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Message Logging: Pessimistic,
Optimistic, Causal, and Optimal

Lorenzo Alvisi and Keith Marzullo

Abstract —Message-logging protocols are an integral part of a popular technique for implementing processes that can recover from
crash failures. All message-logging protocols require that, when recovery is complete, there be no orphan processes, which are
surviving processes whose states are inconsistent with the recovered state of a crashed process. We give a precise specification of
the consistency property “no orphan processes.” From this specification, we describe how different existing classes of message-
logging protocols (namely optimistic, pessimistic, and a class that we call causal) implement this property. We then propose a set of
metrics to evaluate the performance of message-logging protocols, and characterize the protocols that are optimal with respect to
these metrics. Finally, starting from a protocol that relies on causal delivery order, we show how to derive optimal causal protocols
that tolerate foverlapping failures and recoveries for a parameterf: 1< f<n.

Index Terms —Message logging, optimistic protocols, pessimistic protocols, checkpoint-restart protocols, resilient processes,

specification of fault-tolerance techniques.

1 INTRODUCTION

M ESSAGE-LOGGING protocols (for example, [4], [15], [21],
[11], [17], [20], [12], [22], [7] are popular for building
systems that can tolerate process crash failures. These pro-
tocols require that each process periodically record its local
state and log the messages it received after having recorded
that state. When a process crashes, a new process is created
in its place: The new process is given the appropriate re-
corded local state, and then it is sent the logged messages in
the order they were originally received. Thus, message log-
ging protocols implement an abstraction of a resilient proc-
ess in which the crash of a process is translated into inter-
mittent unavailability of that process.

All message-logging protocols require that once a
crashed process recovers, its state is consistent with the
states of the other processes. This consistency requirement
is usually expressed in terms of orphan processes, which are
surviving processes whose states are inconsistent with the
recovered state of a crashed process. Thus, message-logging
protocols guarantee that upon recovery, no process is an
orphan. This requirement can be enforced either by avoid-
ing the creation of orphans during an execution, as pessimis-
tic protocols do, or by taking appropriate actions during
recovery to eliminate all orphans as optimistic protocols do.

This paper examines more carefully the different ap-
proaches to message-logging protocols. To do so, we char-
acterize more precisely the property of having no orphans.
This characterization is surprisingly simple yet it is gen-
eral enough to describe both pessimistic and optimistic
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message-logging protocols. Both classes of protocols, how-
ever, have drawbacks, which are apparent from their char-
acterizations. Thus, we use the same characterization to
define a third class of protocols that we call causal message-
logging protocols. These protocols are interesting because
they do not suffer from the drawbacks of the other two
classes and can be made optimal with respect to a set of
reasonable performance metrics.

Finally, starting from a simple but inefficient message-
logging protocol that uses causal multicast, we derive an
optimal causal protocol that maintains enough information
to tolerate f overlapping failures, where f is a parameter of
the protocol. We only derive this protocol far enough to
illustrate how piggybacking can be used to implement
causal message-logging. A thorough discussion of such
optimal causal protocols and of the tradeoffs involved in
their implementation is presented in [3].

The characterization that we give is concerned with how
information can be lost in the system due to crashes, and
how message-logging protocols cope with this loss of in-
formation. There are other issues of message-logging proto-
cols that are out of the scope of this paper, such as commu-
nication with the environment, checkpointing, and recov-
ery. A discussion of these issues in the context of causal
message logging is presented in [2].

The paper proceeds as follows. Section 2 describes the
system model commonly assumed for message-logging
protocols. Section 3 discusses the notion of consistency in
message-logging protocols. Section 4 presents the derivation
of the always-no-orphans condition, and explains how it relates
with the consistency conditions implemented by pessimistic,
optimistic and causal protocols. Section 5 defines optimal
message-logging protocols. In Section 6, we present a simple
nonoptimal protocol that uses causal delivery to implement
the always-no-orphans consistency condition. In Section 6.3
we refine this protocol to obtain an optimal causal message-
logging protocol. Section 7 concludes the paper.
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2 SYSTEM MODEL

Consider a distributed system /N consisting of 1 processes.
Processes communicate only by exchanging messages. The
system is asynchronous: There exists no bound on the rela-
tive speeds of processes, no bound on message transmis-
sion delays, and no global time source.

Processes execute events, including send events, receive
events, and local events. These events are ordered by the irre-
flexive partial order happens before — that represents potential
causality [13]. We assume that a send event specifies only a
single destination, but the following could be easily extended
to include multiple destination messages. We also assume
that the channels between processes do not reorder messages
and can fail only by transiently dropping messages.

Processes can fail independently according to the fail-
stop failure model [18]. In this model, processes fail by
halting, and the fact that a process has halted is eventually
detectable by all surviving processes.

Outside of satisfying the happens-before relation, the ex-
act order a process executes receive events depends on
many factors, including process scheduling, routing, and
flow control. Thus, a recovering process may not produce
the same run upon recovery even if the same set of mes-
sages are sent to it since they may not be redelivered in the
same sequence as before. We represent this low-level non-
determinism by creating a nondeterministic local event de-
liver that corresponds to the delivery of a received message
to the application. When an deliver event is executed, any
received message can be chosen to be delivered to the ap-
plication. The only constraints are that a message can be
delivered only once, channel order is preserved, and as
long as a process does not fail, it eventually delivers all
messages that it receives.

A deliver event assigns to a message m a receive sequernce
number that encodes the order in which m was delivered.'
We denote the receive sequence number of a message m as
m.rsn. Thus, if process p delivers m and m.rsn = £ then m is
the {th message that p delivered [21].

