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Abstract
Garbage collectors are exact or conservative. An exact col-
lector identifies all references precisely and may move ref-
erents and update references, whereas a conservative collec-
tor treats one or more of stack, register, and heap references
as ambiguous. Ambiguous references constrain collectors in
two ways. (1) Since they may be pointers, the collectors must
retain referents. (2) Since they may be values, the collectors
cannot modify them, pinning their referents.

We explore conservative collectors for managed lan-
guages, with ambiguous stacks and registers. We show that
for Java benchmarks they retain and pin remarkably few
heap objects: <0.01% are falsely retained and 0.03% are
pinned. The larger effect is collector design. Prior conserva-
tive collectors (1) use mark-sweep and unnecessarily forgo
moving all objects, or (2) use mostly copying and pin en-
tire pages. Compared to generational collection, overheads
are substantial: 12% and 45% respectively. We introduce
high performance conservative Immix and reference count-
ing (RC). Immix is a mark-region collector with fine line-
grain pinning and opportunistic copying of unambiguous
referents. Deferred RC simply needs an object map to de-
liver the first conservative RC. We implement six exact col-
lectors and their conservative counterparts. Conservative Im-
mix and RC come within 2 to 3% of their exact counterparts.
In particular, conservative RC Immix is slightly faster than a
well-tuned exact generational collector. These findings show
that for managed languages, conservative collection is com-
patible with high performance.

Categories and Subject Descriptors Software, Virtual Machines,
Memory management, Garbage collection

Keywords Conservative, Reference Counting, Immix, Mark-Region
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1. Introduction
Language semantics and compiler implementations deter-
mine whether memory managers may implement exact or
conservative garbage collection. Exact collectors identify all
references and may move objects and redirect references
transparently to applications. Conservative collectors must
reason about ambiguous references, constraining them in
two ways. (1) Because ambiguous references may be point-
ers, the collector must conservatively retain referents. (2)
Because ambiguous references may be values, the collec-
tor must not change them and cannot move (must pin) the
referent.

Languages such as C and C++ are not memory safe: pro-
grams may store and manipulate pointers directly. Conse-
quently, their compilers cannot prove whether any value is
a pointer or not, which forces their collectors to be conser-
vative and non-moving. Managed languages, such as Java,
C#, Python, PHP, JavaScript, and safe C variants, have a
choice between exact and conservative collection. In prin-
ciple, a conservative collector for managed languages may
treat stacks, registers, heap, and other references conser-
vatively. In practice, the type system easily identifies heap
references exactly. However, many systems for JavaScript,
PHP, Objective C, and other languages treat ambiguous ref-
erences in stacks and registers conservatively.

This paper explores conservative collectors with ambigu-
ous stacks and registers. We first show that the direct con-
sequences of these ambiguous references on excess reten-
tion and pinning are surprisingly low. Using a Java Virtual
Machine and 18 Java benchmarks, conservative roots falsely
retain less than 0.01% of objects and pin less than 0.03%.
However, conservative constraints have had a large indirect
cost by how they shaped garbage collection algorithms.

Many widely used managed systems implement collec-
tors that are conservative with respect to stacks and regis-
ters. Microsoft’s Chakra JavaScript VM implements a con-
servative mark-sweep Boehm, Demers, Weiser style (BDW)
collector [15, 19]. This non-moving free-list collector was
originally proposed for C, but some managed runtimes use
it directly and many others have adapted it. Apple’s We-
bKit JavaScript VM implements a Mostly Copying Conser-
vative (MCC) collector, also called a Bartlett-style collec-
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Figure 1. Performance of exact semi-space (SS), conser-
vative MCC, exact mark-sweep (MS), conservative BDW,
exact RC Immix, and conservative RC Immixcons normal-
ized to exact Gen Immix at a moderate heap size. Lower
is better. Prior conservative collectors sacrifice perfor-
mance. RC Immixcons performs similarly to Gen Immix and
RC Immix, the best exact collectors.

tor [5, 8, 32, 37]. MCC divides memory into pages, evac-
uates live objects onto empty pages, and pins entire pages
that contain targets of ambiguous references. These systems
are purposefully sacrificing proven performance benefits of
exact generational collectors [9, 11]. To quantify this perfor-
mance cost, we implement and compare them to a copying
generational collection (Gen Immix), the production collec-
tor in Jikes RVM. Figure 1 summarizes our results, plotting
geometric mean of total (mutator + collector) time on 18
Java Benchmarks. The total time penalty is 12% for BDW
mark-sweep and 45% for MCC.

These systems purposefully chose conservative over ex-
act collection to reduce their compiler burden. Exactly iden-
tifying root references requires a strict compiler discipline
that constructs and maintains stack maps that precisely re-
port every word on the stack and in registers that holds a
live reference for every point in execution where a collec-
tion may occur. This process is a formidable implementation
task that requires tracking every reference in all optimiza-
tions and compiler intermediate forms, and it restricts some
optimizations, such as code motion [1, 21, 24].

An alternative tactic for limiting the compiler burden
is naive reference counting, which is used by Objective-C,
Perl, Delphi, PHP, and Swift. These collectors never exam-
ine the stack because the compiler or interpreter simply in-
serts increments and decrements when the program changes
an object reference. Previous measurements quantify the
penalty of deferred reference counting, which eliminates in-
crements and decrements on local variables and is thus faster
than naive reference counting, as 40% compared to a copy-
ing generational collector [4, 20, 30, 31]. All of these lan-
guage implementations either forbid cycles, leak cycles, or
perform costly trial deletion [22, 30]. Naive reference count-
ing imposes an even larger performance sacrifice.

This paper shows how to combine high performance with
the engineering advantages of conservative collection. We
introduce conservative Immix, conservative deferred refer-
ence counting, and combine them in conservative RC Immix.
The result is slightly faster than a well tuned generational
collector. We make surprisingly simple modifications to Im-
mix and reference counting. As far as we are aware, this col-
lector is the first conservative reference counter.

The Immix mark-region collector manages memory hi-
erarchically in coarse-grain blocks divided into fine-grain
lines [9]. Immix allocates contiguously into empty blocks
and lines. Tracing identifies live objects and lines, and mixes
marking and copying in the same pass. Whereas genera-
tional collectors copy all nursery objects, Immix copies op-
portunistically into lines and blocks that are free when col-
lection begins. When the collector exhausts memory or en-
counters objects that it cannot move, it simply marks them
and their lines live. At the end of collection, it recycles free
blocks and lines. To make Immix conservative, we simply
start the collection by enumerating the ambiguous roots in
stacks and registers, marking their referents live and pinned;
the collector never moves them. To ensure that referents are
valid, we introduce an object map, which identifies objects
live at the last collection or allocated since then. Conserva-
tive Immix collectors thus limit pinning overheads to the line
granularity and maximize copying and locality benefits.

A similarly surprisingly simple change makes deferred
reference counting conservative. We start collection by enu-
merating the ambiguous roots, validating them with the ob-
ject map, and retaining any object referenced by an ambigu-
ous root, even if its reference count falls to zero.

We implement six conservative collectors and compare to
their exact counterparts in a Java VM. We implement prior
work — conservative BDW and MCC, and their exact mark-
sweep and semi-space counterparts. We design and imple-
ment four new conservative collectors: RCcons, Immixcons,
Sticky Immixcons, and RC Immixcons. Conservative roots de-
grade all collectors by less than 3% compared to their exact
counterparts, except for MCC which degrades over semi-
space by 9%. Figure 1 shows that RC Immixcons improves
total performance over BDW by 13% on average and up to
41%. RC Immixcons delivers excellent performance, compet-
itive with the fastest exact generational collectors.

In summary, the contributions of this paper are as follows.

1. We examine conservative garbage collection for managed
languages.

2. We show that the direct cost of conservative roots is small
for Java workloads: excess retention is less than 0.01%
and pinned objects are just 0.03% of the heap.

3. We design, implement, and evaluate new and prior con-
servative collectors and compare to exact collectors.

4. We introduce an optimized object map that filters am-
biguous roots to valid objects.



5. We show that Immix lines and opportunistic copying are
well matched to conservative garbage collection needs.

6. We extend deferral using the object map and implement
the first conservative reference counting collector.

7. We show that RC Immixcons is the first conservative col-
lector to match the performance of exact generational
copying collection.

These findings demonstrate that high performance garbage
collection is possible for managed languages, whether or not
they invest in engineering exact collection.

2. Background and Related Work
This section reviews the mechanisms and requirements for
conservative and exact garbage collectors on which we build.

Conservative collectors have thus far been tracing. A
tracing garbage collector performs a transitive closure over
the object reachability graph, starting with the roots, which
are references into the heap held by the runtime, including
stacks, registers, and static (global) variables [28]. An exact
garbage collector precisely identifies root references and ref-
erences between objects while a conservative collector must
handle ambiguous references — values that may or may not
be valid pointers. Three broad approaches exist to enumer-
ate references: a) compiler supported exact, b) uncooperative
exact, and c) conservative.

2.1 Exact Garbage Collection
Exact garbage collection for managed languages requires co-
operation from the compiler and language runtime. The lan-
guage runtime must identify references from roots and refer-
ences within the heap (between heap objects). The type sys-
tem identifies references in heap objects at allocation time.
The runtime must dynamically examine the stacks, registers,
statics, and any other source of references into the heap to
identify root references. Dynamically tracking roots is more
challenging if the runtime uses aggressive optimizations, for
example, with a just-in-time (JIT) compiler.

