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Satisfiability (SAT) solving has many applications...

formal verification

planning

graph theory

combinatorics

bioinformatics

cryptography

train safety

rewrite termination

encode decodeSAT solver

..., but SAT solving may struggle in the presence of symmetries
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Break Symmetries for Graph Existence Problems
A graph existence problem asks whether there exists a undirected graph
with a certain property. For example, does every graph of six vertices
have a clique or a co-clique of size 3? (Known as Ramsey number 3)

Graph existence problems are hard for SAT solvers due to the symmetries.

Consider all graphs with three vertices:
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We can perfectly break all symmetries by eliminating all but one graph
from each isomorphism class. For example, eliminating graphs 3 to 6:

(ab ∨ ac ∨ bc) ∧ (ab ∨ ac ∨ bc) ∧ (ab ∨ ac ∨ bc) ∧ (ab ∨ ac ∨ bc)

This can be simplified to (ab ∨ ac) ∧ (ac ∨ bc).

What size are the most compact perfect symmetry-breaking predicates?
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Existing Techniques Break Symmetries Partially

Existing symmetry-breaking methods constrain the adjacency matrix:

quad Row i less than or equal to row i + 1, while ignoring columns i , i + 1

cubic Row i less than or equal to row j (i < j), while ignoring columns i , j
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Redundancy ratio: average number of graphs per isomorphism class
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Computing Compact & Perfect
Symmetry Breaking
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Logic Minimization Method

Perfect isolator: a perfect symmetry-breaking predicate

Compute a perfect isolator as follows:

1. Choose a canonical set of graphs, i.e., exactly one graph
out of each isomorphism class;

2. Convert the canonical set into clauses (Tseitin encoding);

3. Reduce the size of the clauses via logic minimization.

For example for graphs with three vertices:

1. Canon:
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2. Tseitin encoding results in a formula with 13 clauses
(independent on canon).

3. Can be reduced to two clauses (dependent on canon).
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Logic Minimization Sizes and Runtimes

Several tools exist to generate a canonical set:

I Nauty by by Brendan McKay (1981)

I Bliss by Tommi Junttila and Petteri Kaski (2007)

Several tools exist to minimize a given logical formula:

I Espresso by by Robert Brayton (1984)

I Bica by Alexey Ignatiev (2015)

Best results with Nauty and Bica (size in cubes / clauses):

k 2 3 4 5 6 7 8

|PDNF| 2 4 11 34 156 1, 044 12, 346
|PCNF| 3 13 67 341 2, 341 21, 925 345, 689
|Psimp| 0 2 9 24 77 311 > 1, 839
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SAT Solving Method

The prior method required a canonical set as input. However,
the number of choices for the canonical set is exponential.
Only some choices may be reducible to a compact predicate.

As an alternative approach, we translate the problem into SAT:

I Formula Fk,m expresses the SAT encoding of the existence
of a perfect isolator for k vertices using m clauses.

I All m clauses are satisfied by graphs in the canonical set;

I Each non-canonical graph falsifies at least one clause;

I These formulas are huge: O(2|E |m|E |) with |E | = k2−k
2

.

Using the SAT approach, the optimal perfect symmetry
breaking for graphs of size k can be computed: Find m such
that Fk,m−1 is unsatisfiable, while Fk,m is satisfiable.
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SAT Solving Sizes and Runtimes

Formula Fk,m expresses the SAT encoding of the existence of
an isolator for k vertices using m clauses.

Two top-tier solvers: glucose (G) and treengeling (T)

formula result variables clauses best runtime∗

F4,6 UNSAT 756 2, 458 0.18 (G)
F4,7 SAT 861 2, 827 0.01 (G)
F5,11 UNSAT 14, 480 54, 756 3, 510.36 (T)
F5,12 SAT 15, 609 59, 281 102.69 (G)

∗ Runtimes are in wall clock seconds on a quad core Intel Xeon E31280 CPU.

All formulas with k ≥ 6 appeared too hard: i.e, unsolvable in
24 hours using a parallel solver running on 24 cores.
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Random Probing Method

Logic minimization results in large perfect isolators, as existing
canonicalization algorithms produce “poor” canonical sets.

The SAT method results in optimal isolators, but doesn’t scale.

Our third approach is based on random probing:

1. All graphs of size k are active and the isolator is empty.

2. Rank all potential clauses that can be added to the
isolator. The more active graphs that are falsified by a
clause, the higher its rank. Ties are broken randomly.

3. Randomly add a single clause to the isolator with
probability P(r) = 2−r , with r being the clause rank.

4. Terminate if the isolator is perfect. Otherwise to go 2.
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Random Probing Sizes and Runtimes

Random probing can be improved by running multiple rounds:

I In round i + 1 we pick the smallest isolators of round i and
forced the first 10i clauses from those isolators.

I Below two probability plots: (left) the results of 2 rounds
on n = 6 with 400,000 probes per round, and (right) the
results of 4 rounds on n = 7 with 80,000 probes per round.
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Results
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Optimal Isolators in CNF

Variable xy denotes whether an edge from node x to y exists.
For example bc = 0 means there is no edge from node b to c .

P3 := (ab ∨ bc) ∧ (bc ∨ ac)

P4 := (ad ∨ bd) ∧ (bd ∨ ac) ∧ (cd ∨ bc) ∧ (ab ∨ bc) ∧
(bc ∨ ac) ∧ (ab ∨ bd ∨ cd) ∧ (bc ∨ bd ∨ ad)

P5 := (ad ∨ bd) ∧ (bd ∨ ac) ∧ (cd ∨ bc) ∧ (bc ∨ ad) ∧
(ae ∨ ce) ∧ (be ∨ ae) ∧ (ab ∨ bd ∨ cd) ∧
(ae ∨ de ∨ be) ∧ (ad ∨ ce ∨ de) ∧ (ab ∨ cd ∨ de) ∧
(ac ∨ ad ∨ ce) ∧ (ce ∨ ab ∨ ae ∨ bc)
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Visualization of Optimal Isolators for n ∈ {3, 4}
Two canonical graphs are connected with an arc if they differ
in exactly one edge. The arrow points from the canonical
graph without the edge to the one with the edge.
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Visualization of Optimal Isolator for n = 5
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Conclusions and Future Work
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Conclusions and Future Work

Conclusions:

I We presented three methods to compute perfect
symmetry-breaking predicated for graph problems.

I Optimal isolators are compact, at least for small graphs.

I Existing canonical label algorithms do not allow the
construction of small isolators.

Future work:

I How to compute optimal isolators for medium graphs?

I How to construct compact isolators for large graphs?

I Can graphs symmetries be perfectly broken using
polynomial-sized predicates?

Thanks!
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