An execution of the system is represented by a run,
which is the sequence of states the system passes through
during that execution. Each state consists of the individual
process states, each of which is a mapping from program
variables and implicit variables (such as program counters)
to values. The state of a process does not include the vari-
ables defined in the underlying communication system,
such as the queues of messages that have been received but
not yet delivered to processes. We assume that only one
process changes state between any two adjacent states in
the run. Thus, each pair of adjacent states defines an event
that was executed by a process. The resulting sequence of
events is consistent with the happens before relation.

A property is a logical expression evaluated over runs.
We use the two temporal operators [] and < [14] to ex-
press properties. The property [1® (read “always ®”) at a
state in a run means that the property @ holds in the cur-
rent state and all subsequent states of the run. The prop-
erty O@ (read “eventually ®“) at a state in a run means

1. A more logical name would be the deliver sequence number. We use receive
sequence number in order to be consistent with message logging literature.

that the property ® holds in the current state or in a sub-
sequent state of the run. If no state and run are specified,
then a property holds if it holds in the initial state of all
runs of the system. For example, the property [I((a = 1) =
<& (b = 1)) means that in all runs, for every state in a run, if
the state satisfies @ = 1, then the state or a subsequent state
in the run satisfies b = 1.

3 CONSISTENCY IN MESSAGE-LOGGING PROTOCOLS

In message-logging protocols, each process typically rec-
ords both the content and receive sequence number of all
the messages it has delivered into a location (called a mes-
sage log) that will survive the failure of the process [9]. This
action is called logging. To trim message logs, a process may
also periodically create a checkpoint of its local state. For
example, in some message-logging protocols once a process
p checkpoints its state, all messages delivered before this
state can be removed from p’s message log. Note that the
periodic checkpointing is only needed to bound the length
of message logs (and hence the recovery time of processes).
For simplicity, we ignore checkpointing in this paper.

Logging a message may take time: Therefore, there is a
natural design decision of whether or not a process should
wait for the logging to complete before sending another
message. For example, suppose that having delivered mes-
sage m, process p sends message m’ to process g, and q de-
livers m’. If message m is not logged by the time p sends 7/,
then the crash of p may cause information about m to be
lost. When a new process p is initialized and replayed
logged messages, p may follow a different run in which it
does not send m’ to 4. In this case, process g would no
longer be consistent with p, because g4 would have delivered
a message that was not sent by the current process p. Such a
process g is called an orphan. Protocols that can create or-
phans are called optimistic because they are willing to take
the (hopefully) small risk of creating orphans in exchange
for better performance during failure-free runs. If a failure
occurs, though, an optimistic protocol determines whether
there are any orphans. If so, it rolls them back in order to
make the states of the processes consistent again.

A pessimistic protocol is one in which no process p ever
sends a message m’ until it knows that all messages deliv-
ered before sending m’ are logged. Pessimistic protocols
never create orphans, and so reconstructing the state of a
crashed process is straightforward as compared to optimis-
tic protocols. On the other hand, pessimistic protocols po-
tentially block a process for each message it receives. This
can slow down the throughput of the processes even when
no process ever crashes.

There are message-logging protocols that do not exhibit
the above tradeoff: They neither create orphans when there
are failures nor do they ever block a process when there are
no failures. We call such protocols causal message-logging
protocols, for reasons that will become clear later. Examples
of this class are presented in [7], [1].

All message-logging protocols must address the issue of
processes that communicate with the environment. It is
natural to model such communications in terms of the
sending and delivery of messages. Because one end of the
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communications is not a process, recovery of a process with
respect to these kinds of messages is usually done differ-
ently than with respect to messages between processes. For
input, the data from the environment must be stored in a
location that is accessible for the purpose of replay. For
output, a process must be in a recoverable state before
sending any message to the environment. This means that,
in general, even optimistic message-logging protocols may
block before sending a message to the environment. Such
issues are outside of the scope of this paper.

4 SPECIFICATION OF MESSAGE LOGGING

Let p be a run of . If no process executes nondeterministic
events in p and a process fails, then recovering the system
to a consistent state is straightforward: The system can stop
and restart from its initial state. Since p contained only de-
terministic events, p would be re-executed. If processes can
execute nondeterministic events in p, then some mechanism
is needed to guarantee that the same events executed in p
are again executed during recovery. Message logging proto-
col implement such a mechanism by recording the informa-
tion necessary to deterministically re-execute events of p.

For each message m delivered during p, let m.source and
m.ssn denote, respectively, the identity of the sender process
and a unique identifier assigned to m by the sender. The lat-
ter may, for example, be a sequence number. Let de-
liver,,, ;,,(m) denote the event that corresponds to the delivery
of message m by process m.dest, and let m.data be the applica-
tion data carried by the message. The tuple (m.source, m.ssn,
m.dest, m.rsn) determines m and the order in which m was
delivered by m.dest relative to the other messages delivered
by m.dest. We call this tuple the determinant of event de-
liver,, ,,(m), and we denote the tuple as #m. For simplicity,
we also refer to #m the determinant of .

Therefore, the ability of any message logging protocol to
correctly recover from process failures experienced during
p depends crucially on the availability upon recovery of the
determinants of the delivery events that occurred during p.

