
Analysis of Computing Policies Using SAT
Solvers (Short Paper)

Marijn J. H. Heule, Rezwana Reaz, H. B. Acharya, and
Mohamed G. Gouda

The University of Texas at Austin, United States
{marijn,rezwana,acharya,gouda}@cs.utexas.edu

Abstract. A computing policy is a sequence of rules, where each rule
consists of a predicate and a decision, and where each decision is either
“accept” or “reject”. A policy P is said to accept (or reject, respectively)
a request iif the decision of the first rule in P , that matches the request is
“accept” (or “reject”, respectively). Examples of computing policies are
firewalls, routing policies and software-defined networks in the Internet,
and access control policies. A policy P is called adequate iff P accepts at
least one request. It has been shown earlier that the problem of deter-
mining whether a given policy is adequate (called the policy adequacy
problem) is NP-hard. In this paper, we present an efficient algorithm
that use SAT solvers to solve the policy adequacy problem. Experimen-
tal results show that our algorithm can determine whether a given policy
with 90K rules is adequate in about 3 minutes.

Keywords: Policies, Firewalls, Access Control, Routing Policies, SAT

1 Introduction

A computing policy is a filter that is placed at the entry point of some resource.
Each request to access the resource needs to be examined against the policy to
determine whether to accept or reject the request.

Examples of computing policies are firewalls in the Internet, routing poli-
cies and software-defined networks in the Internet, and access control policies.
Early methods for the logical analysis of computing policies have been reported
in [6], [5], and [4].

The decision of a policy to accept or reject a request depends on two factors:

1. The values of some attributes that are specified in the request and
2. The sequence of rules in the policy that are specified by the policy designer.

A policy is a sequence of rules where a rule in a policy consists of a predicate
and a decision, which is either “accept” or “reject”. To examine a request against
a policy, the rules in the policy are considered one by one until the first rule,
whose predicate matches the values of the attributes in the request, is identified.
Then the decision of the identified rule, whether “accept” or “reject”, is applied
to the request.



2 M. J. H. Heule et al.

A rule in a policy is defined as a pair, one predicate and one decision, written
as follows:

〈predicate〉 → 〈decision〉

A rule whose decision is “accept” is called an accept rule, and a rule whose
decision is “reject” is called a reject rule.

A predicate is of the form:
(
(u1 ∈ X1)∧ · · · ∧ (ut ∈ Xt)

)
, where each ui is an

attribute whose value is taken from an integer interval denoted D(ui), each Xi

is an integer interval that is contained in D(ui), and each ∧ denotes the logical
AND or conjunction operation.

A request is a tuple (b1, . . . , bt) of t integers, where t is the number of
attributes and each integer bi is taken from the domain D(ui) of attribute ui. A
request (b1, . . . , bt) is said to match a predicate

(
(u1 ∈ X1) ∧ · · · ∧ (ut ∈ Xt)

)
iff

each integer bi in the request is an element in the corresponding integer interval
Xi in the predicate.

A request is said to match a rule in a policy iff the request matches the
predicate of the rule. A policy P is said to accept (or reject, respectively) a
request rq iff P has an accept (or reject, respectively) rule r such that request
rq matches rule r and does not match any rule that precedes rule r in P .

2 The Policy Adequacy Problem

A policy P is said to be adequate iff there is a request rq that is accepted by P .
The policy adequacy problem is to design an efficient algorithm that can take
as input any policy P and determine whether P is adequate.

It has been shown in [2] that the time complexity of the policy adequacy
problem is NP-hard. In [7], the authors present an algorithm that uses SAT
solvers, for example Glucose [1], to solve the policy adequacy problem. Unfortu-
nately, the algorithm in [7] is based on rule predicates of a form that is different
from the form of the rule predicates described in the current paper. Therefore,
the presented algorithm in [7] cannot be applied efficiently to solve the policy
adequacy problem described in the current paper.

