
Basslet: an OS runtime for parallel data processing

Jana Giceva, Gerd Zellweger, Gustavo Alonso, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

{name.surname}@inf.ethz.ch

1. INTRODUCTION
We revisit the problem of scheduling multiple parallel programs on
modern hardware, in the light of new OS and application designs.

Current operating systems are oblivious to the application-level
information needed to efficiently schedule and execute parallel data
applications (e.g. [2]). Traditionally they decide on the allocation
of threads unaware of the internal properties of the application’s
algorithm, relations between threads or the characteristics of the
input data, often leading to unpredictable and sub-optimal perfor-
mance. As a result, operating systems either open up their inter-
faces so that the application can take over the management of re-
sources (two-level scheduling [1,4,5]), or make use of parallel run-
time systems to perform this task on behalf of the operating system.

This approach works for a single application (albeit at a high
cost for the developer) but it does not help when data processing
engines must execute many concurrent jobs, as it often happens in
server consolidation and multi-tenant scenarios. One option is to
use Callisto [3], a shared library that helps parallel runtimes coor-
dinate their execution, but it relies on them to be well behaved and
collaborate with each other.

This talk presents the design of Basslet – an OS runtime for par-
allel data processing. The proposed runtime is integrated with the
rest of the OS and uses dynamic, dedicated kernels specialized for
task-based scheduling across CPUs.

2. DESIGN AND PROTOTYPE
We are rethinking the separation of responsibilities and push down
the decision-making power back to the operating system.

Based on our experience with implementation and scheduling
of multiple parallel data-processing systems, we have identified
the need for different execution strategies for two types of threads
in such applications, and propose the following: (i) an expanded
OS interface that allows an application’s knowledge of internal
thread groups to be passed down to the OS, (ii) design principles
for an OS-provided task-based runtime, (iii) a control/data plane
for CPUs that provides resource isolation in the underlying hard-
ware architecture, and (iv) a runtime implementation that is inte-
grated with the Barrelfish operating system [6], and exploits its re-
cent support for dynamically booting dedicated custom kernels [7]
to provide low-overhead, system-wide task-based scheduling.

We call our early implementation of this collection of techniques
Basslet. Figure 1 presents its architecture. At its heart, Basslet
bears a resemblance to task-parallel runtimes by allowing appli-
cations to enqueue parallel tasks which are then executed concur-
rently. However, the integration of Basslet as part of the OS al-
lows tasks to profit from stronger guarantees with respect to their
scheduling. In addition, Basslet allows related tasks to be fur-
ther grouped together by introducing the concept of a parallel task

Application Threads Tasks

C0

int main() {
bas_ptask_
enqueue(ptask, …)

}

Control Plane

void t(arg) {
f(arg);

}

void t2(arg) {
…

}

A
p

p
licatio

n
O

S / B
asslet

Data Plane

p
task

p
task

2
Distribute to Basslet
data-plane

task

task

task

3 Distribute Tasks

p
task…

4 Dispatch Tasks

p
task

1 Enqueue Parallel Task

Thread scheduler

IRQ Handling

Memory mgmt.

B
as

sl
et

R
u

n
ti

m
e

Figure 1: Basslet’s architecture

(or ptask). The implementation, uses a novel approach that parti-
tions a multicore machine into a control plane, for the execution of
regular application threads, and a data plane for the execution of
tasks. Such a separation allows us to specialize the Basslet system-
software of the data plane for task-based execution, while also par-
titioning the hardware resources to minimize interference, without
impacting the rest of the OS.

Our goal is to concurrently execute different applications on a
multicore or rackscale system with both performance isolation guar-
antees and optimized resource utilization, without requiring devel-
opers to learn complex new programming models or interfaces. We
also see Basslet as a means that bridges the problem of scheduling
the resources of one machine to the one of a rack, as it increases
the unit of management. It also provides a better framework for
reasoning about global resource management in a heterogeneous
system as Basslet’s data plane can be a good match for hardware
accelerators (e.g., an Intel Xeon Phi).

3. REFERENCES
[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an

operating system architecture for application-level resource
management. SOSP ’95, pages 251–266, 1995.

[2] J. Giceva, G. Alonso, T. Roscoe, and T. Harris. Deployment of Query
Plans on Multicores. PVLDB, 8(3):233–244, 2014.

[3] T. Harris, M. Maas, and V. J. Marathe. Callisto: Co-scheduling
Parallel Runtime Systems. EuroSys ’14, pages 24:1–24:14, 2014.

[4] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and
J. Kubiatowicz. Tessellation: Space-time Partitioning in a Manycore
Client OS. HotPar, pages 10–10, 2009.

[5] H. Pan, B. Hindman, and K. Asanović. Composing Parallel Software
Efficiently with Lithe. PLDI, pages 376–387, 2010.

[6] The Barrelfish Project. Barrelfish Operating System.
www.barrelfish.org. accessed 2016-01-27.

[7] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe. Decoupling Cores,
Kernels, and Operating Systems. In OSDI 14, pages 17–31, Oct. 2014.