However, the immediate availability of the content m.data
of a message m exchanged during p is not an essential part of
#m. In practice, an effective technique for logging the content
of messages can result in dramatic performance gains, but, at
least in principle, the content of a message can be determi-
nistically regenerated from the initial states of the processes
and the determinants of each deliver event in p. In other
words, logging messages is not an essential task of message
logging protocols, while logging message determinants is.
Hence, we will ignore in our specification the specifics of
logging the contents of messages, just as we ignore the details
related to taking periodic checkpoints—both are caching that
can be added to speed up recovery.2

Our goal is to derive a condition, which we call always-
no-orphans, that guarantees that no orphans are generated
during any run of N. To do so, we define two subsets of N
for each message m delivered in a run. The first set, De-
pend(m), contains all processes whose state reflects delivery
of m: Depend(m) contains the destination of message m, plus

2. A similar argument can be made about m.dest not being essential in the
determinant of m. We keep m.dest in #m for ease of exposition.
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any process that delivered a message sent causally after the
delivery of m. Formally:

v ((j = m.dest) A jhas delivered m) }

def | .
Depend(m)= {] e Ny (3m’: (deliver,, ;,,(m) — deliver,(m’)))

The second set, Log(m), is used to characterize the set of
processes that have a copy of #m in their volatile memory.3
Process m.dest becomes a member of Log(m) when it deliv-
ers m.

Suppose that a set of processes C ¢ N fail. The determi-
nant of a deliver event deliver,, ., (m) is lost if Log(m) < C.
Assume that #m is lost. By definition, process m.dest was in
Log(m) before the failure. Therefore, m.dest is in C and so
must be recovered. Since #m is lost, m.dest may not be able
to deliver m in the correct order during recovery. Conse-
quently, m.dest may not be able to regenerate some of the
messages it sent after executing deliver,, ,,.(m) in the origi-
nal execution. All processes whose state depends on proc-
ess m.dest delivering message m in the correct order will
become orphan processes.

We say that a process p becomes an orphan of C when p
itself does not fail and p’s state depends on the delivery of a
message m whose determinant has been lost. Formally:
def( A e N-C
porphan of C'= (/\ (Elpm: ((p e De)pend(m)) A (Log(m) C)))(l)

Negating (1) and quantifying over p gives the following
necessary and sufficient condition for there being no or-
phans created by the failure of a set of processes C:

Vm: ((Log(m) < C) = (Depend(m) < C)) (2)

Our goal is to derive a property that guarantees that no
set C of faulty processes results in the creation of orphans.
Quantifying (2) over all C, we obtain:

Vm: (Depend(m)  Log(m)) (3)

Since we want (3) to hold for every state, we require the
following property:

Vm: (d(Depend(m) < Log(m)) 4)

Property (4) is a safety property: it must hold in every state
of every execution to ensure that no orphans are created. It
states that, to avoid orphans, it is sufficient to guarantee
that if the state of a process p depends on the delivery of
message m, then p keeps a copy of m’s determinant in its
volatile memory.

We say that #m is stable (denoted stable(m)) when #m
cannot be lost. Condition 3 must hold only for messages
with a determinant that is not stable. Hence, 3 need only
hold when #m is not stable:

Vm: ((—stable(m) = (Depend(m) < Log(m))) (5)

We call this property the always no orphans condition. If
determinants are kept in stable storage [9], then stable(m)

3. One can imagine protocols where no single process knows the value of
#m but a set of processes collectively do. An example of such a protocol is
given in [10], where the value of #m for some message m may be inferred by
“holes” in the sequence of logged receive sequence numbers. Since this is the
only such case that we know of and it can tolerate at most two process failures
at a time, we do not consider further this more general method of logging.
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holds when the write of #m to stable memory completes. If
determinants are kept in volatile memory, and we assume
that no more than f processes—where |Cl < f—can fail
concurrently, then stable(m) holds as long as f + 1 processes
have a copy of #m in their volatile memory. In the latter
case, the always no orphans condition can be written:

Vm: (| Log(m) | <f)= (Depend(m) c Log(m)))  (6)

4.1 Pessimistic and Optimistic Protocols Revisited

As we saw in Section 3, pessimistic message-logging proto-
cols do not create orphans. Therefore, they must implement
Property (5). Indeed, they implement the following stronger

property:
Vm : [J(—stable(m) = (| Depend(m) 1< 1)) 7)

In practice, (7) does not allow the process that delivers
message 11 to send any messages until the determinant of m
is stable.” To see this, suppose process p, has just delivered
m. Depend(m) contains only p,, so | Depend(m)| = 1. Suppose
now that p, sends a message m’ to process p,. Since deliv-
erpl(m) — deliver,,(m’), when process p, delivers m’ it be-
comes a member of Depend(m), and | Depend(m) | = 2. Thus,
as soon as m’ is sent, the consequence in (7) can become
false. To preserve (7), p, ensures that stable(mn) holds before
sending m’. If the time during which —stable(m) is brief,
then it is unlikely that p will attempt to send a message
while #m is not stable, so any performance loss by inhibit-
ing message sends is (hopefully) small.

The reasoning behind optimistic protocols starts from
the same assumption used by pessimistic protocols: The
time during which —stable(m) holds is brief. Hence, (5)
holds trivially nearly all the time. Therefore, it is not practi-
cal to incur the performance cost that pessimistic protocols
suffer. Instead, optimistic protocols take appropriate ac-
tions during recovery to re-establish (5) in the unlikely
event that it is violated as a result of the failure of a set of
processes C.

Optimistic protocols implement the following property:

Vm: ()(—stable(m) = ((Log(m) < C) = O(Depend(m) < €))) (8)

Property (8) is weaker than Property (2), and therefore
weaker than Property (5). Property (5) permits the tempo-
rary creation of orphan processes, but guarantees that, by
the time recovery is complete, no surviving process will be
an orphan and Property (2) will hold. This is achieved
during recovery by rolling back orphan processes until
their states do not depend on any message whose determi-
nant has been lost. In other words, Depend(m) is made
smaller (or, equivalently, C is made larger) until Depend(m)
c Cand Property (2) is restored.

