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Abstract

We present Half–pipe anchoring, a novel technique to
build a multiple connection handoff mechanism that enables
efficient use of resources in a server cluster, improves the
scalability of the cluster and supports construction of het-
erogeneous cluster architectures where nodes are special-
ized to efficiently perform specific tasks of client requests.
The key idea behind our approach is to decouple the two
unidirectional half-pipes that make up a TCP connection
between a client and a server in the cluster and anchor
the unidirectional half–pipe from the client to the cluster
at a designated server while allowing the half–pipe from the
cluster to the client to migrate on a per–request basis to
an optimal server where the request is best serviced. We
describe the design and implementation of a prototype mul-
tiple connection handoff mechanism in the Linux kernel and
demonstrate the benefits of our technique.

1. Introduction

Three trends characterize today’s content servers that
host services such as e-mail, e-commerce, and search en-
gines. First, services are increasingly providing their clients
with personalized content. A recent study conducted by the
HTRC group [17, 18] reveals that the percentage of com-
panies adopting secure-content technologies—which typi-
cally generate dynamic or personalized content—was 76%
in 2001, while those using personalized content from XML-
based applications was 67%.

Second, partly in response to the added complexity
and diversity of clients’ requests brought by personaliza-
tion, cluster architectures are changing. No more a col-
lection of identical nodes, clusters are increasingly struc-
tured around specialized nodes, customized to efficiently�
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perform specific subsets of the tasks involved in process-
ing a request [20, 32]. Node specialization improves ef-
ficiency and scalability of the cluster and reduces overall
energy consumption [14, 15, 2, 10]. For example, nodes
that predominantly serve static data can benefit from large
amounts of memory, while a powerful processor is more
beneficial for nodes serving compute-intensive dynamic
content. Similarly, static requests can be serviced by an
efficient in-kernel implementation of a server application
like TUX [3], while dynamic requests that typically require
complex cookie parsing or database accesses are better han-
dled by a user level server application like Apache. Nodes
can also be specialized to perform specific parts of request
processing efficiently [27, 28]: some nodes can handle net-
work level packet processing, some can handle data serving
and caching and some can handle complex database query-
ing. Even at the application level, complex applications like
MultECommerce [26] specialize functionalities performed
by nodes to achieve scalable systems.

Third, clients can send multiple, and potentially very dif-
ferent, requests to the same server using a single persistent
TCP connection [8, 23]. Persistent connections eliminate
the overhead involved in setting up and tearing down a con-
nection for each request. Unfortunately, they also make it
hard to direct each request coming on the connection to the
cluster node that is best suited to service it.

In this paper, we present half-pipe anchoring, a novel
technique that allows individual requests coming on a per-
sistent connection to be processed at the cluster node that is
best equipped to serve them. Half-pipe anchoring is based
on the observation that a TCP connection can be viewed as
two half-pipes, one from the cluster to the client (data pipe)
and one from the client to the cluster (control pipe). Our ap-
proach anchors the control pipe at one server, which we call
the designated server, while allowing the data pipe to mi-
grate on a per-request basis to the server where the request
is best serviced. We obtain the coordination needed to al-
low the control pipe and the data pipe to reside on different
nodes through a simple protocol, which we call split-stack.
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Half-pipe anchoring goes beyond existing connection
handoff protocols [4, 5, 19, 24, 25, 29, 30, 31] in at least
two respects. First, it supports efficient multiple handoffs of
the same connection by allowing requests to be pipelined.
Thus, a node processing request ��� can hand off the connec-
tion to a new node for processing the next request ��� before
all TCP traffic related to ��� has been received by the client.
Second, and more importantly, half-pipe anchoring is the
only connection handoff mechanism designed to operate ef-
ficiently in heterogeneous clusters composed of specialized
nodes. For example, half-pipe anchoring enables a server
architecture where nodes optimized for request processing
do not perform any data serving and vice versa.

