
An Empirical Study on the NoC Architecture Based on
Bidirectional Ring and Mesh Topologies

Jie Yin
Nagoya University

Nagoya, Japan
yin@ertl.jp

Ye Liu
Nagoya University

Nagoya, Japan
liuye@ertl.jp

Shinpei Kato
Nagoya University

Nagoya, Japan
shinpei@is.nagoya-

u.ac.jp
Hiroshi Sasaki

Columbia University
New York, USA

sasaki@cs.columbia.edu

Hiroaki Takada
Nagoya University

Nagoya, Japan
hiro@ertl.jp

ABSTRACT
Along with the fast increase of the core numbers integrated
on a single chip, reasonable design of interconnection which
connects all the cores and other necessary components, is
always critical for giving adequate play to many-core’s pro-
cessing potential. There are various topologies proposed as
the candidates of inter-core connection, and generally em-
ployed topologies in many-core design are 2D mesh and bidi-
rectional ring topologies. However, scalability bottleneck
is appeared to be a vital problem which may disappoint
users, because multithreaded applications cannot gain pro-
portional speedup during execution along with employing
more cores. In this research, performance evaluation, bot-
tleneck locating and systematical comparison which are cen-
tered on the in-depth analysis of scalability, between these
two widely used interconnection patterns using bidirectional
ring based coprocessor Intel Xeon Phi 3120A and 2D mesh
based processor TILE-Gx8036 are unfolded.

CCS Concepts
•Computer systems organization → Architectures;
•Networks → Network types;

Keywords
Many-core; Bidirectional ring; 2D mesh; Scalability bottle-
neck;

1. INTRODUCTION
Many-core architecture is the state-of-the-art breakthrough

for developing high speed processors. The topology design
is directly correlated with whether the processing talent of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN X-XXXXX-XX-X/XX/XX.

certain interconnection topology based many-core proces-
sors and accelerators can be given full play. Moreover, par-
allelized applications are also confronted with many addi-
tional constraints for gaining ideal speedup from not only
the intrinsic properties of hardware platforms, but also its
design of the parallelization from the perspective of soft-
ware. Therefore, scalability, whether multithreaded applica-
tions can achieve ideal speedup while using larger number
of cores, is always an interesting topic to discuss.

For probing into the culprits of varied scalability of dif-
ferent NoC designs, we conducted a comparative study be-
tween bidirectional ring topology and 2D mesh topology by
designing dedicated micro-benchmarks for network evalua-
tion and analyzing selected representative benchmarks from
PARSEC benchmark suite[1].

Our work contributes to the comparison of bidirectional
ring NoC architecture and 2D mesh NoC architecture using
highly sophisticated many-core products. The advantages
and disadvantages of both architectures are clearly pointed
out and visualized by benchmarking and analysis. We sum-
marized and compared the scalability of both platforms us-
ing different thread-to-core mapping patterns. Also we have
located the culprits of different scalability between two plat-
forms, which can be used as a reference for the structure
design of architecture-specific parallel applications.

The rest of this paper is organized as follows. Brief archi-
tecture introductions of experiment platforms are given in
Section 2. Section 3 describes the result of evaluation and
in-depth analysis of scalability on two platforms. The last
section summarizes the conclusion of the current work and
the conception of future studies.

2. EXPERIMENTAL PLATFORMS

2.1 Intel Xeon Phi 3120A Coprocessor
Intel Xeon Phi 3120 Coprocessor is based on Intel Many

Integrated Core (MIC) architecture, which connects 57 in-
order Intel Pentium cores running at 1.1 GHz, distributed
memory controllers with two channels of each, distributed
Tag Directories(TD) for managing global cache coherence
and other I/O interfaces by three pairs of ring buses [2][3]
as shown in Figure 1.

