our system in the pres-
ence of faults. We obtained it by stopping a server or an
agreement node at the beginning of the benchmark. The
table shows that the faults only have a minor impact on the
completion time of the benchmark.

6. RELATED WORK
Byzantine agreement [31] and Byzantine fault tolerant

state machine replication has been studied in both theo-
retical and practical settings [7, 10, 20, 24, 38, 43]. The
recent work of Castro, Liskov, and Rodrigues [11, 12, 40]
has brought new impulse to research in this area by show-
ing that BFT systems can be practical. We use their BASE
library [40] as the foundation of our agreement protocol, but
depart significantly from their design in one key respect: our
architecture explicitly separates the responsibility of achiev-
ing agreement on the order of requests from the process-
ing the requests once they are ordered. Significantly, this
separation allows us to reduce by one third the number of
application-specific replicas needed to tolerate f Byzantine
failures and to address confidentiality together with integrity
and availability.

In a recent paper [30], Lamport deconstructs his Paxos
consensus protocol [29] by explicitly identifying the roles of
three classes of agents in the protocol: proposers, acceptors,
and learners. He goes on to present an implementation of
the state machine approach in Paxos in which “each server
plays all the roles (proposer, acceptor and learner)”. We pro-
pose a similar deconstruction of the state machine protocol:
in Paxos parlance, our clients, agreement servers, and execu-
tion servers are performing the roles played, respectively, by
proposers, acceptors, and learners. However, our acceptors
and learners are physically, and not just logically, distinct.
We show how to apply this principle to BFT systems to
reduce replication cost and to provide confidentiality.

Our system also shares some similarities with the sys-
tems [6, 37] using stateless witness to improve fault toler-
ance. However, our system differs in two respects. First,
our system is designed to tolerate Byzantine faults instead
of fail-stop failures. Second, our general technique replicates
arbitrary state machines instead of specific applications such
as voting and file systems.

Baldoni, Marchetti, and Tucci-Piergiovanni advocate a

three-tier approach to replicated services, in which the repli-
cation logic is embedded within a software middle-tier that
sits between clients and end-tier application replicas [4].
Their goals are to localize to the middle tier the need of
assuming a timed-asynchronous model [15], leaving the ap-
plication replicas to operate asynchronously, and to enable
the possibility of modifying on the fly the replication logic of
end-tier replicas (for example, from active to passive repli-
cation) without affecting the client.

In a recent workshop extended abstract [50] we sketched
an early design of our privacy firewall. We move beyond
that work in two ways. First, we propose a different over-
all architecture for achieving confidentiality in BFT services.
Instead of placing the privacy firewall between the client and
the BFT service, we now exploit the separation of agreement
from execution and position the firewall between the two
clusters. This change is important because it eliminates a
potential covert channel by preventing nodes with confiden-
tial information from affecting the order in which requests
are processed. Second, we report on our experience building
a prototype of our system.

Most previous efforts to achieve confidentiality despite
server failures restrict the data that servers can access. A
number of systems limit servers to basic “store” and “re-
trieve” operations on encrypted data [1, 26, 33, 34, 41] or
on data fragmented among servers [19, 22]. The COCA [52]
online certification authority uses replication for availability,
and threshold cryptography [16] and proactive secret shar-
ing [23] to digitally sign certificates in a way that tolerates
adversaries that compromise some of the servers. In general,
preventing servers from accessing confidential state works
well when servers can process the fragments independently
or when servers do not perform any significant processing on
the data. Our architecture provides a more general solution
that can implement arbitrary deterministic state machines.

Secure multi-party computation (SMPC) [9] allows n play-
ers to compute an agreed function of their inputs in a secure
way even when some players cheat. Although in theory it
provides a foundation for achieving Byzantine fault tolerant
confidentiality, SMPC in practice can only be used to com-
pute simple functions such as small-scale voting and bidding
because SMPC relies heavily on computationally expensive
oblivious transfers [17].

Firewalls that restrict incoming requests are a common
pragmatic defence against malicious attackers. Typical fire-
walls prevent access to particular machines or ports; more
generally, firewalls could identify improperly formatted or
otherwise illegal requests to an otherwise legal machine and
port. In principle, firewalls could protect a server by pre-
venting all “bad” requests from reaching it. An interesting
research question is whether identifying all “bad” requests
is significantly easier than building bug-free servers in the
first place. The privacy firewall is inspired by the idea of
mediating communication between the world and a service,
but it uses redundant execution to filter mismatching (and
presumptively wrong) outgoing replies rather than relying
on a priori identification of bad incoming requests.