4.2 Causal Message-Logging Protocols

Pessimistic protocols implement a property stronger than
Property (4) and, therefore, never create orphans. However,
implementing this stronger property may introduce block-

4. In pessimistic sender-based logging [11], process m.dest increases
| Log(m) | by sending the value of m.rsn to process m.source, piggybacked on
the acknowledgment of message m. Notice however that m.dest is still not
allowed to send any application messages until it is certain that m.source has
become a member of Log(m).

ing in failure-free runs. Optimistic protocols avoid this
blocking by satisfying a property weaker than Property (4).
It is natural to ask whether protocol can be designed that
implements Property (4)—and therefore creates no or-
phans—yet does not implement a property as strong as
Property (7)—and thus does not introduce any blocking.
We find such a property by strengthening Property (6).
Consider the following property:

Vm: [J((1 Log(m) | < f) (Depend(m) = Log(m))) )

Property (9) strengthens (6), and so protocols that imple-
ments (9) prevents orphans. Furthermore, such protocols
disseminate the least number of copies of #m needed in or-
der to satisfy (6), thereby conserving storage and network
bandwidth.

Unfortunately, satisfying Property (9) requires processes
to be added to Log(m) and Depend(m) simultaneously. Satis-
fying this requirement would result in complicated protocols.
Thus, we consider a different strengthening of Property (6)
that is weaker than Property (9) but still bounds Log(1m):

Vm: (1 Log(m) | <f)= ((Depend(m) < Log(m)) A
< (Depend(m) = Log(m)))) (10)

This characterization strongly couples logging with causal
dependency on deliver events. It requires that:

» Aslong as #m is at risk of being lost, all processes that
have delivered a message sent causally after the de-
livery of m have also stored a copy of #m.

* Eventually, all the processes that have stored a copy
of #m deliver a message sent causally after the deliv-
ery of m.

We call the protocols that implement Property (10) causal
message-logging protocols. Family-Based-Logging [1] and
Manetho [7] are two examples of causal message-logging
protocols for the special cases f = 1 and f = n, respectively.

5 OPTIMAL MESSAGE-LOGGING PROTOCOLS

We now consider four metrics with which one can compare
different message-logging protocols. These metrics are not
the only ones that one might wish to consider when making
such a comparison, but they do give some measure of the
running time of the protocol, both in the failure-free case
and during recovery.

To express these four metrics, let IT be a protocol exe-
cuted by a set N of processes, and assume that IT is written
to tolerate no process failures and no transient channel fail-
ures. Let I1, denote Il combined with a message-logging
protocol u that tolerates process failures and transient
channel failures.

1) Number of forced roll-backs. This metric gives some
measure of the amount of work that might need to be
discarded as a result of a process crash. Consider a run
p of T1, and suppose that a set C < /N of processes fails.
We say that u forces r roll-backs if there is a run in
which u requires r correct processes to roll back their
state, and for all p, u requires no more than r correct
processes to roll back their state. For example, optimis-
tic sender-based logging [11] forces | N1 rollbacks.
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A lower bound for r is 0. The existence of pessi-
mistic protocols, where no correct process ever rolls
back, establishes that this bound is tight.

2) k-blocking. This metric gives some measure of the
amount of idle time that can be added to the execu-
tion of a process during a failure-free run. Consider a
message m delivered by process m.dest, and let e be
the first send event of process m.des that causally fol-
lows deliver,, 4,(m). We say that a message-logging
protocol is k-blocking if, in all failure-free runs and for
all messages m, process m.dest delivers no less than k
messages between deliver,, 4,,;(m) and e. For example,
pessimistic sender-based logging [11] is 1-blocking
because process m.dest must receive a message ac-
knowledging the logging of m.rsn before sending a
message subsequent to the delivery of m. Optimistic
protocols are, by design, 0-blocking. For complete-
ness, we define pessimistic protocols that log the de-
terminant of m in local stable storage to be 1-blocking,
since there is one event (the acknowledgment of #m
being written to stable storage) that must occur be-
tween deliver,, 4,.,(m) and a subsequent send [4].

A lower bound for k is 0. The existence of optimis-
tic protocols establishes that this bound is tight.

3) Number of messages. This metric gives one measure of
the load on the network generated by the message log-
ging protocol. Protocol IT can be transformed into a
protocol I1, that tolerates transient channel failures us-
ing an acknowledgment scheme: Whenever process
m.dest receives a sequence of messages generated by I,
it sends an acknowledgment to process m.source. Proc-
ess m.source resends a message until it receives such an
acknowledgment. In all runs, including failure-free
ones, protocol Iy will send more messages than I1.

Suppose now that p is run using I1,, instead of T1.
We say that u sends additional messages in p if II,
sends more messages than I1,. For example, in order
to tolerate single crash failures pessimistic sender-
based logging [11] potentially requires that one extra
acknowledgment be sent for each application mes-
sage sent.

A lower bound is to send no additional messages.
The existence of optimistic protocols establishes that
this bound is tight.

4) Size of messages. This metric gives another measure of
the load on the network generated by the message
logging protocol. Consider any message m sent in a
run of I, and let m, be the corresponding message
sent in the equivalent failure-free run of II,. Let
Imland Im,| be the size of m and m,, respectively.
We will say that u sends a additional data if the
maximum value of Im,| — Iml is a for all such m and
m,, taken from all pairs of corresponding runs. For ex-
ample, for optimistic protocols that track direct de-
pendencies, a is a constant [20], [22]; while for opti-
mistic protocols that track transitive dependencies a is
proportional to the number of processes in the system
[21], [20].