3 Solving the Policy Adequacy Problem using SAT
Solvers

In this paper, we present an algorithm, named Algorithm 1, that uses any SAT
solver to solve the policy adequacy problem that is described in this paper.
Because of space limitation, our presentation of Algorithm 1 is restricted to the
case where Algorithm 1 is applied to the following example policy P :(

(u ∈ [3, 5]) ∧ (v ∈ [4, 4])
)
→ accept(

(u ∈ [2, 4]) ∧ (v ∈ [4, 4])
)
→ reject(

(u ∈ [2, 5]) ∧ (v ∈ [4, 4])
)
→ accept



Analysis of Computing Policies Using SAT Solvers (Short Paper) 3

This example policy has 2 attributes u and v whose value domains are as follows:
D(u) = [1, 4] and D(v) = [1, 4]. Note that this example policy has 2 accept rules
and 1 reject rule.

Our algorithm Algorithm 1 consists of the following 4 steps:

Step 1. In the first step of Algorithm 1, P is encoded into the following Boolean
formula FP such that a request rq is accepted by P iff rq makes the value of
FP true:

FP =
(
ac(1) ∨ ac(2)

)
∧ ar(1) ∧ ar(2) ∧ rr(1) ∧ LP

Each ac(i), where i ∈ {1, 2}, is a Boolean variable denoting that the i-th accept
rule in P is matched by rq. Each ar(i), where i ∈ {1, 2}, is a predicate whose
value is true iff ac(i) is false or request rq matches the i-th accept rule in policy P .
Each rr(j), where j ∈ {1}, is a predicate whose value is true iff the j-th reject rule
in policy P is preceded by some i-th accept rule where ac(i) is true or request rq
does not match the j-th reject rule in policy P . Predicate LP is discussed below.

Step 2. In the second step of Algorithm 1, we introduce into formula FP Boolean
variables that we will use in the third step of the algorithm to encode the pred-
icates ar(1), ar(2), rr(1) and LP .

For each interval [y, z], of an attribute w, that occurs in any rule in pol-
icy P , introduce into FP two Boolean variables named le(w, y− 1) and le(w, z).
Therefore, we end-up introducing the following six Boolean variables in this case:
le(u, 2), le(u, 5), le(u, 1), le(u, 4), le(v, 3), and le(v, 4).

Step 3. In the third step of Algorithm 1, we use the introduced “le” Boolean
variables to encode the predicates ar(i), rr(j), and LP as follows.

Let the i-th accept rule in policy P be of the form:

u1 ∈ [y1, z1] ∧ · · · ∧ ut ∈ [yt, zt]→ accept

In this case, predicate ar(i) can be encoded as follows:(
ac(i) ∨ le(u1, y1 − 1)) ∧ (ac(i) ∨ le(u1, z1)

)
∧

. . .(
ac(i) ∨ le(ut, yt − 1)

)
∧
(
ac(i) ∨ le(ut, zt)

)
Let the j-the reject rule in policy P be of the form:

u1 ∈ [y1, z1] ∧ · · · ∧ ut ∈ [yt, zt]→ reject

and assume that there are k (note that k can be 0) accept rules that precede
the j-th reject rule in P . In this case, predicate rr(j) can be encoded as follows:(
ac(1) ∨ · · · ∨ ac(k) ∨ le(u1, y1 − 1) ∨ le(u1, z1) ∨ · · · ∨ le(ut, yt − 1) ∨ le(ut, zt)

)



4 M. J. H. Heule et al.

Predicate LP in formula FP describes some expected restrictions on the
values of the “le” Boolean variables introduced into FP . For example, for the
two Boolean variables le(u, 2) and le(u, 5) that are introduced into FP , predicate
LP should include the clause (le(u, 2) ∨ le(u, 5)).

Therefore, we encode the predicates ar(1), ar(2), rr(1), and LP as follows:

ar(1) =
(
ac(1) ∨ le(u, 2)

)
∧
(
ac(1) ∨ le(u, 5)

)
∧
(
ac(1) ∨ le(v, 3)

)
∧
(
ac(1) ∨ le(v, 4)

)
ar(2) =

(
ac(2) ∨ le(u, 1)

)
∧
(
ac(2) ∨ le(u, 5)

)
∧
(
ac(2) ∨ le(v, 3)

)
∧
(
ac(2) ∨ le(v, 4)

)
rr(1) =

(
ac(1) ∨ le(u, 1) ∨ le(u, 4) ∨ le(v, 3) ∨ le(v, 4)

)
LP =

(
le(u, 1) ∨ le(u, 2)

)
∧
(
le(u, 2) ∨ le(u, 4)

)
∧(

le(u, 4) ∨ le(u, 5)
)
∧
(
le(v, 3) ∨ le(v, 4)

)
Step 4. In the fourth step of Algorithm 1, we use any SAT solver, for exam-
ple Glucose [1], to determine whether the above formula FP is satisfiable. The
above policy P is adequate iff formula FP is satisfiable.