7. CONCLUSION
The main contribution of this paper is to present the first

study to systematically apply the principle of separation of
agreement and execution to BFT state machine replication
to (1) reduce the replication cost and (2) enhance confiden-

tiality properties for general Byzantine replicated services.
Although in retrospect this separation is straightforward,
all previous general BFT state machine replication systems
have tightly coupled agreement and execution, have paid
unneeded replication costs, and have increased system vul-
nerability to confidentiality breaches.

8. ACKNOWLEDGMENTS
This work was supported in part by the Texas Advanced

Research Program, Cisco, and an IBM University Partner-
ship Award. Alvisi was supported by the National Science
Foundation (CAREER award CCR-9734185), an Alfred P.
Sloan Fellowship, and the AFRL/Cornell Information As-
surance Institute. Dahlin was also supported by a Sloan
Research Fellowship. Rodrigo Rodrigues, Miguel Castro,
and Barbara Liskov have kindly provided their code for our
experiments and spent much time in helping us to under-
stand their code. We would like to thank Fred B. Schneider
for many insightful discussions on the nature of state ma-
chine replication, and Michael Clarkson, Barbara Liskov,
Keith Marzullo, Andrew Myers, Rodrigo Rodrigues, Steve
Zdancewic, and the anonymous reviewers for valuable sug-
gestions on how to improve the quality of this paper. Alvisi
also would like to thank the support and hospitality of Cor-
nell’s Information Assurance Institute.

9. REFERENCES
[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wat-
tenhofer. FARSITE: Federated available and reliable storage
for incompletely trusted environments. In 5th Symp on Op-
erating Systems Design and Impl., December 2002.

[2] P. Ammann and J. Knight. Data diversity: An approach to
software fault tolerance. IEEE Trans. Comput., 37(4):418–
425, 1988.

[3] M. Baker. Fast Crash Recovery in Distributed File Systems.
PhD thesis, University of California at Berkeley, 1994.

[4] R. Baldoni, C. Marchetti, and S. Piergiovanni. Asynchronous
active replication in three-tier distributed systems, 2002.

[5] M. Bellare and D. Micciancio. A new paradigm for collision-
free hashing: Incrementally at reduced cost. In Eurocrypt97,
1997.

[6] A. D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo distributed file system. Technical Report 111, Palo
Alto, CA, USA, 10 1993.

[7] G. Bracha and S. Toueg. Asynchronous consensus and broad-
cast protocols. J. of the ACM, 32(4):824–840, October 1985.

[8] M. Burrows, M. Abadi, and R. Needham. A Logic of Au-
thentication. In ACM Trans. on Computer Systems, pages
18–36, February 1990.

[9] R. Canetti. Studies in Secure Multiparty Computation and
Applications. PhD thesis, Weizmann Institute of Science,
1995.

[10] R. Canetti and T. Rabin. Optimal Asynchronous Byzantine
Agreement. Technical Report 92-15, Dept. of Computer Sci-
ence, Hebrew University, 1992.

[11] M. Castro and B. Liskov. Practical byzantine fault toler-
ance. In 3rd Symp. on Operating Systems Design and Impl.,
February 1999.

[12] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
Fault-Tolerant system. In 4th Symp. on Operating Systems
Design and Impl., pages 273–288, 2000.

[13] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. In Comm. of the ACM, volume 24,
pages 84–90, February 1981.

[14] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell. The Rio File Cache: Surviving Operating System

Crashes. In 7th Internat. Conf. on Arch. Support for Pro-
gramming Languages and Operating Systems, October 1996.

[15] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. IEEE Transactions on Parallel and Distributed
Systems, 10(6):642–657, 1999.

[16] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In
Advances in Cryptology: Crypto89, the Ninth Annual Inter-
national Cryptology Conference, pages 307–315, 1990.

[17] S. Even, O. Goldreich, and A. Lempel. A Randomized Proto-
col for Signing Contracts. Comm. of the ACM, 28:637–647,
1985.

[18] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-
tributed commit with one faulty process. J. of the ACM,
32(2), April 1985.

[19] J. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure dis-
tributed storage and retrieval. Theoretical Computer Sci-
ence, 243(1-2):363–389, July 2000.

[20] J. Garay and Y. Moses. Fully Polynomial Byzantine Agree-
ment for n>3t Processors in t +1 Rounds. SIAM Journal of
Compouting, 27(1), 1998.

[21] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System. ACM Trans. on Com-
puter Systems, 6(1):51–81, February 1988.

[22] A. Iyengar, R. Cahn, C. Jutla, and J. Garay. Design and
Implementation of a Secure Distributed Data Repository. In
Proc. of the 14th IFIP Internat. Information Security Conf.,
pages 123–135, 1998.