As a proof of concept, we have built a prototype im-
plementation of half-pipe anchoring in the Linux kernel.
Our experiments show that the prototype supports multiple
handoffs with minimum overhead. For example, for a re-
sponse size of 15 KB, our prototype incurs an overhead of
16% in the response time perceived by a client in a LAN.
The overhead drops to 0.36% in a WAN environment with
an average round-trip latency of 40 ms. We compare the
performance of our prototype against an existing multiple
handoff solution(KNITS) [25] and find that the overhead
incurred by our solution is only one-fourth that of KNITS
in the worst case.

The rest of the paper is organized as follows. Section
2 explores the design space of existing solutions and then
presents a case for the requirement of a novel multiple
connection handoff mechanism for today’s content servers.
Section 3 presents half-pipe anchoring, our approach to
building such a mechanism. Section 4 provides a descrip-
tion of our prototype implementation. Section 5 presents an
evaluation of our prototype and Section 6 concludes.

2. Design Space

The problem of allowing a request to be serviced by a
server best-suited to service the request can be addressed
using two end-to-end approaches. In the first approach,
content and services can be authored such that requests can
be sent directly from the client to the appropriate servers.
This approach has a drawback that it requires a client to
open multiple connections with servers within a server clus-
ter that wastes both server and network resources [13, 23].
Also, this approach exposes the configuration details of the
server cluster to the content authoring process (and hence
the clients) and prevents the cluster from achieving fine-
grained load balancing across servers.

The second end-to-end approach uses a transport-level
connection migration mechanism [29, 30] to migrate a
transport connection between a client and a server to an-
other server better-suited to service the next request. The
client application is transparent to this migration. This ap-
proach incurs large connection migration latencies because

of WAN delays and hence is not suitable for migration be-
tween short web transfers. Also, this approach needs client
system modifications limiting its deployability.

Because of the drawbacks of the end-to-end approaches,
we focus on cluster-based mechanisms to ensure that each
request is serviced by the best-suited server. To simplify
the exposition of these mechanisms, consider a server clus-
ter architecture with a single frontend node and a collec-
tion of backend servers (Figure 1). The frontend node pro-
vides a single-IP address view of the entire server cluster to
the clients and performs some additional functions such as
load balancing [24]. The backend servers service client re-
quests. The frontend and the backend servers are connected
using an internal high-speed network. We refer to a backend
server that holds the connection from a client as the desig-
nated server, and the backend server that is best-suited to
service the client request as the optimal server.
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Figure 1. A simplified cluster architecture

To classify and systematically explore the design space
for cluster-based solutions, we partition the task of servicing
requests by optimal servers into three components.

1. Layer-7 switching: This component processes client
requests and determines the optimal server for servicing the
request based on criteria such as server load, availability of
content or service at the server, etc.

2. Connection management: This component manages
the interactions between the client, the designated server,
and the optimal server to ensure that the response is cor-
rectly received by the client.

3. Cluster transparency: This component is respon-
sible for sending responses from the optimal server to the
client. In particular, this component modifies packets trans-
mitted from the optimal server such that, from the client’s
perspective, responses appear as coming from the frontend
node. This modification ensures that handing off the re-
sponsibility to service a request from the designated server
to the optimal server is completely transparent to the client.

We now classify and compare different cluster-based
mechanisms based on where in the cluster(frontend or back-
end) these three components reside. We evaluate the relative
merits of these approaches in terms of (1) the scalability of
the server cluster platform, (2) the efficiency of cluster re-



source utilization, and (3) other constraints imposed by the
approaches on the cluster architecture.
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Figure 2. Cluster based mechanisms

Frontend-based Approaches In the frontend-based ap-
proach (Figure 2(a)), the frontend node accepts all client
connections (C1), performs layer-7 switching for each re-
quest (i.e., determines the optimal server for each request),
sends request to and receives response from the optimal
server on persistent connections (C2 and C3), and finally
forwards the response to the client. Relaying frontend ar-
chitectures such as the commercially available Redline web
accelerators [4] fall into this category.