Compiler-supported exact The compiler for an exact col-
lector generates and maintains stack maps — data structures
that, for every point in execution where collection may en-
sue, report the precise location of every live reference stored
by local variables in stacks, or registers. Engineering accu-
rate stack maps is challenging [1, 24]. Precise pointer track-
ing burdens the compiler with significant bookkeeping in
optimizations and intermediate representations [21], and in-
hibits optimizations, such as code motion.

Nonetheless, many mature high performance managed
runtimes use exact root enumeration, such as .NET for C#,
and HotSpot, Jikes RVM, and J9 VMs for Java. The inter-
preter and/or JIT compilers in these systems maintain pre-
cise stack maps for every point in execution where a garbage
collection may occur. The garbage collector walks each
thread’s stack frame-by-frame, consulting pre-generated

stack maps to enumerate the location of all live references.
Because these systems are exact, the collector is free to move
objects and redirect program references. All of these systems
implement exact copying generational collectors, which are
the best performing collectors [9, 11, 31].

Uncooperative exact Exact uncooperative systems are
also in use for strongly typed languages that are imple-
mented with C as an intermediate language [7, 23, 27]. In
principle, strong typing allows precise pointer identification,
but a stock C compiler loses that type precision. Instead,
these runtimes dynamically maintains a shadow stack, a
separate data structure for each frame that identifies pre-
cisely the set of live object references. This approach avoids
conservatism and the engineering cost of introducing pre-
cise pointer tracking and stack map generation within the C
compiler, but it does so at the cost of explicitly, dynamically
maintaining a shadow stack with the set of live references.
This cost is significant because stack operations are frequent
and it must perform shadow operations for every stack oper-
ation involving references.

2.2 Conservative Garbage Collection
A conservative collector must reason about ambiguous ref-
erences — values that may or may not be valid pointers.

Ambiguous references To ensure correctness, a conserva-
tive collector must retain and not move the referent of an am-
biguous reference and must retain any transitively reachable
objects. The collector must retain the referent in case the
ambiguous reference is a valid pointer. The collector must
not change the ambiguous reference in case it is a value,
not a pointer. In addition, it must carefully manage object
metadata. For example, if the collector stores metadata on
liveness in an object header, it must guarantee that the refer-
ent is a valid object before updating its metadata in order to
guarantee that it does not corrupt visible program state.

Ambiguous references thus constrain conservative collectors
in the following ways.

• Because ambiguous references may be valid pointers,
the collector must retain their referents and transitively
reachable objects.

• Because ambiguous references may be values, the collec-
tor may not modify them, pinning the referents.

• In order to avoid corrupting the heap, the collector must
guarantee that referents are valid objects before it updates
per-object metadata.

The above constraints lead to three consequences. Conser-
vative collectors a) incur excess retention due to their live-
ness assumptions; b) cannot move (must pin) objects that
are targets of ambiguous references; and c) must either filter
ambiguous references to assure the validity of the target, or
maintain metadata in side structures.



Excess retention Constraint a) leads to a direct space over-
head (excess retention), because the collector will conserva-
tively mark a dead object as live, as well as all of its tran-
sitively reachable descendants. We measure excess retention
in a Java VM and show that it is low in Section 5.

Pinning Pinning leads to fragmentation and constrains
algorithm design. Because reference types in unsafe lan-
guages are ambiguous, all references, regardless of whether
in the runtime or heap, are ambiguous, and therefore all
objects must be pinned. For safe languages, such as Java,
C#, JavaScript, PHP, Python, and safe C and C++ variants,
the only references that are not well typed are those whose
type the compiler does not track, such as local variables in
stacks and registers. Therefore, conservative collectors for
these languages may move objects that are only the target
of well typed references. They will need only to pin objects
that are the target of ambiguous roots. Below we describe
how pinning influences the design of the two prior classes of
conservative collection algorithms in more detail.

Filtering Filtering ambiguous references eliminates those
that do not point to viable objects, but increases processing
costs for each reference. There are three sources of spuri-
ous pointers on a conservatively examined stack. a) Some
program value in the stack may by chance correspond to a
heap address. b) The compiler may temporarily use point-
ers, including interior pointers, that are not object references.
c) The stack discipline invariably leads to values, including
valid references, remaining on the stack well beyond their
live range. The collector therefore filters ambiguous refer-
ences, discarding those that do not point to valid objects.
Valid objects were either determined live at the last collec-
tion or allocated since then. The particular filtering mecha-
nism depends on the collector and we describe them below.

Non-Moving Conservative Collectors The most mature,
widely used, and adopted conservative garbage collector
is the Boehm-Demers-Weiser (BDW) collector [15]. The
BDW collector is a non-moving collector that uses a free-list
allocator and a mark-sweep trace to reclaim unused objects.
The allocator maintains separate free-lists for each size of
object. For unsafe C, the collector is conservative with re-
spect to roots and pointers within the heap. The BDW collec-
tor includes a non-moving generational configuration [19].

BDW filters ambiguous references by testing whether
they point to a valid, allocated, free-list cell. It first identifies
the free-list block into which the reference points and then
it establishes the size class for the cells within that block. It
tests whether the reference points to the start of a valid cell
for that particular block, and finally tests whether that cell is
allocated (live and not free). Only references to the start of
live cells are treated as valid ambiguous references.

The BDW collector can be configured to exploit type in-
formation when available, so that it is conservative only with
respect to stacks and registers, and precise with respect to the
heap and other roots. These qualities make the BDW collec-
tor suitable for other language implementations, particularly
initial implementations of managed languages that use C as
an intermediate language.

The problem with a non-moving free-list in a managed
language setting is that mutator time suffers. Allocating ob-
jects by size spreads contemporaneously allocated objects
out in memory and induces more cache misses than contigu-
ous bump pointer allocators, such as those used by copying
collectors and the Immix collector we use here [9, 11]. Sec-
tion 6 compares an exact mark-sweep collector and a BDW-
style conservative mark-sweep collector, in which only the
roots are conservative. Making mark-sweep conservative
with respect to stacks and registers only adds 1% overhead.
However comparing with copying generational, the design
choice of a non-moving free-list imposes a 12% penalty due
to degradations in mutator time (Table 4).

For languages with object type precision, a non-moving
collector design is overly restrictive since, as we show, most
heap objects will not be the target of ambiguous references.

Mostly Copying Collectors Bartlett [8] first described a
mostly copying conservative collector for memory safe lan-
guages, a design that has remained popular [5, 25, 32, 37].
Bartlett’s collector is a classic semi-space collector that uses
bump pointer allocation. A semi-space collector divides the
heap into to-space and from-space. Objects are allocated into
to-space. At the start of each collection, the collector flips
the spaces.The collector then copies reachable objects out
of from-space into the new to-space. At the end of a collec-
tion, allocation resumes into the to-space. Bartlett’s collec-
tor has two twists over the classic semi-space design. First,
the to-space and from-spaces are not adjacent halves of a
contiguous address space, but instead they are logical spaces
comprised of linked lists of discontiguous pages. Second, at
the start of each collection, the collector promotes each page
referenced by an ambiguous root — the collector unlinks
the referent page from the from-space linked list and puts it
on the to-space linked list. Thus ambiguously referenced ob-
jects are logically promoted into to-space rather than copied.
The promoted pages serve as the roots for a final copying
collection phase that completes a transitive closure over the
heap. Bartlett assumes that all objects on promoted pages are
live, exacerbating excess retention.

Attardi et al. [5] improve over Bartlett’s MCC by only
using the ambiguous referents as roots, rather than using all
objects on the ambiguously referenced page as roots. They
introduce a live map, and during the initial promotion phase
they remember the target of each ambiguous pointer. Then
during the final copying phase, when scanning promoted
pages for roots, they use the live map to select only live
objects as sources, significantly reducing excess retention.
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Many mostly copying collectors, including Apple’s We-
bKit JavaScript VM, use segregated fits free-lists and, like
BDW, introspect within the page to determine whether an
ambiguous pointer references a valid allocated cell [8, 25,
37]. Hosking’s [25] mostly copying collector is concurrent
and supports language-level internal references, which re-
quires a broadening of the definition of validity to include
ambiguous references that point within valid objects.

Smith and Morrisett [32] take a different approach to
filtering ambiguous roots. Since they use a bump pointer
rather than a free list, objects are tightly packed, not uni-
formly spaced. To determine whether an ambiguous refer-
ence points to a valid object, they scan the pages from the
start. They traverse the contiguous objects on a page intro-
specting length and skipping to the next object, until the am-
biguous reference is reached or passed. If the ambiguous ref-
erence matches the start of an object, it is treated as valid,
otherwise it is discarded. This mechanism is not efficient.
We introduce a low overhead object map to efficiently com-
bine conservatism and bump pointer allocation.

Mostly copying collectors suffer a number of drawbacks.
Because pages are not contiguous, objects may not span
pages, which leads to wasted space on each page, known as
internal fragmentation. Because any page containing a refer-
ent of an ambiguous reference is pinned and cannot be used
by the allocator, more space is wasted. Section 6 and Fig-
ure 6 compare an exact semi-space collector with a Mostly
Copying Conservative (MCC) collector with the refinement
that we use an object map to identify valid objects at the be-
ginning of a collection in a copying space. Conservatism in
MCC adds 9% overhead compared to exact semi-space, and
45% compared to copying generational. The performance
limitations of conservative mostly copying and non-moving
collectors motivate exploring alternative designs.