[23] R. Karp, M. Luby, and F. auf der Heide. Proactive Secret
Sharing or How to Cope with Perpetual Leakage. In Proc. of
the 15th Annual Internat. Cryptology Conf., pages 457–469,
1995.

[24] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The securering
protocols for securing group communication. In Hawaii In-
ternational Conference on System Sciences, 1998.

[25] J. Knight and N. Leveson. An experimental evaluation of the
assumption of independence in multi-version programming.
IEEE Trans. Softw. Eng., 12(1):96–109, 1986.

[26] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-Scale Persistent Storage. In 9th Internat. Conf. on
Arch. Support for Programming Languages and Operating
Systems, November 2000.

[27] S. Kumar and K. Li. Using model checking to debug device
firmware. In 5th Symp on Operating Systems Design and
Impl., 2002.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21(7), July 1978.

[29] L. Lamport. Part time parliament. ACM Trans. on Com-
puter Systems, 16(2), May 1998.

[30] L. Lamport. Paxos made simple. ACM SIGACT News Dis-
tributed Computing Column, 32(4), December 2001.

[31] L. Lamport, R. Shostack, and M. Pease. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, 1982.

[32] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp File System. In
13th ACM Symposium on Operating Systems Principles, Oc-
tober 1991.

[33] D. Malkhi and M. Reiter. Byzantine quorum systems. Dis-
tributed Computing, pages 203–213, 1998.

[34] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In 17th
ACM Symposium on Operating Systems Principles, Decem-
ber 1999.

[35] J. McLean. A general theory of composition for a class of
’possibilistic’ security properties. IEEE Trans. on Software
Engineering, 22(1):53–67, January 1996.

[36] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill.
CMC: A pragmatic approach to model checking real code.

In 5th Symp on Operating Systems Design and Impl., 2002.
[37] J-F. Paris and D. D. E. Long. Voting with regenerable volatile

witnesses. In ICDE, pages 112–119, 1991.
[38] M. Reiter. The Rampart toolkit for building high-integrity

services. In Dagstuhl Seminar on Dist. Sys., pages 99–110,
1994.

[39] R. L. Rivest, A. Shamir, and L. M. Adelman. A method
for obtaining digital signatures and pulic-key cryptosystems.
Comm. of the ACM, 21(2):120–126, 1978.

[40] R. Rodrigues, M. Castro, and B. Liskov. Base: Using ab-
straction to improve fault tolerance. In 18th ACM Sympo-
sium on Operating Systems Principles, October 2001.

[41] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility.
In 18th ACM Symposium on Operating Systems Principles,
2001.

[42] A. Sabelfeld and A. Myers. Language-based information-flow
security, 2003.

[43] F. Schneider. Implementing Fault-tolerant Services Using the
State Machine Approach: A tutorial. Computing Surveys,
22(3):299–319, September 1990.

[44] Secure hash standard. Federal Information Processing Stan-
dards Publication (FIPS) 180-1, April 1995.

[45] M. Shand and J. E. Vuillemin. Fast implementations of RSA
cryptography. In E. E. Swartzlander, M. J. Irwin, and J. Jul-
lien, editors, Proceedings of the 11th IEEE Symposium on
Computer Arithmetic, pages 252–259, Windsor, Canada, 1993.
IEEE Computer Society Press, Los Alamitos, CA.

[46] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanab-
han, and L. Qiu. Statistical identification of encrypted web
browsing traffic. In Proc. of IEEE Symposium on Security
and Privacy, May 2002.

[47] G. Tsudik. Message authentication with one-way hash func-
tions. ACM Computer Comm. Review, 22(5), 1992.

[48] U. Voges and L. Gmeiner. Software diversity in reacter pro-
tection systems: An experiment. In IFAC Workshop SAFE-
COMP79, May 1979.

[49] M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. In 18th
ACM Symposium on Operating Systems Principles, pages
230–243, 2001.

[50] J. Yin, J-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin.
Byzantine fault-tolerant confidentiality. In Proceedings of the
International Workshop on Future Directions in Distributed
Computing, pages 12–15, June 2002.

[51] J. Yin, J-P. Martin, A. Venkataramani, M. Dahlin, and L. Alvisi.
Separating agreement from execution for byzantine fault tol-
erant services. Technical report, University of Texas at Austin,
Department of Computer Sciences, August 2003.

[52] L. Zhou, F. Schneider, and R. van Renesse. COCA : A Secure
Distributed On-line Certification Authority. ACM Trans. on
Computer Systems, 20(4):329–368, November 2002.