A lower bound for a is 0. The existence of pessimistic
receiver-based logging proves that this bound is tight.

There is a tradeoff between the number of additional
messages sent in I, and the sizes of these messages: A mes-
sage-logging protocol u could include less information in a
message by sending additional messages containing the
extra data. In the majority of deployed computer networks
there is, to a point, a performance benefit in sending a few
large messages instead of several small messages. Hence,
we prefer to keep the number of additional messages small
at the expense of message size, and we define an optimal
message-logging protocol as a message-logging protocol that
is 0-blocking, introduces 0 forced roll-backs, and sends no
additional messages. It is a trivial exercise to change proto-
cols that are optimal in this sense to protocols that mini-
mize the size of messages by sending additional messages.

Of course, protocols that are optimal according to our
definition do not necessarily outperform in practice nonop-
timal protocols. Other issues that are difficult to quantify,
such as the cost of output commit, must be taken into con-
sideration in assessing the performance of a message-
logging protocol [8]. Nevertheless, the protocols we call
optimal are unique in optimally addressing the theoretical
desiderata of the message-logging approach.

6 UsING CAusAL DELIVERY ORDER TO ENFORCE
THE ALWAYS-NO-ORPHANS CONSISTENCY
CONDITION

We now derive an optimal causal message-logging proto-
col, ie.,, an optimal message-logging protocol that imple-
ments Property (10). We do so by first presenting, in this
section, a simple nonoptimal protocol that uses causal de-
livery order to implement the always-no-orphans consis-
tency condition. In the following section, we refine this
protocol and obtain an optimal causal message-logging
protocol. We begin by defining causal delivery order.

6.1 Causal Delivery Order

Let send (m) to g denote the event whereby process p sends
message 1 to process g, and receive, (m) the event whereby ¢
receives m.

FIFO delivery order guarantees that if a process sends a
message m followed by a message m’ to the same destina-
tion process, then the destination process does not deliver
m’ unless it has previously delivered m. Formally:

Vp,r,m,m sendp(m) tor — sendp (mHtor

= deliver (m) — deliver (m’) (11)

FIFO delivery order constrains the order in which the
destination process delivers messages m and m’ only when
m causally precedes m” and m and m’ are sent by the same
process. Causal delivery order [6] strengthens FIFO deliv-
ery order by removing the requirement that ordering oc-
curs only when the source of m and m’ are the same. It
guarantees that if the sending of m causally precedes the
sending of m” and m and m’ are directed to the same desti-
nation process, then the destination process does not de-
liver m” unless it has previously delivered m. Formally:

vp,q,r,m,m sendp(m) tor— sendp (m)tor=

deliver (m) — deliver (m’) (12)
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An example of an execution where process r delivers mes-
sages according to causal delivery order is shown in Fig. 1.
Since send (m,) to r causally follows send q(ml) r, r delivers
m, only after m, has been delivered.

There are two fundamental approaches to implementing
causal message delivery. The first is to add to each message
m additional information that m’s destination process uses
to determine when m can be delivered. [16], [19], [6]. Using
this approach, process r in Fig. 1 would realize, when it
receives m,, that it must wait to receive m, and would delay
delivery of m, accordingly. The problem with this approach
is that slow messages can significantly affect the perform-
ance of the system, since they prevent faster messages from
being delivered.

The second approach is for each process p to piggyback,
on each message m that p sends, all messages m’ sent in the
causal history of the event send (m) such that p does not
know if m” has already been delivered [5]. The piggybacked
messages are placed in a total order that extends the partial
order imposed by the happens-before relation. Before de-
livering m, process m.dest first checks if any message m’ in
m’s piggyback has m.dest for destination. If so, p delivers m
only after each such message m’ has been delivered ac-
cording to causal delivery order. This is the approach illus-
trated in Fig. 2. Message m, is piggybacked on m, and m;,
since p and g do not know whether m; has already been
delivered. When r receives m;, it checks the piggyback to
find m;,. Process r, therefore, immediately delivers m; and
then delivers m; without waiting for the slower copy of
message m; to arrive. When the copy of m, is received di-
rectly from ¢, r discards it.

The problem with this piggybacking approach is that,
even though several optimizations can be used to reduce
the size of the piggyback, the overhead on message size can
become very large.

6.2 A Suboptimal Causal Protocol

We now present a Protocol I, that uses causal delivery or-
der to satisfy Property (4). Processes in I1,; behave as follows:

1) Processes exchange two kinds of messages: application
messages and determinant messages. A determinant
message contains the determinant of an application
message.

2) Application and determinant messages are delivered
according to causal delivery order.

3) Suppose process p receives an application message 1.
To deliver m, p creates the determinant #m of message
m and logs #m in its volatile memory. Then, p supplies
m.data to the application.

4) Suppose process p delivers an application message .
Before sending any subsequent application messages,
p sends a determinant message containing #m to all
the other processes.

5) Suppose process p receives a determinant message
containing #m. To deliver the determinant message, p
logs #m in its local volatile memory.

THEOREM 1. Protocol T1,,; satisfies Property (4).

\ I S
m TN T~
3\/ \\\ \\ :
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Fig. 1. An example of causal delivery order.
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Fig. 2. Implementing causal delivery order through piggybacking.

PROOF. Property (4) requires that:
Vm: ((Depend(m) < Log(m))
hold throughout execution. According to the defini-

tion of Depend(m) given in Section 4, a process p is a

member of Depend(m) for an application message m if
one of the following two cases holds:

Case 1. p is the destination of m.