The main advantage of this approach is that all the above
three components are encapsulated in the frontend. The
backend servers are completely unaware of the overall op-
eration of the server cluster (and hence, server clusters can
be put together from off-the-shelf components). The main
disadvantage of this approach is the frontend node becomes
a bottleneck and limits the overall scalability of the server
cluster. Although techniques such as TCP splicing [16]
reduce the overhead of relaying data through the frontend
node, the complexity of layer-7 switching and connection
management make the frontend the limiting factor in clus-
ter scalability [12].

Hybrid Approaches These solutions split the three com-
ponents between the frontend node and the backend servers.
KNITS [25] is an instance of this approach. In KNITS,
layer-7 switching is done at the backend servers, while
the frontend node is responsible for cluster transparency
and connection management. An incoming connection is
sprayed by the frontend onto a designated backend server
chosen by a simple distribution policy to balance load on
the backend servers. After identifying the optimal server
for a request on the connection, the designated server for-
wards the request to the optimal server and informs the fron-
tend of this handoff. The frontend then splices together the
connection from the optimal server to the frontend with the
connection from the designated server to the client, so as to

keep the handoff transparent to the client. This approach is
easy to deploy since it requires no modifications to the ker-
nels of the backend servers. However, since the connection
management and cluster transparency functions continue to
reside at the frontend, the frontend limits the scalability of
the cluster. We quantify the overhead involved in manipu-
lating response packets at the frontend in Section 5.

Backend-based Approaches In this model, all three
components are performed at the backend servers. The
frontend node merely performs the layer-4 functions by
spraying connections to designated backend servers in a
round-robin manner. It has been shown that a frontend
switch that performs only the layer-4 functions is signif-
icantly more scalable than a frontend that performs extra
processing such as content-aware request distribution and
TCP-splicing [12].

The simplest instantiation of the backend approach is of-
ten called backend forwarding (Figure 2(b)). In this case,
once a backend server receives a request, it (1) identifies an
optimal server to service the request, (2) forwards the re-
quest to the optimal server over persistent connections (C2
and C3), (3) receives the response from the optimal server,
and (4) forwards the response to the client over the client-
cluster connection (C1). Backend forwarding is simple to
implement, and is more scalable than frontend-based ap-
proaches. However, this approach requires data to be for-
warded to the client through the designated server. This
wastes processor, memory and network bandwidth at the
cluster which also leads to increased power consumption.

The overhead inherent in the backend forwarding model
can be eliminated if the connection from the client to the
designated server is handed off to the optimal server. In this
model, the optimal server directly transmits the responses
to the client. However, the optimal server has to now per-
form the layer-7 switching for any subsequent requests on
that connection. Migrating layer-7 switching to the optimal
server has a significant limitation. It requires each backend
server to be capable of processing all incoming requests and
hence can not be used in server clusters created from hetero-
geneous, specialized components.

In summary, connection handoff, a backend-based ap-
proach, is likely to be the most scalable among all the alter-
native architectures discussed above. However, to be viable,
the connection handoff architecture (1) should be applicable
to clusters created from heterogeneous, specialized compo-
nents, and (2) should efficiently support multiple connec-
tion handoffs per connection to efficiently handle multiple
requests with widely different requirements over the same
connection. In what follows, we propose a novel architec-
ture that meets both of these requirements.
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3. Half-pipe Anchoring

A TCP connection can be viewed as a combination of
two unidirectional half-pipes—a control pipe and a data
pipe. The control pipe carries client requests and acknowl-
edgments to the server. The data pipe carries responses from
the server to the client. At either end of the connection, TCP
achieves flow control and reliability on one half-pipe based
on protocol messages (acknowledgments) that it receives
from the other half-pipe. Traditionally, the two half-pipes
of a TCP connection reside on the same node at either ends
(Figure 3(a)).

The requirement that the two half-pipes be co-located
can be relaxed as long as flow control and reliability across
the half-pipes are maintained. Figure 3(b) shows the two
half-pipes separated. Here, the control pipe is anchored at
the designated server (DServ) and a data pipe is instanti-
ated at the optimal server (OServ). OServ sends back a
response to the client over the data pipe while DServ re-
ceives and processes new requests (for which it determines
new optimal servers) and acknowledgments over the con-
trol pipe. The coordination between the control pipe and the
data pipe (for flow control and reliability) is exchanged us-
ing split-stack, a lightweight communication protocol that
we describe in Section 4.