2.3 Exact Mark-Region and Reference Counting
To create high performance conservative collectors, we
make straightforward changes to the Immix mark-region
collector, reference counting, and reference counting Immix.
This section describes the exact versions of these collectors
and Section 3 describes our modifications.

Immix Immix is a mark-region garbage collector that com-
bines bump-pointer allocation with space and time-efficient
sweep-to-region collection [9]. The heap is composed of
large blocks divided into contiguous lines. Our Immix im-
plementation uses 32 KB blocks and 256 B lines. Objects are
allocated into blocks and may span lines. The collector recy-
cles free blocks and lines on partially occupied blocks. The
allocator consumes contiguous free lines and free blocks.
The garbage collector can leave objects in place, marking the
containing line(s), or may copy surviving objects to reduce
fragmentation in the same pass. The fine grain lines in Immix
are well suited to pinning objects. Figure 2 shows an exam-
ple during the mutator phase of the heap organization, allo-
cating into contiguous lines in a recycled block. Free blocks
are available for allocation to multiple parallel allocators.

Opportunistic Copying A classic copying collector, in-
cluding MCC, must reserve an equal amount of free memory
for copying. Immix may reserve much less or no memory,
because it only copies opportunistically into free memory
available at collection time. If the application wishes to al-
locate a large object and the allocator cannot satisfy the
request, there may be free blocks and partially free blocks.
In this case, Immix triggers a defragmentation collection.
During a defragmenting collection, Immix chooses source
and target blocks. It simply marks live objects and lines on
target blocks. It opportunistically copies objects on source
blocks into free lines on target blocks. When it exhausts the
free memory in target blocks, it simply continues to mark
the remaining objects live. Opportunistic copying supports
pinning at the granularity of a line using a per-object pin bit.

Sticky Immix We also make Sticky Immix, a generational
variant of Immix, conservative. Sticky Immix uses ‘sticky
mark bits’, which follows Demers et al.’s design for gen-
erational mark-sweep [9, 19]. Sticky Immix performs gen-
erational collection without a copying nursery by marking
old objects specially and limiting tracing to new objects dur-
ing nursery collections. A write barrier records old to young
references and adds them to the roots. Tracing only vis-
its young objects and marks them old. Both Sticky Immix
and RC Immix reserve a small number of free blocks and



use opportunistic copying to compact surviving young ob-
jects. Since most objects die young, this use of opportunistic
copying very effectively reduces fragmentation among the
nursery objects, creating completely free blocks, and conse-
quently improving application locality.

Reference Counting Reference counting collectors main-
tain a count of incoming references to each object [18]. Until
recently [31], all reference counting algorithms used a free-
list allocator. When an object count falls to zero, the collec-
tor returns its free memory to the free-list. A straightforward
implementation of reference counting requires that the com-
piler identify every pointer change, decrement the count for
the overwritten referent, and increment the count for the new
referent. Such an implementation does not require the run-
time to maintain precise stacks, registers, or heap references.
Objective-C, Perl, Delphi, PHP, and Swift all use naive ref-
erence counting, which continuously tracks pointers, rather
than periodically examining roots.

Tracking every pointer change is expensive. A standard
optimization is to ‘defer’ mutations to local variables in fa-
vor of scanning the stack periodically [20]. Furthermore,
straightforward reference counting cannot collect cycles of
garbage, so for completeness, either the application program
must avoid creating cycles [3, 35, 36], or a separate cycle
collector must augment the reference counter. For exam-
ple, Objective-C and Perl forbid cycles and the Zend PHP
VM uses trial deletion to collect cycles [6, 17, 26], which
does not require exact root enumeration, but is relatively in-
efficient [22]. The other alternative is to periodically trace
the heap, which requires full enumeration of all roots, ei-
ther precisely or conservatively. Thus while naive reference
counting is popular because it avoids the challenge of root
enumeration, it is not high performance. Prior work shows
that even simple deferred reference counting adds more than
40% overhead compared to copying generational [30, 31].

We are unaware of any reference counting collectors
which use conservatively identified roots.

RC Immix RC Immix combines optimized deferred ref-
erence counting with the Immix heap, matching the per-
formance of the fastest generational collectors [30, 31].
RC Immix periodically performs its reference counting work.
To work with the Immix heap organization, it counts live ob-
jects on each line. When the number of live objects on a line
fall to zero, RC Immix reclaims the line. It implements op-
timizations such as coalescing of multiple mutations to an
object and reducing the reference counting bits. It handles
cycles by performing periodic backup tracing collections.
It implements generational copying behavior by allocating
contiguously and then opportunistically copying surviving
young objects. It has the immediacy of reference counting,
because each collection promptly reclaims both young and
mature objects when their count falls to zero.

3. Design
We now describe the design of our object map filtering
mechanism for ambiguous roots and our family of conser-
vative Immix and reference counting collectors.

3.1 Object Map Filtering
To precisely identify objects, we filter ambiguous roots with
an object map, a bitmap which records the precise location
of all objects that were live at the last collection or have been
allocated since. A few details of maintaining the object map
vary from collector to collector, but the fundamentals of the
design are common to all.

The bitmap records the location of all potentially live ob-
jects. When processing ambiguous references, the collector
consults the object map, discarding any reference that does
not point to the start of a potentially live object.

Initially the object map is empty. At object allocation
time, the allocator sets a bit in the object map that encodes
the address of the start of the object. At the start of each
collection, the collector first scans the stacks and registers. If
a value falls in the range of the heap, the collector consults
the object map. If the reference corresponds to an object map
entry, it is a valid ambiguous root and the collector adds it to
the conservative roots. Otherwise it is discarded.

During collection, the collector must update the object
map to account for dead objects. In reference counting,
which explicitly identifies dead objects, the collector simply
unsets the relevant bit in the object map when it reclaims an
object with a zero reference count. Tracing instead directly
identifies live objects. After filtering the roots, the tracing
collectors zero the entire object map and then the collec-
tor reconstructs it by setting a bit for each live object when
it traces the object. Because our collectors are parallel, the
collector must set or clear the bit atomically to avoid a race
to update the containing word among the parallel collector
threads. All allocators use thread-local allocation buffers, so
there is no race to set the bit at allocation time.

To minimize the object map overhead, we use the x86 BTS

and BTR instructions to set and clear its bits in the atomic
modes when appropriate. We empirically established that
these instructions outperform (0.6% total time improvement)
software bit manipulation instruction sequences, particularly
when changing the bit atomically.

Because of object alignment requirements and because
the VM uses a specific format for its two word header, the
VM can always disambiguate a ‘status word’ and ‘type infor-
mation block’ (TIB) pointer, the two words in every object’s
header. We use this insight to reduce the object map resolu-
tion to one bit per eight bytes. When validating ambiguous
pointers, we first determine whether the ambiguous refer-
ence points to a valid double word and then examine those
words to determine whether the reference points to the start
of an object. This optimization halves the space overhead of
the object map from 1:32 (3%) to 1:64 (1.5%). It reduces



the mutator L1 data cache misses by 0.7%. By reducing the
cache footprint of the object map, we improve mutator local-
ity. The average mutator overhead due to the object map falls
from 2.3% to 1.3% as a result of this optimization (Figure 3).

3.2 Conservative Immix and Sticky Immix
Immix’s fine-grained heap organization with copying is an
excellent match for conservative garbage collection. Most
objects are allocated contiguously into 32 KB blocks, and
can be copied upon survival. Conservative Immix pins the
target objects of ambiguous references at the granularity of
256 B lines. The size of contiguous allocation regions and
the associated potential for better locality is thus increased
by a factor of eight over MCC, which pins at a page granular-
ity. The granularity of pinning and associated wasted space is
also reduced sixteen-fold. Objects referenced from ambigu-
ous roots are pinned on the line(s) they occupy, but Immix
may copy all other objects according to its usual heuristics.
This feature limits the impact of ambiguous roots to internal
line fragmentation.

Immix allocates into both completely empty blocks and
partially occupied blocks, but never into used lines. When
allocating into an empty block, the corresponding object
map entries are first zeroed and then set as each object is
allocated. When allocating into a recycled block, the object
map areas associated with the free lines in the block are
zeroed and the remaining areas are left as-is. Allocation then
proceeds and sets the object map bits for each new object.

The Sticky Immix in-place generational collector de-
sign [9, 19] makes maintenance of the object map a little
more difficult because the tracing phase of the collector is
confined to the newly allocated objects that may be scattered
throughout the heap. Sticky Immix records each block that
it allocates into and then rather than clear the entire object
map at the start of collection, it selectively clears the portions
that were allocated into. Like other generational collectors,
sticky collectors perform periodic full heap collections, dur-
ing which conservative Sticky Immix clears the entire object
map and refreshes it, as described above.

Conservative Immix and Sticky Immix use opportunistic
copying. If an object is pinned, the object stays in place. For
nursery objects in Sticky Immix and defragmenting collec-
tions in both collectors, the collectors identify source and
target blocks for copying. If an object is not pinned and there
is still free space on a target block, the collectors opportunis-
tically copy unpinned objects from the source blocks to a
target block. They otherwise simply mark the object. This
process mixes copying and marking in the same collection.
In both cases, they set the object map bit.

