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ABSTRACT

Many state-of-the-art garbage collectors are generdficofect-
ing the youngnursery objects more frequently than old objects.
These collectors perform well because young objects tertieto
at a higher rate than old ones. However, these collectorsotlo n
examine object lifetimes with respect to any particulargoam or
allocation site. This paper introduces low-cost object@arg to
dynamically determine lifetimes. The sampler marks analgad
records its allocation site evenbytes of allocation. The collector
then computes per-site nursery survival rates. Samplingades
total performance by only 3% on average for sample rates 6f 25
bytes in Jikes RVM, a rate at which overall lifetime accuraoyn-
pares well with sampling every object.

An adaptive collector can use this information to tune ftdeor
example pretenuringdecreases nursery collection work by allocat-
ing new, but long-lived, objects directly into the maturasp. We
introduce a dynamic pretenuring mechanism that detectslived
allocation sites and pretenures them, given sufficient sssn¥o
react to phase changes, it occasionally backsamples. Aspet
vious online pretenuring, consistent performance improes on
SPECjvm98 benchmarks are difficult to attain since only tvme
bine sufficient allocation load with high nursery surviv@lur pre-
tenuring system consistently improves one of the2&3_javac,
by 2% to 9% of total time by decreasing collection time by oaer
factor of two. Sampling and pretenuring overheads slow dallvn
the others. This paper thus provides an efficient samptiegha-
nismthat accurately predicts lifetimes, but leaves open optimi
tion policiesthat can exploit this information.

Categories and Subject DescriptorsD.3.3[Language Constructs
and Features]:

General Terms: Languages

Keywords: Memory management, garbage collection, object sam-
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1. Introduction

Many high performance garbage collectors todaygesgerational
organizations that separates young objects from old abjectl
then collects the younger objects more frequently. Thedleazo
tors perform well because young objects usually die quiekig at
a higher rate than older ones (tlveak generational hypothegiks,
25]). A problem for these collectors is that they usually @b ac-
commodate or detect objects that do not follow this hypashes

This paper introduces a low-cost dynamic object samplingme
anism to determine object lifetimes in a generational ctdlie This
sampling mechanism piggybacks on a contiguowsp-pointeral-
locator. It samples one object after evanbytes of allocation,
wheren is a power of two. Using an address alignment allows for
efficient identification of samples. The sampler adds a wortthé
sampled object that identifies the object’s allocation sitel incre-
ments a site allocation counter. During a collection, thiéector
notes any surviving sampled objects and computes sunaesr
for each allocation site. For sample rates of 256 and 51Xhgte
Jikes RVM using MMTK, this mechanism accurately computes si
lifetimes, adding on average a 1% to 3% time and 1% space over-
head. Previous approaches sample objects with weak poittitzr
identify their allocation site [1]. Weak pointer samplingist trace
both dead and live objects, incurring large overheads. Hn
al. [15] use type to predict object lifetimes, but type is aagood
predictor. To our knowledge, our object sampling techniiguie
first to combine low overhead and accuracy.

Potential uses for dynamic lifetime information includeptive
garbage collection optimizations and algorithms. For gXanpre-
tenuringallocates long-lived objects directly into the mature gpac
to reduce nursery copying costs in generational collectdfs in-
troduce a dynamic pretenuring mechanism based on dynamic su
vivor rates. For a site with a high survival rate and suffitism-
ples, the collector modifies the allocation site to allosatiesequent
objects directly into the mature space. To detect lifetirhasge
changeshacksamplingoccasionally allocates these sites into the
nursery in order to reexamine their survival rate. We exanan
range of heuristics for minimum number of samples, pretegur
thresholds, and backsample thresholds. Backsamplingde®a
robustness to mistakes as well as adaptiveness to phasgeshan

The potential for pretenuring on the SPECjvm98 programs is
low. Only two programs combine substantial collector loaé. (
lots of allocation) with nursery survival rates greatemts&o. Pre-
tenuring speeds up one of thes2]13_javac. It improves garbage
collection time by a factor of two, and total time by 2% to 9%cs
collection time is generally a modest fraction of total tirffker the
other cases, the overheads and pretenuring errors slowapneg
down on average by 1% to 4%, and up to 16%. Prior dynamic
pretenuring work [14, 15] achieves smaller improvementssam-



ilar worst case degradations, e.g205_raytrace slows down by
15% [14]. To prevent degradations when pretenuring is nolica
ble, the system could trigger sampling only when nurseryigalr
statistics indicate some potential. For example, the ctlecould
turn on sampling and dynamic pretenuring only when nursery s
vival rates rise above 15%. We did not explore this feature.

We thus introduce an efficient online sampling mechanism for
determining lifetimes and a dynamic pretenuring mechasifm
exploiting object lifetimes. However, we leave open p@gthat
use this information to consistently improve performance.

2. Related Work

This section compares our work to previous research on tlifiec
time prediction, dynamic object sampling, dynamic pretamy
and static pretenuring.

Other than the weak generational hypothesis [16, 25], previ
ous work using analytical modeling and experimental cfassi
tion across programs has not yielded any additional geobjatt
lifetime hypotheses [9, 22]. However, many memory managegme
techniques improve performance for a given program basets on
individual characteristics.