Case 2. p is the destination of an application mes-
sage m’, and deliver,, ;,;(m) is in the causal history
of deliverp(m’).

We now show that in both cases protocol I1; guaran-
tees that if p € Depend(m) then p € Log(m), so De-
pend(m) c Log(m) holds.

Case 1. By point 3) of I1, if p is the destination of m,
then p will log #m in its volatile storage before de-
livering m. Hence, Depend(m) < Log(m) holds.

Case 2. If p is not the destination of m, then some
other process g # p delivered m, and p delivered a
message m’ such that deliverq(m) - deliverp(m’).
Furthermore, there must exist an application mes-
sage m”, not necessarily distinct from m’, such that
deliverq(m) - sendq(m”) - deliverp(m’) (see Fig. 3).
By point 4) of I1,;, g must have sent a determinant
message containing #m to all processes—including
process p—before sending m”. By Point 2) of I1,,
all messages are delivered according to causal de-
livery: Therefore, p must have delivered the mes-
sage containing #m before delivering m”. It follows
from Point 5) of I1,, that p logged #m in its volatile
storage before delivering m”. Hence, p € Log(in)
holds. O
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Fig. 3. Depend(m) c Log(m) in I 4.

Fig. 4 shows an execution of Protocol Il.. Process p,
sends application message 11, to process p;, and then sends
application message m, to process p,. After delivering m,,
and before sending application message 1, p, sends to all
processes a determinant message containing #m,. Note that
process p; first receives mj, then #m,, and finally m,. How-
ever, in order to respect causal delivery order, p, actually
delivers first m,, then #m,, and finally m,.
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Fig. 4. An execution of I
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6.3 An Optimal Causal Protocol

Protocol IT, has several limitations. First, it is not optimal,
since for each deliver event of an application message m, it
uses additional determinant messages to send #m to all proc-
esses. Second, it does not satisfy Property (10), since a process
can enter Log(m) by receiving a copy of #m without ever be-
coming a member of Depend(m). Finally, it forces both appli-
cation and determinant messages to be delivered according
to causal delivery order, even though causal delivery order is
necessary only to regulate how determinant messages are
delivered with respect to application messages.

However, by choosing an appropriate implementation of
causal delivery order, protocol I1, can serve as the starting
point for a more efficient protocol. Since we desire a non-
blocking protocol, our first step is to choose an implemen-
tation of causal delivery based on the piggybacking scheme
described in Section 6.1. Fig. 5 shows the effects of using the
piggybacking scheme on the execution in Fig. 4.

Observe that, since for each application message m the
determinant #m is piggybacked on any application message
sent causally after event deliverp(m), there is no need to ex-
plicitly send #m in a separate determinant message. Instead,
we require each process, before delivering a message m, to
deliver all the determinants piggybacked on m. The result-

ing protocol successfully addresses the first two limitations
of the original protocol. By piggybacking #m on application
messages, the protocol ensures that no correct processes p
will enter Log(m) unless p will eventually join Depend(m).
Furthermore, the protocol is optimal in the number of mes-
sages it sends because the determinants are piggybacked on
existing application messages. Fig. 6 shows the effect of the
new protocol on the execution in Fig. 5.

Note that, once the piggybacking of the determinants is
in place, we are guaranteed that no process will deliver an
application message m unless it first delivers the determi-
nants of all the messages delivered in the causal history of
send,, ....(m). This is precisely the property that we need to
guarantee that Vm: Depend(m) < Log(m) holds. Therefore,
provided that we piggyback the determinants, we can
safely relax the requirement that application messages be
delivered using causal delivery order. Fig. 7 shows the ef-
fects of the new protocol on the execution in Fig. 6.
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Fig. 5. Implementing causal delivery order through piggybacking.
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Fig. 7. An execution of IT,.

The last step of the derivation is to adapt the above pro-
tocol to the case where we assume that no more than f
processes fail concurrently. In this case, a process piggy-
backs #m on an application message only as long as #m is
not stable—i.e., as long as |Log(m)| < f. We call the result-
ing protocol I,.. Processes in I1,. behave as follows:
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1) Processes exchange only application messages. How-
ever, determinants may be piggybacked on applica-
tion messages.

2) Suppose process p sends a message m to process g. p
piggybacks on m all the nonstable determinants #m’
such that p has #m’ its volatile memory.

3) Suppose process p receives a message 1. Before deliv-
ering m, process p first logs all the determinants pig-
gybacked on m in its determinant log, which is im-
plemented in p’s volatile memory. Then, p creates the
determinant for message m, and logs it in the deter-
minant log. Finally, p delivers m by supplying m.data
to the application.

THEOREM 2. Protocol 11, satisfies Property (10). Furthermore,
Protocol 11, is optimal.

PROOF. We first prove that II, satisfies Property (10). In
particular, we prove that:

1) (ILog(m)| < f) = (Depend(m)  Log(im))
2) (1Log(m)| < f) = < (Depend(m) = Log(m))

are satisfied by executions of IT,. We first observe
that, if |Log(m)| > f then 1) and 2) are trivially true.
Therefore, we consider the case in which | Log(m) | <f.

We prove 1) by showing that, whenever |Log(m)|
< f holds, if a process p is a member of Depend(m),
then p is also a member of Log(m). Process p is a
member of Depend(m) if either p is the destination of
m or p is the destination of a message m’, and de-
liver , gost(M) — deliverp(m’).

In the first case, by Point 3) of I, p has saved #m
in its determinant log. Therefore, if p is a member of
Depend(m), then p is a member of Log(m).