Support for Heterogeneity Anchoring the control pipe
at one server node for the connection duration centralizes
layer-7 processing at DServ. By relaxing the requirement
that every server be capable of layer-7 processing, half-pipe
anchoring simplifies the design and deployment of hetero-
geneous server clusters. For instance, Half–pipe anchoring
makes it possible to build a web serving cluster in which
different specialized nodes are responsible for parsing client
requests, serving static data and returning dynamic content.

Multiple Connection Handoffs Consider two successive
requests, ��� and � � , received by DServ on the same persis-
tent connection from a client. Two scenarios can occur: (1)
� � reaches DServ after the client has completely acknowl-
edged the response to � � , or (2) � � reaches DServ while � �

is still being served.

Half-pipe anchoring trivially handles the first scenario.
Once � � is serviced completely, DServ has a consistent state
of the connection. When it receives ��� , DServ simply in-
stantiates a new data pipe at an appropriate optimal server.

A simple way to handle the second scenario would be to
prevent DServ from handing off the connection until all the
operations related to previous requests (data transmission
and ack receiving) are completed. However, this approach
wastes network bandwidth by deliberately draining the data
pipe before handing off the connection. In fact, Aron et. al.
have identified pipe-draining as a potential problem that a
connection handoff protocol must address [11].

Half-pipe anchoring prevents data pipe drains during
connection handoff. As soon as the optimal server for � �

finishes sending the last data packet, it informs DServ that
it is done. At this point, while the data packets from � � ’s
optimal server are still unacknowledged, DServ can direct
a second optimal server to service ��� , thereby preventing
the data pipe from draining. Anchoring the half-pipe from
the client enables DServ to forward the client’s acknowl-
edgments to the appropriate optimal server.

4. Prototype: The Split-stack

TCP

Application Application

PassiveActive

OServDSrev

Split−stack

(a) Active and passive layers in split-stack

Handoff header
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Figure 4.

Split-stack is a light-weight communication protocol that
coordinates the control and data pipes when they are sepa-
rated on different nodes. In order to better explain the split-
stack protocol, we use the following terminology: the TCP
layer on the designated server is called the active layer and
that on the optimal server is called the passive layer. (Fig-
ure 4(a)). The active layer holds the control pipe, performs



request and ack demultiplexing and controls the data pipe
instances created on the optimal servers. The passive layer
receives commands from the active layer to create, monitor
and destroy instances of data pipes. We have implemented
a prototype split-stack in the TCP stack of the Linux 2.4.10
kernel.

4.1. Message Structure

To exchange handoff messages between the active and
passive layers, we extended the TCP header and data as
shown in figure 4(b). The active and passive layers identify
handoff messages using a handoff bit (one of the reserved
bits in the TCP header [9]). All packets that enter a node’s
TCP layer are intercepted, and checked for the handoff bit.
If this bit is set, the handoff message is handled appropri-
ately according to the message type; otherwise the packets
traverse the vanilla TCP stack.

The handoff header is sent as a TCP option and con-
tains six fields. The kind field identifies that the option is
for handoff messages. The type field defines the type of
the message. It could be one of SS SETUP, SS DONE,
SS CTRL, SS RESET or SS FAILURE. Client port and
client IP address identify the client whose connection is be-
ing handed-off. Data 1 and Data 2 are fields used for car-
rying data specific to the message types. The state and data
parts of TCP data represent the connection state and request
data carried in SS SETUP respectively.

To keep track of the data pipe instances created by hand-
offs for sending subsequent messages, the active layer main-
tains a list of the following five–tuple entries corresponding
to each handoff instance:

�
OServ.IP, client.IP, client.port, Seq.start, Seq.end �

The handoff messages are sent as IP packets. We cur-
rently handle loss of handoff packets in the internal network
using timeouts. On a timeout, the handoff just fails. Mak-
ing the handoff reliable is straight forward with some addi-
tional functionality. However, since packet losses are rare in
a tightly-coupled LAN environment, we tradeoff the rarely
occurring handoff failures for a simpler design.