Xeon Phi 3120A Coprocessor provides four hardware thread



Figure 1: Logical Layout of Bidirectional Ring Ar-
chitecture of Intel Xeon Phi 3120A Coprocessor.

contexts using hyperthreading technique, between which can
be switched for executing in a round-robin manner [2]. All
the threads can access 6 GB GDDR5 memory modules through
interleaved requests to six memory controllers, which have 2
channel controllers of each and deliver message at 5.0 GT/s
transfer speed. Therefore, the theoretical peak bandwidth of
Intel Xeon Phi 3120A Coprocessor is 240 GB/s [4]. We mea-
sured the memory latency for each core of Xeon Phi using a
simple pointer chasing micro-benchmark by setting process
affinity using sched setaffinity(). Xeon Phi owns stream-
ing hardware prefetcher on the L2 cache controllers, but its
functionality can be avoided by setting appropriate travers-
ing stride. According to the measured results, the average
latency of L1 data cache hit is around 2.8 ns, local L2 cache
hit latency is around 22 ns and the average memory latency
is around 275 ns. Moreover, the value of memory accessing
latency measured on each core is correlated with each core’s
relative position. Those cores approaching the center show
apparent lower memory latency than those cores which are
closer to the edge as shown in Figure 2, in which the x-axis
means the number of each core, and the y-axis means the
corresponding memory accessing latency measured on each
core.

Figure 2: Respective Memory Accessing Latency of
Cores 1 to 57 on Xeon Phi.

The network fabric of Intel Xeon Phi contains 3 pairs
of wires. Each pair of wire consists of two identical wires
traversing clockwise and counterclockwise. Different pairs
handle different functions. Three pairs of wire are respec-
tively named as BL, AD and AK[5]. BL wire is the most
expensive one, which is mainly for transferring data blocks
in 64 bytes wide. AD wire is smaller than data ring, which
is for transferring command and address. AK has the small-
est bandwidth, which is for transferring coherence messages
and credits.

In order to have an in-depth analysis of how intercon-
nection architecture can affect application’s scalability, we
designed micro-benchmark for Intel Xeon Phi to test the tol-
erance of bidirectional ring to the network congestion. This
micro-benchmark employs a 57 × 512K Bytes sized array
which is aligned with the size of L2 cache subsystem, divided
evenly into 57 chunks. Each chunk is assigned to a worker
thread for caching the data chunk into its own L2 cache.
Mainworker, defined as the first worker thread spawned by
the main thread, is pinned to the core 1 and caches the first
chunk into core 1’s L2 cache. Mainworker spawns other
Subworker threads, pinned to other cores respectively, for
caching other chunks and writing to the Mainworker ’s chunk
simultaneously. Heavy cache coherence traffics are gener-
ated along with the increase of threads, which participate in
the Subworker group. Result of benchmarking is shown in
the Figure 3.

Figure 3: Result of Measuring Network Congestion
on Intel Xeon Phi.

X-axis indicates the number of worker threads in total,
and the y-axis shows the average time needed for an indi-
vidual thread to finish its own operation. Along with more
and more participants joining in the Subworker group, each
thread has to consume much more time to finish its job due
to the severe network congestion on the AK wire. Therefore,
we conclude that bidirectional ring architecture is extremely
sensitive to the network congestion, which is one of the in-
trinsic scalability bottlenecks.

2.2 TILE-Gx8036 Processor
TILE-Gx8036 processor owns 36 cores which work at 1.2

GHz, also named as tiles, organized by a 2D-mesh network
’iMesh’[6] into a 6 × 6 square. The logical layout of iMesh
is shown in the Figure 4.

Figure 4: Logical Layout of iMesh of TILE-Gx8036
Processor.

TILE-Gx8036 processor employs coherent L2 cache sub-
systems, and standard DDR3-1333 memory modules which
can be accessed through two memory controllers using two



channels[7]. Users are provided the interface to choose whether
to enable the use of memory striping for interleaving mem-
ory accesses to different memory controllers[7]. Theoreti-
cal peak memory bandwidth of TILE-Gx8036 is 21 GB/s.
Memory read latency of TILE-Gx8036 is measured by Yixiao
Li (mailto:liyixiao7@gmail.com) using a self-designed micro-
benchmark. Main memory read latency with all the cache
turned off is 103 ns(124 cycles) and read miss latency with-
out cache coherence is around 98 ns (118 cycles). If the
miss happened when requesting core is the home core of the
requested cache line, accessing latency will become 105 ns
(127 cycles). If the miss happened when requesting core is
not the home core of requested cache line, accessing latency
will reach 111 ns (133 cycles).

iMesh network of TILE-Gx8036 contains 5 types of wires
for handling different works. Neighboring tiles are connected
and intercommunicating using these 5 wires through the
routing switches respectively integrated inside of each core.For
explicitly visualizing the negative effects of network conges-
tion on mesh network, another micro-benchmark is designed
by Ye Liu, which is based on the concept that all the cores
simultaneously read the large data set stored inside the main
memory in the form of a linked list, with the whole cache
system turned off. Each core is bound only one spawned
thread by setting thread affinity. Only one page is used dur-
ing execution in order to guarantee the least negative effect
from TLB misses and the acquisition of accurate results.
All the cores are vertically divided into left and right groups
down the middle. There are two types of accessing patterns
proposed in this experiment [8]:

• Collision: Each group accesses the memory controller
at the opposite side.