3.3 Conservative Reference Counting
As mentioned earlier, straightforward (naive) reference count-
ing does not need to identify program roots. However, de-
ferred reference counting depends on root enumeration. De-
ferral works by ignoring increments and decrements to local

variables. It instead periodically establishes the roots, incre-
ments all objects that are root-reachable, only then does it
reclaim zero reference count objects. It also buffers balanc-
ing decrements for each root. It then applies these decre-
ments at the start of the next garbage collection, but after the
current root increments [6]. We observe that it is correct to
conservatively consider all objects reachable from ambigu-
ous roots to be pinned for the duration of each collection
cycle. Objects are only reclaimed if their reference count is
zero and they not conservatively pinned.

Object map maintenance is relatively simple with refer-
ence counting. It sets the object map bits upon allocation,
as usual. When an unpinned object’s count falls to zero, the
collector reclaims the object and clears its object map bit.
The reference counter performs periodic cycle collection us-
ing a backup tracing algorithm. At each cycle collection, it
clears the object map and sets object map bits for each object
reached in the cycle collection trace.

3.4 Conservative RC Immix
This work was motivated in part by the insight that RC Immix
was likely to be a very good match for conservative col-
lection because it performs as well or better than copying
generational, while efficiently supporting pinning at a fine
granularity. To realize RC Immixcons, we bring together each
of the key ideas described above for Immixcons and RCcons.
Unlike RC, which uses a free-list, RC Immix uses Immix’s
lines and blocks to perform contiguous allocation and op-
portunistically copies surviving young objects. RC Immix
behaves like a tracing collector with respect to young ob-
jects, so we employ the same approach to pinning and object
map maintenance for them as we do for Sticky Immixcons.
Since RC Immix behaves like a reference counting collector
with respect to mature objects, we clear object map entries
for dead mature objects just as we do for RCcons.

4. Methodology
This section presents the software, hardware, and measure-
ment methodologies that we use for evaluation.

Benchmarks. We present results for 18 benchmarks from
DaCapo [13], SPECjvm98 [33], and pjbb2005 [12]. The
pjbb2005 benchmark is a fixed workload version of SPEC-
jbb2005 [34] with 8 warehouses that executes 10,000 trans-
actions per warehouse. We do not use SPECjvm2008 be-
cause that suite does not hold workload constant, so is un-
suitable for GC evaluations unless modified. Since a few
DaCapo 9.12 benchmarks do not execute on our virtual ma-
chine, we use benchmarks from both 2006-10-MR2 and 9.12
Bach releases of DaCapo to enlarge our suite.

We include two outliers, mpegaudio and lusearch and in
our tables, for completeness, but omit them from the graphs
and averages. The mpegaudio benchmark is a very small
benchmark that performs almost zero allocation. The luse-
arch benchmark allocates at three times the rate of any other.



The lusearch benchmark derives from the 2.4.1 stable release
of Apache Lucene. Yang et al. [38] found a performance
bug in the method QueryParser.getFieldQuery(), which
revision r803664 of Lucene fixes [29]. The heavily executed
getFieldQuery() method unconditionally allocated a large
data structure. The fixed version only allocates a large data
structure if it is unable to reuse an existing one. This fix cuts
total allocation by a factor of eight, speeds the benchmark up
considerably, and reduces the allocation rate by over a factor
of three. We use this fixed benchmark lusearch-fix.

Jikes RVM & MMTk. We use Jikes RVM release 3.1.3+hg
r10761 and MMTk. Jikes RVM [2] is an open source high
performance Java virtual machine (VM) written in a slightly
extended version of Java. MMTk is Jikes RVM’s mem-
ory management sub-system. It is a programmable mem-
ory management toolkit that implements a wide variety of
collectors that reuse shared components [11].

All of the exact and conservative Immix collectors use
32 KB blocks and 256 B lines. They reserve 2% of the
heap for opportunistic copying. Exact and conservative
Sticky Immix reserve an additional 2% and target blocks
with new allocation for copying nursery survivors. Exact
and conservative RC Immix add a dynamic copy reserve,
computed based on blocks allocated and the line survival
rate at the last garbage collection [31].

All of the garbage collectors we evaluate are paral-
lel [10]. They use thread local allocation for each application
thread to minimize synchronization. During collection, the
collectors exploit available software and hardware paral-
lelism [16]. To compare collectors, we vary the heap size to
understand how well collectors respond to the time – space
tradeoff. We selected for our minimum heap size the small-
est heap size in which all of the collectors execute, and thus
have complete results at all heap sizes for all collectors.

Jikes RVM does not interpret. Instead, a fast template-
driven baseline compiler produces machine code when the
VM first encounters each Java method. The adaptive com-
pilation system then judiciously optimizes frequently exe-
cuted methods. Using a timer-based approach, it schedules
periodic interrupts. At each interrupt, the adaptive system
records the currently executing method. A cost model then
selects frequently executing methods that it predicts will
benefit from optimization. The optimizing compiler com-
piles these methods at increasing levels of optimizations.

To reduce perturbation due to dynamic optimization and
to maximize the performance of the underlying system upon
which we improve, we use a warmup replay methodology.
Before executing any experiments, we gathered compiler op-
timization profiles from the 10th iteration of each bench-
mark. When we perform an experiment, we execute one
complete iteration of each benchmark without any compiler
optimizations, which loads all the classes and resolves meth-
ods. We next apply the benchmark-specific optimization pro-
file and perform no subsequent compilation. We then mea-

sure and report the subsequent iteration. This methodology
greatly reduces non-determinism due to the adaptive opti-
mizing compiler and improves underlying performance by
about 5% compared to the prior replay methodology [14].
We run each benchmark 20 times (20 invocations) and in
Table 4 we report the average and 95% confidence intervals
using Student’s t-distribution.

Operating System. We use Ubuntu 12.04.3 LTS server dis-
tribution and a 64-bit (x86 64) 3.8.0-29 Linux kernel.

Hardware Platform. We report performance results on a
3.4 GHz, 22 nm Core i7-4770 Haswell with 4 cores and 2-
way SMT. The two hardware threads on each core share
a 32 KB L1 instruction cache, 32 KB L1 data cache, and
256 KB L2 cache. All four cores share a single 8 MB last
level cache. A dual-channel memory controller is integrated
into the CPU with 8 GB of DDR3-1066 memory.

RC Immixcons is publicly available at https://jira.

codehaus.org/browse/RVM-1085.

5. Impact of Conservatism
This section performs the first detailed study of the impact
of conservatism on collector mechanisms and design in man-
aged languages. It quantifies the effect of conservative root
scanning with respect to the number of roots returned and its
impact and implications on space consumption (excess re-
tention), filtering, and pinning. Section 6 quantifies the per-
formance impacts.

For this analysis, we modify Jikes RVM to compute
statistics that disambiguate exact and ambiguous roots, and
their respective transitive closures in the same execution.
We examine the state of the stacks, registers, and heap at
garbage collection time. We force garbage collections at a
fixed periodicity and make the heap sufficiently large that
collections are only triggered by our explicit mechanism,
never due to space exhaustion. The periodicity of forced
collections is measured in bytes, and we tailored this setting
for each benchmark so as to induce approximately one hun-
dred collections per execution, which we average across the
benchmark execution. We report the full statistics for each
benchmark in Table 6 in the appendix. In this section, we
report aggregate statistics.

5.1 Ambiguous Pointers
Table 1 shows the impact of conservative scanning on the
root set gathered from the stacks and registers. The first
row shows the average number of unique objects referenced
from the stacks and registers when performing an exact scan.
There are on average 98 unique objects referenced from the
stacks and registers at a given garbage collection, rising as
high as 263 (pmd) and falling to 35 (compress). The next four
rows are all relative to the first row.

The next row indicates the total number of roots returned
by an exact scan, as a factor increase over the unique roots.

https://jira.codehaus.org/browse/RVM-1085
https://jira.codehaus.org/browse/RVM-1085


avg min max

Unique exact roots 98 35 263
All exact roots 2.21× 1.64× 3.85×

All unfiltered conservative roots 8.9× 5.8× 15.1×
All conservative roots 4.7× 2.7× 9.0×

Unique conservative roots 1.6× 1.2× 2.2×

Table 1. Ambiguous Pointers

The average across the benchmarks is 2.21, which indi-
cates that for exact stack and register scans, the total num-
ber of roots returned is a bit more than twice that of the
unique roots. The level of redundancy among the exact stack
and register roots is highest in pmd (3.85×) and lowest in
pjbb2005 (1.64×). Redundancy is not surprising since pro-
grams often pass the same references among methods, leav-
ing multiple copies on the stack.

The next three rows look at unfiltered, filtered, and unique
conservative roots, relative to the unique exact roots. The
unfiltered roots are all values in stacks and registers that
when viewed as addresses point within the heap. This set is
on average 8.9× larger than the set of unique exact roots.
The filtered conservative roots are the set of those roots
that point to valid objects that were allocated since the last
collection or live when last examined. These references are
the ambiguous roots. The number of ambiguous roots is
about half the number of unfiltered roots, and is 4.7× the size
of the set of unique exact roots. The set of unique filtered
conservative roots is 1.6× the size the set of unique exact
roots, ranging from 1.2× (compress) to 2.2× (sunflow).

In summary, for our Java workloads, conservative scans
of stacks and registers return around 60% more unique roots
than exact scans.