4.2. Sequence of Actions

Figure 5 depicts the message sequence chart of handling
a client request remotely (some of the irrelevant messages
like 3-way handshake between client and designated server,
are not included in the chart). The following steps are exe-
cuted in order to process a request remotely:

1. Layer-7 switching: On the arrival of a client request,
the application on the designated server (DServ Appl) de-
termines the optimal server where the request should ideally
be handled. The DServ Appl then calls the handoff system
call to handoff the request to the optimal server.

2. Connection management: The active layer sends a
SS SETUP message to the passive layer in response to the
execution of a handoff system call by the DServ Appl. The
current TCP connection state of the socket is sent on the
message to the passive layer on the optimal server, along
with the request data provided by the application in the
handoff call. In Linux, all TCP connection state is stored
in the tcp opt structure. The active layer also stores a five-
tuple entry corresponding to the passive layer for sending
control and reset messages.

On the optimal server, the passive layer receives the
SS SETUP message and creates a new socket using the pro-
vided connection state. The socket is created in the estab-
lished state without a TCP three-way handshake. The pas-
sive layer then provides the request data to the OServ Appl
waiting on OServ-port.

3. Cluster transparency: When the OServ Appl sends
data to the passive layer to be sent to the client, the passive
layer modifies the sender address in the TCP header to in-
dicate that the data actually originated from the designated
server.

4. SS DONE and SS FAILURE:
The OServ Appl closes the connection as soon as the

response data is sent to the passive layer. The passive layer,
on receiving the close, does not trigger the normal TCP-FIN
exchange [9] with the client and instead returns success to
the OServ Appl.

Once all the data is sent out to the client, the passive
layer sends an SS DONE message to the active layer with
the sequence number of the last byte sent. This is when the
Seq.end field gets updated in the entry on the active layer
corresponding to the data pipe. If a setup failure occurs
because no application exists waiting on the given port or
because no memory is available on the optimal server, then
an SS FAILURE is sent instead. The active layer returns
from the handoff system call indicating success or failure to
the application based on the message it received.

5. Ack and request demultiplexing: Since the control
pipe is anchored at the designated server, all acks from the
client arrive at the active layer. For every ack that the ac-
tive layer receives, based on the data pipe entries that it has,
it generates a SS CTRL message to the respective passive
layer. When this message is received, the passive layer con-
verts the message into an ack and injects it up the vanilla
TCP stack. The TCP stack on the optimal server views the
ack as if it were sent from the client. Based on the ack re-
ceived, new packets are sent out to the client, following the
normal TCP actions on the optimal server. If the SS DONE
message has not yet been received from a particular passive
layer (i.e. Seq.end is not yet known), but the active received
an ack from the client acknowledging data that is potentially
sent out by this passive, then the active still sends a control
message to the passive.
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Each SS CTRL message also contains the correct se-
quence number of the most recent request data received
from the client, so that subsequent response data packets
from an optimal server send correct acks to the client.

As a part of the half-pipe anchoring technique, subse-
quent requests that have already been received are not sent
to the new optimal server. Instead, they are processed lo-
cally at the designated server. This choice minimizes the
overhead of the handoff.

6. SS RESET: If an ack acknowledges all the packets
send by a passive, an SS RESET is sent to the passive layer.
The passive layer destroys the socket in response.

4.3. Concurrent Handoffs

If a new request arrives at the designated server after the
response for the previous request is completely acknowl-
edged by the client, and the new request also requires a
handoff, the handoff can happen without any more changes
to the protocol described in Section 4.2.