• Parallelism: Each group accesses the memory con-
troller at the same side.

The results after measuring are shown in the Figure 5.
The color scales indicates the average time between sending
read request and receiving the data.

Figure 5: Network Congestion Visualizing on TILE-
Gx8036 Processor.

It shows that cores spend much more time for accessing
data when the accessed memory controller is at the opposite
side(Collision). Under this scenario, data accessing requests
merge on the network, which will cause the contention of
router ports and memory controller accessing. However un-
der Parallelism pattern, accessing time of each core is much
relieved. We can observe that contentions on the network
obviously slow down the memory accessing under Collision
pattern.

Both architecture shows their negative reactions when net-
work are busy at being occupied and mediating. This is

a critical factor which may cause poor scalability on both
architectures. However mesh network is more flexible to
recover from resource competition because it has more in-
put/output ports in the routers and multiple routing paths
available for practical using. Bidirectional ring is vulnerable
to the congestion because it only provides a pair of paths
for all the streams.

3. SCALABILITY EVALUATION AND CUL-
PRIT LOCATING

For further evaluating the scalability of both network ar-
chitectures and locating the culprit of scalability bottle-
neck, 4 representative benchmarks, which have varied char-
acteristics and parallel programming models, from PARSEC
benchmark suite[1] are selected. These four benchmarks are
Blackscholes, Streamcluster, Dedup, and Canneal. Based on
the description in technical report [9] and research [10], we
summarized the primary features of these four benchmarks
in table 1. All the benchmarks are executed using the largest
input set native, and pthread programming model. All the
measurements implemented on Intel Xeon Phi excluded the
using of the last core because it is where the µOS, the micro
operating system for Intel Xeon Phi Coprocessor, is running.

We mainly designed four thread-to-core mapping patterns
for each platform. For Intel Xeon Phi, the affinity patterns
are implemented by setting pthread affinity attributes:

• Serial. Only one thread is pinned to each core. All
the threads are pinned orderly and sequentially from
core 1 to core 56.

• OS. No thread-to-core mapping is set for any thread.

• Spread. Only one thread is pinned to each core. The
first worker thread starts from the midst core, and oth-
ers spread to both sides step-by-step.

• Double. Two threads are pinned to each core. All
the threads are pinned orderly from core 1 to core 28.

On the other hand, task-to-core mappings are implemented
on TILE-Gx8036 by using taskset command line:

• Center. Tasks are initially mapped to the center tiles
on iMesh and gradually spread to the edges and cor-
ners.

• Spread. Tasks are initially mapped to the four corner
tiles on iMesh and gradually spread to the center.

• OS. Tasks are managed by OS without setting task
affinity.

• DDR0/DDR1. Tasks are initially mapped to the
tiles which are nearest to DDR0 or DDR1 and gradu-
ally spread to the opposite side.

Based on these different mapping patterns, we analyzed
the scalability of four selected benchmarks by doing the com-
parison not only between different mappings within each ar-
chitecture, but also between these two architectures. All the
experiment results of TILE-Gx are provided by Ye Liu.



Blackscholes Streamcluster Dedup Canneal

Domain Financial Analysis Data Mining Enterprise Storage Engineering

Parallelization Model Data Parallel Data Parallel Pipeline Unstructured

Data Dependency
Low Data Sharing
and Exchange

Low Data Sharing,
medium Data Ex-
change

High Data Sharing
and Exchange

High Data Sharing
and Exchange

Number of Threads 1+n Threads 1+2n Threads 3+3n Threads 1+n Threads

Table 1: Features of Selected Benchmarks from PARSEC Benchmark Suite.