Complexity. The complexity of Algorithm 1 to determine whether a given
policy P is adequate is measured by the number of Boolean variables introduced
into formula FP in Algorithm 1.

Note that if the given policy P has n rules and t attributes, then formula FP
in Algorithm 1 has O(nt) Boolean variables and the complexity of Algorithm 1
does not depend on the range of values of the different attributes in policy P .

We performed some experiments to evaluate the effectiveness of Algorithm
1. In each experiment, we applied Algorithm 1 to determine whether a given
firewall P selected at random, is adequate. The given firewall P is a policy with
5 attributes and between 10K and 90K rules. The value domain of each attribute
in firewall P is the integer interval [0, 216 − 1]. The state-of-the-art SAT solver
Glucose version 3.0 [1] was used to check whether the generated Boolean formula
FP is satisfiable1.

Figure 1 shows the relationship between the number of rules in a given firewall
P and the execution time of Algorithm 1 when this algorithm is applied to
firewall P to determine whether P is adequate. From Figure 1, the execution
time of Algorithm 1 is less than 3 minutes when the given firewall P has up to
90,000 rules.

4 Concluding Remarks

In the full version of this paper [3], we show how to extend Algorithm 1 to solve
other policy problems beyond policy adequacy. In particular, we show how to
solve the problems of policy completeness, policy implication, policy equivalence,
and redundancy checking in policies.

1 Files are available at http://www.cs.utexas.edu/~marijn/firewall

http://www.cs.utexas.edu/~marijn/firewall


Analysis of Computing Policies Using SAT Solvers (Short Paper) 5

0

20

40

60

80

100

120

140

160

180

10000 20000 30000 40000 50000 60000 70000 80000 90000

E
x
ec

u
ti

o
n

ti
m

e
o
f
A

lg
o
ri

th
m

1

Number of rules in a given firewall

1

Fig. 1. Execution time (in seconds) of Algorithm 1 to determine whether a given
firewall is adequate.

5 Acknowledgements

Research of M. J. H. Heule is supported by DARPA Contract FA8750-15-2-0096 and
NSF Award CCF-1526760. Research of M. G. Gouda is supported by NSF Award
1440035.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009. pp. 399–404 (2009)

2. Elmallah, E.S., Gouda, M.G.: Hardness of firewall analysis. In: NETYS, LNCS, vol.
8593, pp. 153–168. Springer (2014)

3. Heule, M.J.H., Reaz, R., Acharya, H.B., Gouda, M.G.: Analysis of computing poli-
cies using sat solvers. In: Technical Report No. TR-16-14, Department of Computer
Science, The Universisty of Texas at Austin (2016)

4. Hoffman, D., Yoo, K.: Blowtorch: a framework for firewall test automation. In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 96–103. ACM (2005)

5. Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.: Analysis of
vulnerabilities in internet firewalls. Computers & Security 22(3), 214–232 (2003)

6. Mayer, A., Wool, A., Ziskind, E.: Fang: A firewall analysis engine. In: IEEE Sym-
posium on Security and Privacy. pp. 177–187. IEEE (2000)

7. Zhang, S., Mahmoud, A., Malik, S., Narain, S.: Verification and synthesis of firewalls
using SAT and QBF. In: Proceedings of the 20th IEEE International Conference on
Network Protocols (ICNP). pp. 1–6. IEEE (2012)


	Lecture Notes in Computer Science
	Introduction
	The Policy Adequacy Problem
	Solving the Policy Adequacy Problem using SAT Solvers
	Concluding Remarks
	Acknowledgements