Now consider a case where a new request arrives while
a handoff for another request is already in progress. In or-
der to minimize the request processing latency, ideally the
request should get processed as soon as the DServ Appl pro-
cesses the request. However, the earliest time at which an
active layer can initiate a second handoff is after it receives
the SS DONE message from the first passive layer where
the first handoff initiated a data pipe. This is when the ac-
tive layer has complete state information of the connection.
In our prototype, we allow initiation of handoff for the next

request as soon as SS DONE is received for the previous
request. This pipelined processing of requests leads to ef-
ficient use of resources. However, one of the crucial chal-
lenges with handling concurrent handoffs is the correct han-
dling of incoming acks and request data.

Our approach to handling correct forwarding of acks and
request data is based on the observation that an ack actu-
ally serves two purposes. First, it serves as a credit to send
more packets on the connection. Second, it informs the
sender that a previously sent packet (and queued to handle
retransmissions) has been received at the client and hence
the space occupied by the queued packet can be reclaimed.
While credits to send more packets are meaningful only
when there is more data to send back to the client, space
reclamation must be performed always.

Two facts enable us to determine what to do with an ack
received at a designated server. First, at any given time,
only one optimal server can be transmitting new data pack-
ets to the client, while multiple servers could be waiting for
acks for the data they already sent. Second, when an opti-
mal server has finished sending data to a client, it informs
the designated server of the amount of data sent. Using this
information and the ack sequence numbers, the designated
server determines which server node should reclaim pack-
ets and which server node should send a new data packet.
The active layer then sends SS CTRL messages to the cor-
responding passives to either reclaim packets or send more
packets or retransmit any lost packets. If all packets sent by
an optimal server are acknowledged, then the active sends
an SS RESET message to its passive layer.



4.4. API

If a DServ Appl determines that a request has to be han-
dled remotely, it executes the following system call:

ss handoff(request, OServ-IP, OServ-port)
The handoff system call returns success or failure de-

pending on whether the request was handled successfully
by the optimal server. If not, DServ Appl can either (1) han-
dle the failed request locally, (2) handle the failed request at
another remote optimal server node or (3) send an error re-
sponse to the client. The DServ Appl can then proceed to
receive and pre-process the next request from the client.

The OServ Appl is unaware of the handoff and sim-
ply sends the response back on the connection. However,
our implementation currently expects that the OServ Appl
closes the connection as soon as the request is completely
served. This triggers the SS DONE message from the pas-
sive layer.

4.5. Discussion

Our prototype implementation currently makes some
simplifying assumptions about TCP by not handling some
TCP options (TCP timestamps [6] and SACKs [7]). Al-
though these TCP options are important, they were not re-
quired to demonstrate the efficacy of half-pipe anchoring
and hence we chose not to implement them.

Since the active layer completely controls the passive
layer and since the designated server receives all the pack-
ets from the client, any information related to TCP options
can be easily communicated to the passive layer by using
the SS CTRL message. For example, in order to handle
timestamps correctly, the designated server should ensure
that the timestamp values used in the packets being sent
to the client are monotonically increasing [6]. To achieve
this monotonicity, the designated server can send its present
timestamp to the optimal server receiving credits to send
new packets and the optimal server can use this timestamp
in the response packets. SACK options can be interpreted
and sent as retransmission requests in the SS CTRL mes-
sage. However, some options like Window scale and MSS
that are exchanged during SYN exchange phase between
the client and the designated server automatically get re-
flected in the connection state sent to an optimal server in
the SS SETUP message and hence do not require any spe-
cial handling in our protocol.

One advantage of building a connection handoff mech-
anism based on half-pipe anchoring is that it enables some
nodes in the cluster to run a reduced and optimized commu-
nication stack (like the one explored by Levy-Abegnoli et
al. in [21] to accelerate web servers) that implements just
the functions of a passive layer like sending more packets,
retransmitting packets and reclaim resources on the direc-
tions of the active layer and thus improve the performance
and scalability of the cluster.