5.2 Excess Retention
Perhaps the most obvious side effect of conservative collec-
tion is excess retention — a few false roots may keep many
transitively reachable objects artificially alive. We measure
excess retention in our instrumented JVM by performing two
transitive closures over the heap at each collection, one ex-
act and one conservative. We compare the size of the two
closures at each GC and report the average. Table 2 quan-
tifies the effect of excess retention in terms of KB and as a
percentage of the live heap.

Excess retention is generally very low, with a handful of
benchmarks reporting excess retention of less than 1 KB,
a handful at around 20 KB or so, and compress reporting
622 KB. The compress benchmark is small, but it uses sev-
eral large arrays. Artificially keeping one such array alive has
a significant impact. The average excess retention is 44 KB.
Normalizing those numbers in terms of the total live heap,
excess retention accounts for an insignificant space over-
head, 0.02%, and even in the outlier, compress is only 6%.

This analysis shows that excess retention affects very few
objects for our Java workloads, even though it is the most ob-

avg min max

Excess retention 44 KB 0.2 KB 622 KB
Excess retention / live 0.02% 0.001% 6.1%

Table 2. Excess Retention

vious and direct manifestation of conservatism. Section 6.4
evaluates the performance effect of artificially increasing the
number of objects pinned due to ambiguity.

5.3 Pointer Filtering
The object map and BDW free-list introspection are func-
tionally equivalent. They determine whether an ambiguous
pointer refers to an address that contains an object which
was either live at the end of the last garbage collection or
was allocated since then. If so, the collection retains the am-
biguous root. Otherwise it is discarded.

In this comparison, we evaluate the default object map
which uses just one bit for each eight bytes because it can
disambiguate the two Jikes RVM header words (MSOM).
To expose the impact of map density, we also evaluate the
object map using one bit for each four bytes, doubling the
size of the map (MSOM×2). Using an object map imposes an
overhead at allocation time due to updating the map for each
new object to indicate its start address.

By contrast, BDW introspection does not require any
extra work during allocation. At collection time, checking
the validity of an ambiguous reference is simpler with a
map than introspecting a free list. On the other hand, the
maps must be maintained during collection, accounting for
copying of objects (if any) and for the recycling of any dead
objects; neither overhead is incurred by BDW filtering.

We use full heap mark-sweep (MS) garbage collection to
measure the impact of validating ambiguous references and
compare conservative BDW free-list introspection (BDW),
the object map described in Section 3.1 (MSOM), and an
object map without header word disambiguation, doubling
the size of its map (MSOM×2). We normalize to exact MS.
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Figure 3. Conservative filtering total, mutator, and collec-
tion time overheads in mark-sweep. BDW is cheapest, re-
quiring no additional space or allocation work. The smaller
object map in MSOM improves over object map filtering in
both mutator and collection time.



avg min max

A
ct

ua
l Pinned objects 164 40 435

Pinned objects / live 0.03% 0.004% 0.13%
Pinned bytes 14 KB 5 KB 54 KB

Pinned bytes / live 0.05% 0.008% 0.28%

M
C

C

Pinned page / pinned object 0.75 0.56 0.91
Pinned bytes 462 KB 140 KB 1120 KB

Pinned bytes / live 2.1% 0.4% 4.6%
False pinned objects / page 60 27 119

False pinned bytes 282 KB 102 KB 682 KB

Im
m

ix Pinned line / pinned object 0.89 0.74 0.96
Pinned bytes 36 KB 10 KB 90 KB

Pinned bytes / live 0.2% 0.03% 0.4%

Table 3. Pinning Granularity

Figure 3 shows that on average, BDW introspection in-
curs essentially no mutator time overhead. The main ef-
fect is excess retention, which, although small as shown
above in Section 5.2, still increases the live heap, incurring
a collection-time overhead of 3.2% compared to exact MS,
stemming from a increase in the number of collections by
3.6% (not shown). The BDW collection time overhead trans-
lates into a 1% total time overhead.

Compared to BDW, object maps incur more overhead due
to setting bits at allocation time and a space penalty due to
storing the map. All have the same excess retention. A sparse
object map (MSOM×2) incurs a 2.3% overhead on the muta-
tor (i.e., the application) compared to exact MS. A sparse ob-
ject map incurs on average 35.2% collection-time overhead
because it performs 13.7% more collections on average. The
header word disambiguation improves the object map signif-
icantly. The mutator-time overhead for MSOM drops to 1.3%
instead of 2.3% and the collection time overhead is 19.8%
on average, instead of 35.2% without the optimization.

These statistics reveal that, for a non-moving collector,
BDW free-list introspection is the clear winner. However, as
we show later, the advantages of copying in other collectors
outweigh the penalty of the object map.

5.4 Pinning Granularity
A conservative collector must pin all objects that are the tar-
get of ambiguous references, because ambiguous references
may be values and therefore cannot be modified. The direct
effect of pinning an object will depend on the granularity at
which the collector pins objects. BDW incurs no additional
space overhead due to pinning, because it never moves any
object. The Mostly Copying Collectors (MCC) operate at a
page granularity (4 KB), pinning the object and all the other
objects on the page as well. The Immix collectors pin at the
granularity of a 256 B line and only pin the object, not all
objects on the line.

Table 3 reports the impact of pinning at the object, line,
and page granularity. The four ‘Actual’ rows report average
number of pinned objects and their footprint in KB. On av-

erage, the total number of objects pinned at a given garbage
collection is 164 and consume a total of 14 KB. This statistic
is consistent with the conservative root set that is on average
about 60% larger than the exact roots. The actual pinned ob-
jects are only 0.03% of all the live objects and the actual
pinned bytes are only 0.05% of the live heap.

The five ‘MCC’ rows show the effect of Bartlett-style
pinning at a page granularity. The first row shows how many
pages are pinned on average by a given object. When more
than one pinned object resides on a page, the value is less
than one. On average 0.75 pages are pinned by each pinned
object. The next row shows how many KB are consumed by
the pinned pages. On average, the pinned pages consumed
462 KB which is about 2.1% of the live heap. It next shows
the impact of false pinning. Recall that MCC collectors will
pin all objects on a pinned page. The fourth ‘MCC’ row
shows that on average around 60 unpinned objects fall on
pages with pinned objects, resulting in on average 282 KB of
falsely pinned objects at each garbage collection. Although
MCC pins a relatively small fraction of the heap (2.1%),
it is nearly two orders of magnitude larger than the actual
fraction (0.05%) of pinned objects.

The ‘Immix’ rows in the table show the effect of pinning
with Immix’s line granularity. This first row shows on av-
erage how many lines are pinned by a given object. When
more than one object pins a line, the value is less than one.
On average 0.89 lines are pinned by each pinned object. The
chances of another object pinning a given line is lower than
for a page, so the average number of lines pinned grows to
0.89 from 0.75 for pages. The next row shows how many
KB are consumed by the pinned lines. On average, pinned
lines consume 36 KB, which is about 0.2% of the live heap.
Compared to pages, which consume 462 KB, the line granu-
larity of Immix decreases the space footprint by an order of
magnitude. Whereas pinning pages effects around 2% of the
live heap, pinning lines effects 0.2% of the heap.

This section establishes that for our Java workloads root pro-
cessing time and excess retention are not significant prob-
lems for conservative collectors, and pinning due to Immix-
style lines has roughly an order of magnitude less direct im-
pact than pinning due to MCC pages.

6. Performance Evaluation
This section evaluates the design and implementation of six
conservative collectors: MCC, BDW, RCcons, Immixcons,
Sticky Immixcons, and RC Immixcons. We compare them
to their exact counterparts: semi-space (SS), mark-sweep
(MS), RC, Immix, Sticky Immix, and RC Immix. The con-
servative mark-sweep collector (BDW) is a mature mark-
sweep implementation with BDW-style reference filtering.
The Mostly Copying Collector (MCC) is a Bartlett-style
mostly copying collector that uses our object map to iden-
tify valid root referents. RC is a deferred reference counting
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(b) Overall performance relative to exact Gen Immix. RC Immixcons
matches exact Gen Immix.

Figure 4. Geometric means of total performance for exact
and conservative collectors at 2×minimum heap size. Lower
is better.

collector that uses a free-list heap organization and collects
cycles with a backup mark-sweep collector.

6.1 Conservative versus Exact Variants
We first evaluate performance penalties incurred by conser-
vative garbage collection by comparing six different exact
collectors to their conservative counterpart. This experiment
holds the algorithms constant to explore the direct impact
of ambiguous roots and pinning, as opposed to their indirect
impact on algorithmic choice. Figure 4(a) shows that, except
for MCC, the conservative collectors are within 1 to 2.7% of
their exact counterparts. MCC suffers because pinning at a
page granularity reduces mutator locality and induces frag-
mentation, resulting in more garbage collections (measured
but not shown here). BDW has the lowest overhead because
introspecting on the free-list is cheap and only performed at
collection time, whereas maintaining the object map incurs
small allocation and collection time costs. Section 5 demon-
strated that excess retention, the number of pinned objects,
and the cost of maintaining the object map and filtering ob-
jects are all low for Java benchmarks. That analysis explains
why five of the conservative collectors see negligible over-
head relative to their exact variants.