In the second case, we proceed by induction on the
length € of the causal chain of processes associated
with a causal path that starts with event deliver,, j,,(111)
and ends with event deliverp(m’).

Base Case. £ = 1.
If € =1, then process m.dest was the sender of mes-
sage m’. In particular, it must be the case that:

deliver,, jo5/(1) — send,, g.(mM") to p — deliverp(m’).

By Point 2) of I1,, process m.dest has piggybacked
on m’ all the determinants that were not stable at
the time of event send,, 4,;(m’) to p. In particular, if
#m was not stable, then it was piggybacked on m’.
Because of Point 3) of I1,, if #m was piggybacked
on nt’, then p has saved #m in its determinant log
before delivering m’. Therefore, if p is a member of
Depend(m), and | Log(m)!| < f, then p is also a mem-
ber of Log(m).

Inductive Step. We assume that 1) holds for all causal
paths whose associated causal chain of processes
has length ¢ < c. We prove that 1) holds for any
causal path whose associated causal chain of proc-
esses has length € = ¢ + 1.

Consider a causal path that starts with event
deliver,, 4,.(m) and ends with event deliverp(m’), and
assume that the associated causal chain of proc-
esses has length € = ¢ + 1. Let g be the process that
sent message m’ to p. Since, by assumption, a proc-
ess never sends a message to itself, it follows that p
# q. Therefore, the causal chain associated with the
causal path that starts with deliver,, 4,,,(m) and ends
with send (m’) to p is of length c. By the inductive
hypothesis, if |Log(m)| < f when m’ was sent, then
#m was in g’s determinant log. By Point 2) of I1,,, g
piggybacked #m on m’. By point 3)) of II,., when p
received m’, p added #m to its determinant log be-
fore delivering m. Therefore, if p is a member of
Depend(m), and |Log(m)| < f, then p is also a mem-
ber of Log(m).

We now prove Part 2), assuming | Log(m) | <f.

If process p is a member of Log(m), then p stores a
copy of #m in its determinant log. For this to happen,
either p received m, or it received a message m’, onto
which #m was piggybacked, such that deliver,, j,,(1m)
— Send,, ....(m"). In the first case, unless p fails, it
will eventually deliver m and become a member of
Depend(m). The second case is similar: Unless p fails,
it will eventually deliver m” and become a member
of Depend(m). Furthermore, since there is only a fi-
nite number of processes in N and Log(m) < N,
eventually all nonfaulty members of Log(m) will join
Depend(m) and 2) will hold. Note that, if p fails, then p
will no longer be a member of Depend(m). However,
in this case, p will lose all the data in its determinant
log, which is implemented in volatile memory, and
will therefore leave Log(m). Hence, 2) holds whether p
is a correct process or not. This concludes the proof
that I1,. satisfies Property (10).

We now have only to show that I, is optimal. To
do so, we observe that no additional messages are
generated by protocol I1,, over the ones needed by the
application, because determinants are piggybacked
on existing application messages. Furthermore, no
correct processes are forced to rollback as a result of a
process’ failure, because I1,, is a causal protocol. Fi-
nally, I1,. is 0-blocking, because none of 1), 2), and 3)
imply blocking. O

6.4 Implementation Issues

Protocol Il,'s piggybacking scheme guarantees that all
the determinants needed to recover the system to a con-
sistent global state from up to f concurrent failures will be
available during recovery. However, the scheme leaves
several open questions. First, IT,. does not specify how to
collect and use the logged determinants to perform recov-
ery. Furthermore, I1,. assumes that processes have knowl-
edge of the current value of [Log(m)| when they deter-
mine whether or not to piggyback the determinant #m on
an application message. This assumption is not realistic in
an asynchronous distributed system, since—as we have
observed before—it requires processes to have instanta-
neous access to Log(m), which is defined over the entire
distributed system. Since the focus of this paper is not the
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implementation of optimal causal message-logging proto-
cols but rather their specification, we do not address these
issues here. The interested reader is referred to [3], in
which we discuss the implementation of a class of optimal
causal message-logging protocols that tolerate f overlap-
ping failures and recoveries for a parameter f: 1 < f < n.
These protocols are based on the same piggybacking
scheme given above.

7 CONCLUSIONS

In this paper, we have shown that a small amount of simple
formalism can go a long way. We have presented the first
specification of the message logging approach to fault-
tolerance, by precisely defining the always-no-orphans con-
dition, which is at the foundation of the consistency re-
quirements of all the protocols in this class. The specifica-
tion is general enough to describe all existing classes of
message logging protocols, yet simple enough to be effec-
tively used as a tool to derive more efficient protocols. We
have provided a set of metrics to evaluate the performance
of a message logging protocol, and given a set requirements
that a protocol must meet in order to be optimal. Finally,
we have argued the existence of optimal protocols that
tolerate f overlapping failures and recoveries for a pa-
rameter f : 1 < f < n by showing how such a protocol can
be derived starting from a simple protocol that relies on
causal delivery order. A thorough discussion of optimal
protocols and of the tradeoffs involved in their implemen-
tation is presented in [3], [2].

APPENDIX A—DERIVATIONS

In this section, we show the derivations of the equations in
this paper that may not be immediately obvious.