With a minor extension to the SETUP DONE message
(allowing it to carry back data) our prototype can support
dependent dynamic requests (two requests are dependent
if the state modified by one request is used by the other).
However, the DServ and OServ Appls will be responsible
for transferring the required state back and forth using the
underlying split-stack protocol. The same holds true for
secure http connections where the DServ security layer is
responsible for transferring enough state to the OServ se-
curity layer to handle secure connections. More broadly,
the split-stack protocol is a transport level infrastructure that
just supports remote request processing—higher level pro-
tocols should manage explicitly the state that they require
to operate correctly.

5. Prototype Performance

Our experiments were designed with three goals in mind:
(1) to analyze the various overheads our prototype incurs in
handling a request remotely in comparison to handling the
request locally, (2) to show the efficacy of half-pipe anchor-
ing in handling multiple handoffs and (3) to compare per-
formance of half-pipe anchoring with KNITS, an existing
system that supports multiple handoffs.

5.1. Setup

Our experimental environment consists of 450 MHz Pen-
tium II PCs used as servers and 933 MHz Pentium III PCs
used as client and delay router, all interconnected using a
switched 100 Mbps Ethernet. All servers run the Linux
2.4.10 kernel with our modifications to the TCP stack. We
used Apache 1.3.19 as our server application. We made a
minor modification to Apache to invoke the ss handoff sys-
tem call to handle a request remotely. On the client side,
we used the Httperf workload generator [22] to drive our
experiments. We modified Httperf to maintain a specified
number of outstanding connections to the server.

5.2. Benchmark Experiments

In the first set of experiments, we measure the various
overheads of our implementation using setup1 of Figure 6.
In the graph shown in Figure 7(a), the line “direct” cor-
responds to the experiment done with the vanilla 2.4.10
TCP/IP stack, and the line “direct with kernel mods” cor-
responds to the kernel with our modifications to the stack to
implement the active and passive layer functionalities. For
lines ”direct” and ”direct with kernel mods”, DServ sends
a response directly to the client’s requests. Each connec-
tion setup with the client carries one request. The negligi-
ble spacing between “direct” and “direct with kernel mods”
lines in figure 7(a) shows that our modifications to the ker-
nel do not add much overhead to the normal message flow
in the vanilla network stack.
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Figure 7. Effect of varying response size

Figures 7(a) and 7(b) show the overhead of the split stack
protocol by measuring the response time and throughput
perceived by the client for one request on a connection as
response size is varied. The “direct” line in the graph cor-
responds to the case where the client obtains a response di-
rectly from a server (DServ). The “Split-stack” line cor-
responds to the case where the client sends the request to
DServ, which hands-off the connection to OServ to service
the request. The gap between the two lines represents the
overhead because of the split-stack protocol. The constant
spacing between the two lines in Figure 7(a) indicates that
most of the overhead is incurred in the initial setup. Note
here that the overhead involves contribution from two appli-
cations in the split-stack case (DServ Appl and OServ Appl)
as against only one application in the direct case (This setup
is justified because any connection handoff mechanism al-
ways requires processing on both the nodes). Also, the ex-
act overhead contributed by the application is dependent on
the application itself.

Table 1 shows the connection lifetimes over a WAN as
perceived by a client requesting a document of size 15 KB
with varying WAN delays (where all request and response

Table 1. WAN delay vs. Connection lifetimes

WAN delay Direct Split-stack Overhead
(in ms) (in ms) (in ms)

2 12.23 12.73 4%
10 44.44 44.94 1.1%
20 84.47 85.08 0.72%
40 164.54 165.14 0.36%

packets get delayed by a constant amount of time as shown
on the X-axis). The difference in connection lifetimes re-
mains constant irrespective of the WAN delays showing that
most of the overhead is incurred in the handoff initiation.
The data supports the fact that the handoff overhead be-
comes negligible in a WAN environment, where packet de-
lays are at least a couple of orders of magnitude more than
in a LAN environment. To simulate WAN delays, we used
the NISTNet delay router [1].

Any handoff mechanism uses more resources than the
direct case because of handoff initiation overhead, ack for-
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Figure 8.

warding and double application processing. To get a sense
of how all these factors affected, we measured the through-
put achieved by two servers with the setup2 of Figure 6). In
the direct case, requests sent to the servers Serv1 and Serv2
from the client are processed locally by the servers. In the
split-stack case, each server hands-off the request that it re-
ceives from the client to the other server, i.e. no request is
processed locally. This is a worst-case setup and brings out
the worst-case performance degradation of our technique.