Figure 4(b) summarizes the results for all twelve collec-
tors relative to Gen Immix. Gen Immix is a mature high per-
formance copying generational collector that has been the
Jikes RVM production collector since 2009. All of the col-
lectors that use a free-list (MS, BDW, RC, and RCcons) suffer
significant performance penalties compared to Gen Immix.
For example, BDW is 12% slower and RCcons is 13% slower
than Gen Immix. The heap organization is the dominating
effect as shown in prior work [9, 31], rather than exact or
conservative root processing.

All of the exact and conservative Immix collectors out-
perform the free-list collectors. Prior work shows that degra-
dations in mutator locality explain this difference [9, 11, 31].
A free-list degrades cache miss rates because the free-list
allocator spreads contemporaneously allocated objects out
in memory on different cache lines. In contrast, the bump
pointer allocator places contemporaneously allocated ob-
jects contiguously in space, often sharing cache lines, im-
proving their locality.

Exact Sticky Immix is only 2% slower and Sticky Immixcons
is only 4% slower than Gen Immix. The best performing
conservative collector is RC Immixcons. Even though conser-
vatism slows it down, it is still 1% faster than Gen Immix.

6.2 Total, Mutator, and Collection Time
This section presents a more detailed per-benchmark per-
formance analysis of total, mutator, and garbage collection
times. For simplicity of exposition, we restrict this analysis
to the best performing exact collector (Gen Immix), the best
performing conservative collector (RC Immixcons), its exact
counterpart (RC Immix), and the prior conservative collec-
tors (MCC, BDW) with a heap 2× the minimum in which
all benchmarks execute. We present the numeric results in
Table 4 and graph them in Figure 5.

The geometric mean in Figure 5(a) and the bottom of the
four ‘time’ columns of Table 4 show that at this heap size,
Gen Immix, RC Immix and RC Immixcons perform similarly
on total execution time, while BDW performs 12% slower,
and MCC performs 45% slower on average across our Java
benchmarks. RC Immixcons lags RC Immix by just 2%, and
is 1% better on average than Gen Immix, the production
collector. RC Immixcons tracks RC Immix total performance
closely across the benchmarks, following RC Immix’s excel-
lent performance on luindex, pmd, and xalan.

The five benchmarks where RC Immixcons degrades most
against RC Immix are javac, jack, hsqldb, lusearch, and xalan.
The javac, jack, and xalan benchmarks have higher mutator
overhead (2.5-3%) compared to RC Immix. On javac, luse-
arch, and xalan, RC Immixcons has higher garbage collection
overhead compared to RC Immix. The javac, lusearch, and
xalan benchmarks have higher number of collections (18-
25%) compared to RC Immix. The javac benchmark is a very
memory-sensitive benchmark and the object map increases
the heap pressure, increasing the number of collections. The
pinning of objects disturbs the locality of the mutator, and



Benchmark GenImmix RC Immix RC Immixcons BDW MCC
milliseconds —————- Normalized to GenImmix —————-

time timemu timegc time timemu timegc time timemu timegc time timemu timegc time timemu timegc

compress 1760
±0.3

1741
±0.2

19
±10.0

0.99
±0.2

0.99
±0.2

0.25
±2.0

0.98
±0.2

0.99
±0.2

0.27
±2.1

0.99
±0.2

0.99
±0.1

0.67
±5.6

1.01
±0.2

1.01
±0.1

1.73
±13.4

jess 355
±0.3

323
±0.2

32
±2.6

0.98
±0.8

1.00
±0.8

0.76
±2.0

1.01
±0.4

1.02
±0.3

0.88
±2.6

1.31
±0.4

1.26
±0.3

1.79
±3.9

1.69
±0.9

1.14
±0.3

7.18
±15.9

db 1238
±0.3

1209
±0.3

29
±2.2

0.96
±0.5

0.97
±0.5

0.74
±1.4

0.98
±0.4

0.98
±0.4

0.93
±1.7

1.05
±0.5

1.05
±0.5

0.68
±4.1

1.12
±0.6

1.01
±0.4

5.79
±16.2

javac 773
±0.2

661
±0.2

112
±1.1

0.93
±4.7

0.99
±0.8

0.62
±28.4

1.02
±5.0

1.02
±0.8

1.06
±29.9

0.93
±0.3

1.05
±0.3

0.20
±0.4

1.07
±0.6

1.00
±0.3

1.46
±3.8

mpegaudio 1103
±0.0

1103
±0.0

0
±0.0

1.00
±0.3

1.00
±0.3

0.00
±0.0

1.00
±0.0

1.00
±0.0

0.00
±0.0

1.00
±0.0

1.00
±0.0

0.00
±0.0

0.98
±0.2

0.98
±0.2

0.00
±0.0

mtrt 245
±1.5

215
±1.6

30
±2.9

0.98
±1.2

1.00
±1.2

0.84
±4.6

1.01
±2.7

1.00
±2.8

1.05
±8.1

1.04
±1.2

1.05
±1.2

0.98
±3.8

1.97
±3.1

1.09
±1.4

8.17
±23.7

jack 496
±0.3

453
±0.2

43
±2.7

0.98
±0.5

1.00
±0.4

0.67
±2.4

1.02
±0.8

1.03
±0.5

0.86
±4.6

1.12
±0.3

1.12
±0.2

1.08
±3.0

1.46
±0.9

1.13
±0.4

4.91
±11.4

mean 811
±0.4

767
±0.4

44
±3.1

geomean 0.97 0.99 0.60 1.00 1.01 0.77 1.07 1.09 0.75 1.34 1.06 4.02

avrora 2266
±0.3

2250
±0.3

16
±3.3

0.98
±0.2

0.99
±0.2

0.24
±9.9

0.98
±0.2

0.99
±0.3

0.27
±9.3

0.99
±0.3

1.00
±0.3

0.52
±2.8

1.00
±0.3

0.98
±0.3

3.40
±13.3

bloat 2179
±0.4

2047
±0.5

132
±1.3

0.98
±1.0

1.00
±1.1

0.63
±1.4

1.00
±0.8

1.01
±0.8

0.81
±2.7

1.10
±0.4

1.06
±0.4

1.86
±2.7

1.41
±0.6

0.99
±0.5

7.79
±8.9

eclipse 11272
±0.9

10654
±1.0

618
±1.1

1.00
±1.2

1.01
±1.2

0.87
±2.1

1.02
±0.9

1.02
±1.0

1.06
±2.4

1.11
±0.9

1.10
±1.0

1.18
±1.7

1.15
±0.9

1.02
±0.9

3.31
±3.1

fop 579
±0.5

562
±0.5

17
±2.3

0.99
±0.4

0.99
±0.4

1.02
±3.8

1.00
±0.4

0.99
±0.4

1.11
±4.0

1.04
±0.5

1.05
±0.5

0.95
±2.9

1.09
±0.5

1.01
±0.4

3.71
±11.6

hsqldb 706
±0.5

561
±0.1

145
±2.5

1.06
±0.5

0.98
±0.1

1.36
±2.8

1.11
±0.4

0.99
±0.1

1.58
±2.9

1.31
±0.6

1.14
±0.3

1.94
±3.8

2.16
±2.6

1.09
±3.1

6.33
±11.4

jython 2416
±0.4

2335
±0.4

81
±1.7

0.96
±0.3

0.98
±0.3

0.52
±1.1

0.98
±0.5

1.00
±0.5

0.65
±3.4

1.28
±0.4

1.14
±0.4

5.43
±9.3

1.58
±0.7

1.06
±0.6

16.69
±23.0

luindex 637
±7.8

632
±7.8

5
±6.8

0.94
±6.1

0.95
±6.2

0.04
±8.4

0.94
±5.4

0.93
±5.5

0.98
±5.5

1.00
±7.8

1.00
±7.8

1.70
±9.8

0.97
±5.6

0.95
±5.6

2.62
±18.3

lusearch 1306
±0.4

782
±0.6

524
±0.4

0.62
±0.4

0.79
±0.5

0.36
±0.3

0.68
±0.6

0.81
±0.8

0.49
±0.7

1.37
±1.0

0.94
±0.7

2.03
±1.7

2.51
±1.6

0.95
±0.7

4.85
±3.5

lusearchfix 539
±1.3

497
±1.3

42
±1.2

0.95
±1.3

0.97
±1.4

0.78
±1.0

0.98
±1.4

0.98
±1.4

1.04
±1.5

1.39
±1.7

1.08
±1.5

4.98
±7.4

2.51
±2.8

1.14
±1.6

18.80
±20.8

pmd 621
±0.9

521
±0.8

100
±3.5

0.92
±0.9

0.98
±0.9

0.64
±3.3

0.96
±1.1

0.99
±0.9

0.81
±4.6

1.11
±1.6

1.12
±0.9

1.07
±8.1

1.69
±1.8

1.06
±1.0

4.98
±14.7

sunflow 1725
±1.1

1619
±1.2

106
±0.9

1.05
±1.2

1.06
±1.3

0.88
±3.2

1.05
±0.9

1.03
±0.9

1.35
±4.4

1.25
±1.1

1.05
±1.0

4.29
±5.8

2.01
±1.7

1.05
±0.9

16.75
±12.4

xalan 754
±0.6

579
±0.7

175
±1.0

0.79
±0.6

0.92
±0.7

0.34
±0.5

0.85
±0.6

0.95
±0.8

0.51
±0.6

1.17
±1.2

1.06
±1.1

1.55
±2.2

1.61
±1.0

1.03
±0.8

3.52
±3.9

mean 2154
±1.2

2023
±1.3

131
±2.2

geomean 0.96 0.98 0.51 0.98 0.99 0.84 1.15 1.07 1.81 1.49 1.03 6.73

pjbb2005 2870
±0.4

2606
±0.3

264
±2.1

1.01
±0.9

1.03
±0.4

0.76
±7.7

1.04
±1.5

1.04
±0.3

1.03
±16.8

1.11
±0.4

1.11
±0.3

1.09
±2.4

1.74
±2.0

1.07
±0.3

8.25
±25.1

min 245 215 5 0.79 0.92 0.04 0.85 0.93 0.27 0.93 0.99 0.20 0.97 0.95 1.46
max 11272 10654 618 1.06 1.06 1.36 1.11 1.04 1.58 1.39 1.26 5.43 2.51 1.14 18.80