A.1 Derivation of (2) from (1)
Vp : =(p orphan of C)
= {(Definition of p orphan of C))

Vo - peN-Cna
P2 3m: ((p € Depend(m)) A (Log(m) < C))

= ((De Morgan’s Lawy))

W - ((p g N-C)v )
P\ (Vm:(—~(p € Depend(m)) v —(Log(m) < C)))

= ((For x not free in Q: (Vx : P(x)) v Q = Vx : (P(x) v Q)))
Vp,m:((pe O v —(pe Depend(m)) v —(Log(m) c C))
= ((Definition of = ))
Vp, m: ((Log(m) < C) = ((p € Depend(m)) = (p € ()))
=((PcQ=Vp:(peP=pecQ)

Vm : ((Log(m) = C) = (Depend(m) c C))

A.2 Derivation Showing that (7) Implies (5)

1) Vm : O(—stable(m) = (| Depend(m) | < 1))
({Definition of Depend(m)))

2) Vm : (| Depend(m) < 1) | < (Depend(m) c {m.dest}))
((Definition of Log(m)))

3) Vm : ({m.dest} < Log(im))
((Transitivity of Set Inclusion, using 2) and 3)))

4) Vm : (1 Depend(m) | <1) = (Depend(m) < Log(m))
((Transitivity of Implication, using 1 )and 4)))

5) Vm : [N(—stable(m) = (Depend(m) < Log(m)))

APPENDIX B—SHARING THE LOG

The specification derived in Section 4 assumes that a proc-
ess logs determinants either in its own volatile memory or
to stable memory. Hence, determinants may be lost only
when a process fails, and since processes fail independ-
ently, different copies of the same determinant are lost in-
dependently. A more general approach is to regard deter-
minant logs as being first-class objects. By doing so, one can
model a set of processes sharing storage for logging pur-
poses and thereby decouple the failure of processes from
the loss of determinants. For example, one reasonable ap-
proach would be to implement the logging component of a
message-logging protocol so that a single, shared log is
maintained for all the processes that run on the same proc-
essor. This would result in a more efficient implementation
of causal message logging.

Define a logging site to be a storage object that a process
can read and write. Each process uses a logging site for its
determinant log. We assume that logging sites fail and re-
cover. When a logging site fails, the values written to the
logging site are lost, and all processes using that logging
site also fail. A process may fail without its associated log-
ging site failing, however.

When determinants are kept at logging sites, Log(m) de-
notes the set of logging sites that contain the determinant of
event deliver,, ;,(m). An implementation of stable storage
using stable memory is represented by a single logging site
that never fails.

Let £ denote the set of logging sites. Function L(p) de-
notes the logging site used by process p. Assume that L(p) is
a constant function—each process uses a single logging site
that does not change. P({), for £ € L, denotes the processes
that are assoc1ated with logging site €. Define functions
LY P) and P (5) to be the set-valued domain versions of
L(p) and P(¢), respectlvely

def U L(p (13)
peP

P(S) ' P(t) (14)
(eS

We now repeat, under these new assumptions, the deriva-
tion that in Section 4 led us to Property (6), which enforces
the always-no-orphans consistency condition.

A process is an orphan process when its state depends
on a determinant that is not logged. Let C denote a set of
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failed processes and T denote a set of failed logging sites.
Then:

def ((p e N =C) A
p orphan of C, E = (Eim:((p € Depend(m)) A (Log(m) < T)))

(15)

A logging site must fail for a process to become an or-
phan. Negating (15) and quantifying over all p gives the
following:

Vm : ((Log(m) c F) = (Depend(m) < C)) (16)

Property (16) is necessary and sufficient to guarantee
that the failure of C processes and of Z logging sites creates
no orphans. From definitions (13) and (14), it follows that:

A cB= P’ (A) c PYB) (17)

AcB= L(A) c L(B) (18)

where .ﬂ and B are sets of the appropriate type. Notlng
that L (P (S) S, it is straightforward to show that P ( A)
cP (B) > AcCBH:

((Hypothesis assumed))
1) P(A) c PY(B)
((Modus ponens, 1 and (18)))
2) LY(P(A) < L°(P(B))
(L(P7(S)) = Sand 2))
3) AcB O
Hence, Ac B= PU(JZ\) = PU(B). We can replace the an-
tecedent of (16) with the equivalent expression PU(Log(m))
c PY(B):
Vi : (P (Log(m)) < P”(F) = (Depend(m) < O))  (19)

By assumption, £ and C are constrained: PU(fE) c C
Hence, the following strengthens (19):

m : ((P”(Log(m)) < O) = (Depend(m) < O) (20)
Universally quantifying (20) over C, we obtain:
Vm : (Depend(m)  P"((Log(m))) 1)

Since we want (21) to hold in every state, we obtain the
following property:

Vm : [(Depend(m) PU(Log(m))) (22)

Property (22), like Property (4) of Section 4, is a safety
property. If satisfied, (4) guarantees that no orphans will be
created during a run.

If we assume that no more than f,. logging sites can fail
at any time, then #m is stable once it has been logged at
more than f,. logging sites. Hence, Property (22) need hold
only as long as failures cannot cause #m to be lost:

Vm : (1 Log(m) | < f,) = Depend(m) c PU(Log(m))) (23)

Finally, we can strengthen Property (23) as in Section 4.2, to
obtain the following property, which characterizes causal
message logging when there are shared logging sites:

Vm : (1 Log(m) | <f,)) = A Depend(m) = PU(Log(m))) A
O(Depend(m) = P"(Log(m)))) (24)

Using a derivation similar to the one given in Section 6.3,
it is straightforward to develop an optimal protocol I1,, that
satisfies Property 24. It may be surprising that at this level
of refinement, protocol II, is essentially identical to proto-
col I, of Section 6.3. The main differences in the protocoL
is found through further refinement. The most significant
difference is in the size of the data structures they to com-
pute Log(m): for T1,., the data structure is size O(n°) while
for I1,, the data structure is size O(| £1%) where | L1 is the
number of logging sites. Details can be found in [2].
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