Our measurements showed that in this setup, the direct
case achieved a maximum throughput of 1348 reqs/sec,
while split-stack case achieved 796 reqs/sec, which is a per-
formance degradation of 40%. Most of the overhead is in-
curred due to double application processing that is inherent
in any handoff mechanism. Using a customized server ap-
plication that is optimized for request processing, instead of
Apache on the designated server, could further reduce some
of the overhead. This observation also suggests that since
the overhead involved in application level processing and
the handoff mechanism could be significant, they are better
performed on the backends.

5.3. Multiple Concurrent Handoffs

In this experiment, we measured the efficacy of half-pipe
anchoring in handling multiple handoffs. The setup used
for this experiment is shown in setup3 of Figure 6. The
DServ receives all requests from the client and distributes
them among OServ1, OServ2 and OServ3. Each request
on a connection is handled at a different OServ than the
previous one (i.e. six requests means six handoffs on the
connection). Each request generates a response size of 15
KB that is sent back from the optimal servers directly to
the client. The graph shown in Figure 8(a) shows the effect
of multiple handoffs on connection lifetimes. The graph
shows that even after multiple handoffs, the loss in response

time per handoff remains same. This graph supports the
fact that half-pipe anchoring successfully keeps the handoff
overhead minimum by (1) anchoring the control pipe and
transferring minimum data between control and data pipes
and (2) allowing pipelining of request processing to prevent
data pipe draining.

5.4. Performance Comparison to KNITS

To our knowledge, KNITS [25] is the only other imple-
mentation available today that supports multiple connection
handoffs. We compared the performance of split-stack with
that of KNITS using the data in [25]. Figure 8(b) com-
pares the overhead in connection lifetimes that split-stack
incurs as compared to the direct case, with the overhead that
KNITS incurs as compared to the direct case as response
size is varied. The figure shows that the amount of overhead
we incur is only one-fourth that incurred by KNITS even in
the worst case (with a 1.5 KB response). Another obser-
vation in the graph is that, while the overhead for KNITS
remains almost the same, the overhead of split-stack falls
down significantly as response file size increases. For ex-
ample, between a file size of 1.5 KB and 24 KB, the per-
centage overhead of split-stack falls down by 50%, while
the overhead of KNITS falls by just 2%. This is explained
by the fact that the overhead in split-stack is incurred only
during the data pipe setup phase. Whereas, the overhead in
KNITS is due to the handoff and also due to the overhead of
forwarding all response packets through the frontend, while
performing address translation on the packets. This experi-
ment supports that backend based handoff mechanisms are
more efficient than frontend based mechanisms. We could
not compare our throughput with that achieved by KNITS
for lack of enough data related to KNITS. However, we be-
lieve that the throughput comparison would match that of
the overhead comparison, since the more overhead a sys-
tem has, the less throughput it achieves.



6. Conclusions

We present the design of a multiple connection hand-
off mechanism based on half-pipe anchoring. Our work is
motivated by the changing trends in content server archi-
tectures. The key insight behind half-pipe anchoring is to
decouple the two unidirectional half-pipes that make up a
TCP connection. This technique anchors the control pipe at
a designated server while allowing the data pipe to migrate
on a per-request basis to the server best suited to service
the request. We have shown a simple design and implemen-
tation of a multiple handoff mechanism based on half-pipe
anchoring. Our performance analysis shows that our tech-
nique incurs low overhead; furthermore, because it is back-
end based, it is highly scalable. We compared our prototype
implementation to KNITS, an existing system that supports
multiple handoffs, and found that our implementation in-
curs at most one-fourth of the overhead that KNITS incurs.
We believe that one of the most interesting features of half-
pipe anchoring is to enable the building of heterogeneous
server clusters that are highly scalable and energy efficient.
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