mean 1746
±0.9

1637
±0.9

109
±2.5

geomean 0.97 0.99 0.55 0.99 1.00 0.83 1.12 1.08 1.31 1.45 1.05 5.68

Table 4. Total, mutator, and collection performance at 2×minimum heap size with confidence intervals. Figure 5 graphs these
results. We report milliseconds for Gen Immix and normalize the others to Gen Immix. (We exclude mpegaudio and lusearch
from averages, see Methodology.) RC Immixcons is 2% slower than RC Immix and still slightly faster than production exact
Gen Immix.
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for javac, xalan and lusearch it also introduces line fragmen-
tation that increases the number of collections. In several
cases, these benchmarks have higher than average numbers
of conservative roots. For example, 1.7× for javac, 2.3×
for lusearch, and 1.9× for xalan, where the average is 1.6×
(see Table 6 in the Appendix). However, these effects are
modest. Although RC Immixcons degrades javac, jack, hsqldb,
lusearch, and xalan the most compared to exact RC Immix,
RC Immixcons is still faster than Gen Immix on average.

Figure 5(b) and the four ‘timemu’ columns of Table 4
show that the mutator time is responsible for the total
time results for the most part; Gen Immix, RC Immix and
RC Immixcons perform similarly on mutator time, while
BDW performs about 8% slower, and MCC performs about
5% slower on average across our suite of Java benchmarks.
RC Immixcons is only 1% slower than RC Immix on muta-
tor time, with no programs degrading mutator time by more
than 3%. Gen Immix, RC Immix and RC Immixcons all use
write barriers which impose a direct mutator overhead [39].
Nonetheless, despite not requiring a write barrier, BDW con-
sistently suffers the worst mutator overhead, 8% on average.

Our BDW collector does not use an object map, and has
no other mutator-time overheads directly associated with
conservatism, so based on previous experiments [9, 11, 31],
we attribute the slowdown to the loss of locality (explained
in more detail in Section 6.1). Despite RC Immixcons having
the mutator-time burden of maintaining an object map and
a write barrier, its locality advantages are enough to deliver
better mutator performance than BDW.

Figure 5(c) and the four ‘timegc’ columns of Table 4
show the relative cost of garbage collection among the
four collectors. Both RC Immix and RC Immixcons perform
very well with respect to garbage collection time, outper-
forming Gen Immix by 45% and 17% respectively. While
RC Immix improves collector time on all but two programs,
RC Immixcons slows down 7 and improves 11 compared to
Gen Immix. BDW performs worst on all but 6 benchmarks.
BDW performs exceptionally well only on javac, which has
an interesting lifetime behavior that builds up a large struc-
ture and then releases it all, four times over. This pattern can
defeat generational collection because the survival rate for
each generational collection will tend to be relatively high
until the application releases the data structures.

MCC performs much worse than BDW and its huge
garbage collection cost is the main reason for the overall
45% slowdown. MCC degrades 9% over standard semi-
space collector, but neither are space efficient because they
reserve half the heap for copying.

The three collectors that exploit the weak generational
hypothesis do very well on all benchmarks. RC Immix and
RC Immixcons do better than Gen Immix because they use
reference counting for mature objects, which means that
those objects are promptly reclaimed, whereas Gen Immix
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Figure 6. The performance of MCC, BDW, Gen Immix,
RC Immix, and RC Immixcons normalized to the best system
as a function of heap size. RC Immixcons collection time
degrades a bit more in the smallest heap sizes compared to
Gen Immix, but remains competitive in all heap sizes.

has to wait for sporadic full heap collections to reclaim space
from dead mature objects.

Summarizing, RC Immixcons performs extremely well. It
suffers only about 1% overhead in mutator time and a simi-
lar overhead in collection time compared to its exact coun-
terpart RC Immix. At this heap size and with Java work-
loads, RC Immixcons outperforms the mature and well tuned
Gen Immix collector. The 13% advantage of RC Immixcons
over BDW comes from: 1) much better mutator performance
due to the bump pointer operating over coarse grained allo-
cation regions, 2) further improvements to the mutator per-
formance due to locality benefits that come from defragmen-
tation with optimistic copying, and 3) much better garbage
collection performance due to RC Immixcons’s ability to ex-
ploit the weak generational hypothesis notwithstanding pin-
ning with ambiguous roots.

6.3 Sensitivity to Heap Size
Garbage collection is fundamentally a time-space tradeoff,
which this section examines by varying the heap size. Fig-
ure 6 shows the average total time, mutator time, and garbage



collection time for each system as a function of heap size.
In each graph, performance is normalized to the best per-
formance data point on that graph, so the best result has a
value of 1.0. Figure 6(a) shows the classic time-space trade-
off curves expected of garbage collected systems, with BDW
and MCC consistently slower compared to the other collec-
tors. The graphs reveal that RC Immix and RC Immixcons are
very similar, with a slow divergence in total time as the heap
becomes smaller because RC Immixcons has a slightly larger
heap and collects more often. Once heap sizes are tight,
Gen Immix starts to outperform RC Immixcons. Figure 6(b)
shows that the relationship among the five collectors’ mu-
tator performance is almost unchanged in moderate heap
sizes. For smaller heap sizes, they all degrade. BDW has
the worst mutator performance except at the smallest heap
size where BDW outperforms MCC because MCC disturbs
locality by frequently copying nursery objects that have not
had sufficient time to die. Figure 6(c) shows the relationship
among the five collectors’ garbage collection performance.
RC Immix and RC Immixcons have better garbage collec-
tion performance than Gen Immix and MCC has the worst
garbage collection performance. BDW garbage collection
performance approaches Gen Immix as the heap becomes
large and no collector is invoked frequently.

In summary, conservative Immix variants perform very close
to their exact counterparts, and RC Immixcons performs as
well or better than the best exact generational collector
across a wide range of heap sizes.

6.4 Discussion and Wider Applicability
Although our empirical results are for Java, we believe that
other languages will benefit from these algorithms.

Conservatism and Pinning The Immix conservative col-
lector designs apply to any setting with ambiguous refer-
ences, including fully conservative systems. However, the
major performance advantage comes from opportunistic
copying of unpinned objects; opportunities which are nonex-
istent when all references are ambiguous.

To explore the potential benefit of transitioning an ex-
isting managed language runtime to RC Immixcons first re-
quires quantifying the relative fraction of ambiguous refer-
ences in representative applications. Ambiguous references
will be influenced by language elements and values in the
stack and heap references. The environment also influences
ambiguous references. For example, JavaScript may have
larger numbers of conservatively pinned objects because the
browser and document model may refer to JavaScript objects
and are typically implemented in C.

Because all of our benchmarks pin so few objects, we
explore how much pinning Immix can tolerate while main-
taining its performance advantages. We conduct a simple ex-
periment that artificially increases the number of pinned ob-
jects by factors of 2 to 32 compared to RC Immixcons with
0.2% average pinned in Java. We find that in a modest 2×

Increased Pinning
2× 4× 8× 16× 32×

Heap Size (0.4%) (0.8%) (1.6%) (3.2%) (6.4%)

2× 0.7% 1.8% 3.4% 6.8% 11%
3× 0.8% 1.1% 2.2% 2.3% 5.3%

Table 5. Performance effect of increasing pinning of objects
by factors of 2× to 32× compared to RC Immixcons with
0.2% average pinned. The percentage of objects pinned is
in parentheses. A 32-fold increase in pinning results in 11%
slowdown in a 2× heap and 5.3% slowdown in a 3× heap.

heap, performance was degraded compared to RC Immixcons
by 0.7% to 11% respectively, as shown in Table 5.
Of course, other languages may pin more or less than Java.
The fewer pinned objects, the more likely an Immix heap
organization and opportunistic copying can improve locality
and performance. The next step for attaining Immix perfor-
mance advantages would be to modify the heap organization
to use lines and blocks and implement a full-heap tracing
Immix collector (Immixcons). Our measurements show that
even this simple system has the potential to deliver 5% or
more total performance improvement.

Performance Potential One issue that may dampen the ef-
fects of heap organization and garbage collector efficiency
is code quality. If the language implementation is immature
and uses an interpreter or generates poor quality code, the
collector’s effect on overall performance will likely dampen.
To test this hypothesis, we intentionally crippled our run-
time, first by disabling optimization of application code and
then also by deoptimizing the runtime code itself, includ-
ing the garbage collector. The first scenario mimics a mature
VM with low code quality (mature). The second approxi-
mates an immature VM with low code quality (immature).
We measured both startup and steady state performance.