Blackscholes
Blackscholes is designed using simple structure of parallel
programming, that the working threads are independent
from each other. According to the description in technical
report [9] and research [10], Blackscholes has its large per-
centage of execution time spent on the serial processing by
the main thread, but not spawned worker threads for paral-
lel processing. Also barrier synchronization is implemented
for worker threads, which may worsen the serialization of
the program.

(a) Intel Xeon Phi (b) TILE-Gx

Figure 6: Scalability of Blackscholes on Both Plat-
forms.

Scalability of Blackscholes on both platforms are shown
in the Figure 6. OS and Serial patterns are measured for
Blackscholes on Xeon Phi. Both platforms perform fair scal-
ability when running Blackscholes, except that the severe se-
rialization of the workloads result in reaching speedup sat-
uration earlier on Xeon Phi than TILE-Gx. OS mapping
shows almost the same scalability with Serial mapping on
Xeon Phi, but on the other hand, the scalability shown on
TILE-Gx can be improved by OS mapping. Bidirectional
ring based Xeon Phi coprocessor is easier to reach its ceiling
speedup than 2D-mesh based TILE-Gx processor.

Streamcluster
Streamcluster uses self-defined barrier implementation for
synchronizing operations between worker threads. Accord-
ing to the research [11], scalability problem of Streamcluster
is mainly because of the inefficient implementation of its self-
defined barrier. Scalability of Streamcluster shown on both
platforms are displayed in Figure 7.

It clearly shows that Streamcluster scales far more better
on TILE-Gx than Xeon Phi, after the designated threads
number exceeds one half of the total number of cores. Speedup
drops rapidly when number of designated threads are larger
than 26 under OS, Serial and Spread mapping. Double
mapping using hyperthreading technique improves scalabil-
ity slightly because that two hardware threads share the
same local L2 cache.

(a) Intel Xeon Phi (b) TILE-Gx

Figure 7: Scalability of Streamcluster on Both Plat-
forms.

For further searching for the reason why Streamcluster
performs so different between these two interconnect archi-
tectures, we measured the number of Context Switches and
made the dynamic heat map for Context Switches happened
on all the hardware threads of Xeon Phi. As shown in Fig-

(a) Context Switches (b) Heat Map of Overall
System

Figure 8: Numbers of Context Switches of Stream-
cluster Using Increasing Number of Threads and the
Heat Map When 56 threads designated on Xeon Phi.

ure 8(a), the increasing trend of Context Switches correlates
with the scalability, which has shown in Figure 7(a). Fig-
ure 8(b) Shows the heat map of Context Switches when the
designated number of threads is 56, under Serial mapping
on Xeon Phi. Almost all the context switches are massively
happened on the first hardware thread of each core, where
each software thread is bound.

Why are these additional context switches happened? We
measured the read misses of last level cache during the exe-
cution of Streamcluster on Xeon Phi. Two hardware events
are recorded by accessing the PMU of each core:

• L2 READ MISS CACHE FILL: Number of data
read accesses which are satisfied by remote L2 cache
after missing the local L2 cache.

• L2 READ MISS MEM FILL: Number of data read
accesses which are satisfied by the main memory after



missing the local L2 cache.

Figure 9: LLC read misses of Streamcluster under
Serial mapping on Xeon Phi.

As the results shown in Figure 9, number of L2 load misses
satisfied by remote cache increases significantly when desig-
nated number of threads is larger than 26. Larger values
indicate that there are heavier traffics generated on the net-
work. Network turns congested, especially on the smallest
AK wire, when number of L2 load misses satisfied by remote
caches is incremented. As the result that our self-designed
micro-benchmark shows in Section 2.1, bidirectional ring
is extremely sensitive to the network congestion. However
mesh performs more flexible when deciding the routing path,
therefore we conclude that the scalability difference on these
two different architectures is also due to the network con-
tention.

Dedup
Dedup is selected because it uses pipeline parallelism and
shows severe load imbalance between pipeline stages[12]. It
has poor scalability on both platforms shown in the Figure
10.

Dedup reaches maximum speedup when 8 threads are used
on both platforms. However Xeon Phi performs less com-
petent when larger number of threads are spawned. The
performance events CPU Migrations and IPC are summa-
rized in the Figure 10. IPC decreases into 0.25 instructions
per cycle on Xeon Phi when there are 56 threads designated
by users. But according to the data collected on TILE-Gx,
IPC keeps stable around 0.7 instructions per cycle. This
indicates that Xeon Phi has more stall cycles and less in-
struction throughput during the execution of Dedup. Addi-
tional context switches also generate from LLC load misses
during execution, which lead to heavy network congestion.
Large number of CPU migrations happened under OS map-
ping indicates that the load-balancer of OS has done massive
workloads between oversubscribed threads, and scalability is
benefited a little from the load-balancer under OS mapping
than Serial and Spread mappings.

