Litmus Testing at Rack Scale

David Cock, ETH Zirich
david.cock@inf.ethz.ch

ABSTRACT

In tackling some of the challenges of rack-scale computing—
large & persistent memories, non-coherent caches, and the
expansion of the system interconnect to include an Infini-
band or converged Ethernet-type network—research operat-
ing systems are exercising hardware in novel ways. For ex-
ample, the fast user-level message passing of Barrelfish [Bau-
mann et al.,, 2009] exploits a deep understanding of the
x86 cache coherence protocol for extremely low-cost inter-
core messaging, while SpaceJMP [Hajj et al., 2016] relies on
rapidly multiplexing a virtual address space, to handle large
physical memories.

One challenge posed by both of these approaches is that
they rely on the behaviour of underspecified portions of the
architecture: coherency protocols, MMU updates, caches.
These are hairy enough on their own, but combined, we
have a combinatorial explosion of potential interactions. To-
day, the correctness of mechanisms that cleverly exploit such
hardware features, in ways unintended by their manufactur-
ers, is seriously in doubt. This is below the level at with the
seL4 project [Klein et al., 2009] axiomatised the hardware;
There are no formal verification results here, and it’s not
clear that there will be.

The programming languages community also address the
issue of underspecified modern hardware, particularly the
semantics of relaxed (non-sequentially-consistent) memory
models under concurrency. A leading approach there, which
we propose to adopt, is the litmus test [Alglave et al., 2011].
Litmus testing, rather than trying to fully specify the hard-
ware’s behaviour, builds a set of candidate executions, often
validated by exhaustive testing, that together cover all cases
encountered in practice e.g. a store followed by a barrier is
visible to a later load.

Such litmus tests exist for some operations we consider:
ARM specifies litmus tests for modifying virtual memory
mappings such that later loads cannot see invalid results,
for example. Our goal is to extend these to cover both uses
not anticipated by the vendor, in particular concerning the

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

interaction of mechanisms, and to validate them in real time
at a large scale. As a motivating example, consider a rack-
scale Barrelfish/ARMv8 system, where UMP-style messag-
ing is extended across a non-cache-coherent RDMA-based
network. Defining the semantics of such a protocol involves
(at least): the weak memory model of ARM, the coherence
protocol within a SoC, the non-coherent RDMA operations,
and the dynamic establishment of VM mappings for buffers.
Moreover, all of these must be considered simultaneously:
Exactly which actions (barriers, cache invalidations, ...) are
needed to ensure the needed semantics?

Litmus tests for such a protocol require the use of real
hardware, in a realistic deployment. As we’re worried about
concurrent behaviour (races), we need to validate our tests
in real time (or at least by non-intrusive logging), on an ac-
tual distributed platform. We propose to make use of pro-
gram trace, as implemented on many modern architectures,
in particular ARM. By collecting cycle-accurate trace data
nonintrusively across a rack of machines, we hope to use
rack-scale litmus testing to validate the hardware interface
of a rack-scale OS. This talk will lay out some of the chal-
lenges involved, particularly the need for data reduction of
100Gb/s+ trace streams, and expected further applications
of the hardware and software developed.

References

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter
Sewell. Litmus: Running tests against hardware. In 17th
TACAS, pages 41-44, 2011.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand,
Tim Harris, Rebecca Isaacs, Simon Peter, Timothy
Roscoe, Adrian Schiipbach, and Akhilesh Singhania. The
Multikernel: a new OS architecture for scalable multicore
systems. In 22nd SOSP, pages 29—-44, 2009.

Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan
Milojicic, Reto Achermann, Paolo Faraboschi, Wen mei
Hwu, Timothy Roscoe, and Karsten Schwan. SpaceJMP:
Programming with multiple virtual address spaces. In 21st
ASPLOS, 2016. (to appear).

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel.4: Formal
verification of an OS kernel. In 22nd SOSP, pages 207—
220, Oct 2009.