We find that RC Immixcons and Immixcons offered mea-
surable, though dampened, advantages in all scenarios. This
result suggests that the Immix heap structure will benefit
both immature and high performance runtimes. Comparing
with BDW implementations in the same scenarios, the ben-
efits were most modest during startup (1% for ‘mature’ and
5% for ‘immature’), which is unsurprising because the per-
formance of other parts of the runtime, including the class-
loader and baseline JIT will dominate during startup. We
were interested to find that in steady state, the immature VM
scenario benefitted by 8%, more than the mature VM sce-
nario at 4%. Presumably the low code quality of the mature
VM scenario dominates, whereas in the immature VM, all
elements are slow, so the locality and algorithmic benefits
from Immix offer performance advantages. In all of these
scenarios, RC Immixcons and Immixcons performed about the
same, which suggests that the advantages of reference count-
ing mature objects do not become apparent unless the VM
and the code quality are both well optimized.



In summary, even while a VM is maturing, if very few ob-
jects are pinned, conservative Immix and RC Immix should
improve performance. Their benefits are likely to grow as
the VM itself matures and generated code quality improves.

7. Conclusion
VM developers often choose not to implement exact garbage
collection because of the substantial software engineering
effort it demands. Instead they have taken one of three tacks:
1) naive reference counting, 2) conservative non-moving
mark-sweep with a free-list, or 3) conservative MCC with
page pinning. For example, Objective-C, Perl, and Del-
phi use naive reference counting, Chakra uses non-moving
mark-sweep, and WebKit uses MCC. A variety of prior work
suggests and we confirm that these garbage collection algo-
rithms sacrifice a lot of performance.

The contributions of this paper are the design and imple-
mentation of a high performance conservative collector for
managed languages. This collector combines an object map
to identify valid objects, Immix mark-region collection to
limit the impact of pinning to a line granularity, and deferred
reference counting to increase the immediacy of reclaiming
old objects. We observe that we can pin the referents of am-
biguous roots at a fine grain with an Immix line, which min-
imizes pinning overheads and maximizes locality benefits.
We use opportunistic copying to mitigate the cost of pinning
because it combines marking of pinned objects and copying
of unpinned objects as space allows. We simply use an object
map to determine that referents are objects, and then con-
servatively retain and pin their targets. We can capture the
high performance and prompt reclamation of deferred refer-
ence counting even with ambiguous roots. No previous work
combines ambiguous roots with reference counting. The re-
sulting RC Immixcons collector attains efficient generational
behavior, efficient pinning, and the fast reclamation of old
objects. Combining these collector mechanisms in this novel
way leads to a very surprising result: high-performance con-
servative garbage collection.
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Appendix
This appendix presents individual benchmark statistics that
support the aggregate analysis in Section 5. Table 6 includes
the basic statistics on the heap, exact roots, and conserva-
tive roots for each benchmark. It further quantifies their ef-
fects on filtering, excess retention, and pinning. We examine
the number of pinned objects and how much memory frag-
mentation this causes MCC pages and Immix line pinning to
consume with an object map.

The ‘Live Heap’ column shows the size of live object
graph in MB. As mentioned in Section 5, we compute all of
the analysis in the table by repeatedly performing full heap
garbage collections and measuring and comparing statistics
within each collection using exact and conservative roots.
We targeted about 100 GCs per benchmark and the ‘Force
GCs’ column shows that the actual number of GCs ranges
from 72 to 144.

The set of ‘Roots’ columns show the raw number of
‘Exact’ unique roots and all roots. The three columns of
‘Conservative’ root statistics are normalized to the exact
unique roots. While the ‘all’ conservative column shows a
factor of 8.9 more conservative roots are processed, filtering
reduces them (filt.) and only a factor of 1.6 are unique (uniq).

The ‘Excess Retention’ columns show in KB and as
a percentage how many additional objects are transitively
reachable from the conservative roots and thus kept live that
an exact collector would have reclaimed. Since one root
could transitively reach the whole entire heap, even one con-
servative roots could have a large effect. However, we do
not observe this behavior. In these Java Benchmarks, only
one benchmark (compress) has excess retention greater than
0.3%. It uses a few large arrays and retaining even one live
array has a large impact.

The ‘Pinned Space’ quantifies the exact number of ob-
jects pinned (‘Objects’), which is the same as BDW will pin,
and the effect of Immix line pinning and MCC page pinning.
MCC pins two orders of magnitude more objects than BDW
or line pinning. The last two columns in the table quantifies
how much of that increase is due to the false pinning of other
objects on the page — they account for about half of the
excess retention (282 KB of 462 KB). Immix line pinning
is extremely effective at limiting the impact of ambiguous
roots to just 0.2% of heap objects. Section 5 includes more
discussion on these statistics and their implications.



Roots Pinned Space False
Live No. (/exact unique) Excess (/pinned obj, KB, % live) Pinning

Heap Force Exact Conservative Retention Objects Immix lines MCC pages MCC
Benchmark MB GCs uniq all all filt. uniq KB % obj. KB line KB % page KB % /page KB

compress 10.0 81 35 2.16 7.1 3.2 1.2 622.3 6.1 40 6 0.96 10 0.1 0.88 140 1.4 89.1 102
jess 8.7 75 76 1.96 8.3 4.7 1.8 0.6 0.0 134 10 0.89 30 0.3 0.72 388 4.4 51.3 226

db 14.4 144 38 1.99 7.1 3.0 1.2 0.3 0.0 46 6 0.96 11 0.1 0.88 161 1.1 119.1 138
javac 14.9 105 74 2.10 7.8 4.6 1.7 0.6 0.0 127 9 0.87 28 0.2 0.71 362 2.4 77.0 275
mtrt 13.0 72 73 1.81 7.4 4.0 1.6 0.6 0.0 113 8 0.74 21 0.2 0.57 258 1.9 53.4 181
jack 8.1 103 46 2.01 7.5 3.6 1.5 0.5 0.0 69 7 0.88 15 0.2 0.77 212 2.6 51.0 116

avrora 17.8 138 108 1.95 9.3 4.9 1.4 2.3 0.0 150 13 0.91 34 0.2 0.69 413 2.3 71.9 309
bloat 21.7 78 61 2.04 6.7 3.4 1.4 13.7 0.1 85 7 0.90 19 0.1 0.79 267 1.2 50.7 139
chart 22.9 108 58 1.78 5.8 2.7 1.3 60.4 0.3 72 5 0.86 16 0.1 0.76 219 0.9 55.0 128

eclipse 53.0 89 96 2.17 8.9 4.3 1.5 3.7 0.0 141 11 0.96 34 0.1 0.91 512 0.9 67.8 324
fop 22.2 97 71 2.33 6.5 3.5 1.3 0.2 0.0 92 6 0.96 22 0.1 0.85 314 1.4 89.7 261

hsqldb 64.9 117 70 2.16 10.7 5.1 1.5 18.6 0.0 105 8 0.92 24 0.0 0.79 333 0.5 60.1 225
jython 53.7 128 81 2.84 13.1 8.0 1.8 2.1 0.0 145 7 0.94 34 0.1 0.84 488 0.9 74.9 316

luindex 16.3 133 53 2.14 9.0 4.7 1.7 12.8 0.1 85 5 0.94 20 0.1 0.82 277 1.7 66.2 198
lusearch 15.2 168 124 1.89 10.8 5.8 2.3 30.7 0.2 274 0.8 20 55 0.4 0.66 721 4.6 29.5 249

lusearchfix 15.3 110 126 1.85 10.1 5.4 2.1 2.9 0.0 259 21 0.84 54 0.3 0.68 710 4.5 36.2 294
pmd 35.0 74 263 3.85 11.6 6.8 1.5 24.1 0.1 397 20 0.84 83 0.2 0.64 1022 2.9 53.7 682

sunflow 19.2 101 193 2.65 13.6 8.1 2.2 48.0 0.2 407 54 0.80 82 0.4 0.56 904 4.6 27.0 393
xalan 23.9 106 233 3.73 15.1 9.0 1.9 13.8 0.1 435 54 0.83 90 0.4 0.64 1120 4.6 37.9 572

pjbb2005 187.1 92 106 1.64 10.5 5.2 2.0 7.7 0.0 212 15 0.93 49 0.0 0.79 673 0.4 59.0 476

min 8.1 72 35 1.64 5.8 2.7 1.2 0.2 0.0 40 5 0.74 10 0.0 0.56 140 0.4 27.0 102
max 187.1 144 263 3.85 15.1 9.0 2.2 622.3 6.1 435 54 0.96 90 0.4 0.91 1120 4.6 119.1 682

mean 34.0 103.9 98 2.21 8.9 4.7 1.6 44.0 0.0 164 14 0.89 36 0.1 0.75 462 1.7 59.3 282

Table 6. Individual benchmark statistics on live heap size, exact roots, conservative roots, excess retention, and pinning. The
table presents arithmetic mean for quantities and geometric mean for percentages. The text of the appendix explains each
column and Section 5 analyses the aggregate meaning in more detail. Overall, this table shows that conservative roots have
only a small impact on root scanning work, excess retention, and pinning at an Immix-line granularity. In particular, although
all conservative roots expand the potential root set by a factor of 8.9, they are still few, and after filtering, they only expand the
collector work by a factor of 1.6. Excess retention is low at 0.02%. Pinning at at page granularity effects 1.7% of objects on
average, whereas pinning at a line granularity effects only 0.1% objects.
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