The culprits of poor scalability on two experiment plat-
forms are mainly due to their intolerance to severe load im-
balance and intense competition for the shared resources
between threads.

Canneal
According to the description in the report [9], Canneal has
massive inter-core data exchanging and routing during its
execution. We only show the scalability of Canneal on Xeon
Phi here because the compiling of Canneal is unfortunately
not successful on TILE-Gx. Hyperthreading technique un-
expectedly deteriorates the average speedup into 1.5. Heat
map of IPC under Double mapping when 56 threads spawned

(a) Scalability(Xeon Phi) (b) Scalability(TILE-Gx)

(c) CPU Migration (d) IPC

(e) Context Switches (f) LLC-load-misses

Figure 10: Scalability and Performance Counters of
Dedup on Intel Xeon Phi.

(a) Scalability (b) Heatmap of IPC under
Double mapping when 56
threads used

Figure 11: Scalability and IPC counter of Canneal
on Intel Xeon Phi.

shows sluggish IPC counts on each hardware thread in Fig-
ure 11(b). We infer it’s due to the competition of routers
between two hardware threads on the same core. Further
evaluation and analysis for this benchmark is going to be
finished in the future work.

4. CONCLUSIONS AND FUTURE WORK
It is said that bidirectional ring usually performs worse

than mesh network. We analyzed the main culprits of scal-
ability bottleneck and explored the shortcomings need to be
paid close attention during parallel programming for ded-
icated architectures. Although ring is more sensitive to
network congestion, both networks are intolerant to severe
load imbalance. Future works will be centered on OS kernel
redesign and optimization for bidirectional ring and mesh
based many-core processors.



5. REFERENCES
[1] Christian Bienia. Benchmarking modern

multiprocessors. PhD thesis, Princeton University,
January 2011.

[2] Intel Corporation. Intel Xeon Phi coprocessor system
software developers guide.
https://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-system-software-developers-guide,
2014.

[3] Rezaur Rahman. Intel R© Xeon Phi coprocessor
architecture and tools. Apress open, 2013.

[4] Jianbin Fang, Ana Lucia Varbanescu, Henk Sips,
Lilun Zhang, Yonggang Che, and Chuanfu Xu.
Benchmarking Intel Xeon Phi to guide kernel design.
Delft University of Technology Parallel and Distributed
Systems Report Series, PDS-2013-005, 2013.

[5] George Chrysos and Senior Principal Engineer. Intel
Xeon Phi coprocessor (codename knights corner). In
Proceedings of the 24th Hot Chips Symposium, 2012.

[6] Tilera Corporation. Tile processor architecture
overview for the TILE-Gx series. USA, May 2012.

[7] Tilera Corporation. Tile processor I/O device guide.
USA, 2011.

[8] Ye Liu, Hiroshi Sasaki, Shinpei Kato, and Masato
Edahiro. A scalability analysis of many cores and
on-chip mesh networks on the tile-gx platform.
January 2016.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal
Singh, and Kai Li. The PARSEC benchmark suite:
Characterization and architectural implications. In
Proceedings of the 17th international conference on
Parallel architectures and compilation techniques,
pages 72–81. ACM, 2008.

[10] Gabriel Southern and Jose Renau. Deconstructing
PARSEC scalability. In Proceedings of Workshop on
Duplicating, Deconstructing and Debunking (WDDD),
2015.

[11] Michael Roth, Micah J Best, Craig Mustard, and
Alexandra Fedorova. Deconstructing the overhead in
parallel applications. In Workload Characterization
(IISWC), 2012 IEEE International Symposium, pages
59–68. IEEE, 2012.

[12] Angeles Navarro, Rafael Asenjo, Siham Tabik, and
Calin Cascaval. Analytical modeling of pipeline
parallelism. In Parallel Architectures and Compilation
Techniques, 2009. PACT’09. 18th International
Conference on, pages 281–290. IEEE, 2009.