To determine and exploit lifetimes dynamically, previousrkv
uses write barriers and weak pointers. Domani et al. [11]Qiath
and Hendren [17] use write barriers to trap and differeatigobal
and local heap pointers. They then collect the local heags-in
pendently. Qian and Hendren further redirect sites thatcate
global variables into the global heap. Both of these tealesqcan
add significantly to the execution time of the program, whsreur
mechanism adds negligible overhead.

Agesen and Garthwaite [1] sample objects by inserting weak
pointers which identify the object allocation sites. Thegiproach
is most similar in spirit to ours. After a collection, they stu
trace both the dead and surviving sampled objects throwgivélak
pointers to gather statistics. They do not report overhepdrsitely,
but as part of dynamic pretenuring. Total performance imgso
and degrades on average by 1% to 2%, 1A@5 raytrace from

dynamic pretenuring results show both improvements andva fe
significant degradations but are limited to a single heap. sixe

find improvements in a wide range of heap sizes while using a
faster collector, providing a more general mechanism, aodri

ring lower overhead.

Huang et al. [15] compute per-class rather than per-site all
cation and survival statistics which is easy to implemeirices
each object header includes the type already. However, ig/pe
not a good predictor of lifetime. They use the Jikes RVM base-
line compiler which does not produce high quality code angth
can hide any overhead. We use the adaptive optimizing cempil
Their approach degrades total execution time slightlytertivo of
three SPECjvm98 benchmarks they te22_jess and_228_jack,
while improving_213_javac by 2% to 5%.

Another approach to lifetime classification for heap optiani
tions is static profiling [4, 7, 8, 13, 18, 19, 23, 24]. For arste, a
static profiler finds allocation sites for long-lived objedh a gen-
erational collector and recompiles the program to allottzdee di-
rectly to mature generations [7, 8, 23, 24]. A profile-drivegm
proach is problematic for a just-in-time compiler. If pragimers
were willing to profile, they would compile ahead of time.

3. Object Sampling

This section describes and evaluates object sampling fédimtie
prediction. The sampling mechanism requirdsienp-pointerallo-
cation with a copying collector. We focus here on lifetimmpding

for newly allocatedurseryobjects, but this mechanism can sample
other characteristics as well.

Bump-pointer allocators use monotonically increasingesies
within a contiguous region of memory by repeatedly incremen
ing (bumping a pointer. Thidast pathof the allocation sequence
uses only a few instructions including a test to check wirete
allocation exceeds some boundary. Figure 1(a) illustrdtiesse-
guence. When the allocator exceeds the boundary, it calsialv
path which determines, for example, whether the allocator needs
to request more memory or if it should trigger a collectionsuf-

SPECjvm98 degrades by 15%. We instead mark samples by theirficiently large allocation region makes tif@st paththe common

respective memory addresses. During collection, we neéd on
track survivors. At the end of a collection, the allocatioml aur-
vivor statistics completely specify lifetimes. These matsms
reduce our space and collector time overheads comparedato we
pointers. Both mechanisms require specialized allocatiwhcol-
lection support. Our object sampling is more general thaakwe
pointers since it needs no language support.

Harris [14] uses Agesen and Garthwaite’s sampling mechanis
to make dynamic pretenuring decisions for Java programben t
context of a two generation collector. When the system detec
long-lived allocation site, it begins allocating into a e gener-
ation. His system samples in the higher generation to déterm
whether or not to reverse a decision, but the infrequencygtfen
generation collections reduces the accuracy of theséniéesam-
ples. We instead allocate the occasional pretenured siteibto
the nursery. Harris notes that these objects will alwaysigeiif
they are connected to another pretenured object, and ircalsis
our mechanism would not yield useful samples. We find that thi
case does not occur frequently, and thus we can react marieyui
to phase changes. Harris uses separate thresholds fonymiate
and reversal. He uses backpatching to change the allocsitemn
rather than a load to determine the allocation region. Neitfch-
nigue recompiles the method. Harris uniquely identifiesafera-
tion site without any call chain information. Because Jik&&M
performs aggressive inlining, allocation sites in our systend to
have more context, which Harris suggests should be usefid. H

case, and executes the more expensiow pathinfrequently.

Figure 1(b) illustrates dynamic object sampling. Samphdds
no instructions to the most frequently executast path(compare
lines 1-9in Figure 1(a) & (b)). Object sampling however duluces
an intermediate path whose test succeeds esa&MPLE_PERI OD
bytes of allocation. For lifetime sampling, the allocatoen records
a one-word object tag which encodes the object allocatienesid
a magic number, which allows sampled survivors to be ideuwtifi
(al I ocSanpl e(), line 23). Lifetime prediction also increments
a per-site allocation counter. The compiler inline praglime, 1 in
Figure 1(a) and (b), directs the compiler to inline fast pathof
the allocation sequence into the caller, leavingsample pattand
cold slow pathas method calls.

Instead of the addition of special actions at every allaecatihe
sampling pathoccurs only everySAMPLE_PERI OD bytes. We
can tune the sampling rate by statically or dynamically stifjig
it. Larger values, of course, trade lower overhead for fesean-
ples. We explore only statically specified sample rates.here

The garbage collector aggregates object statistics dantigc-
tion. As the collector copies all reachable objects out efitbrsery,
it checks each surviving object. If the word before the obfen-
tains the magic number, the object is a sample, and the tmilde-
codes the object’s allocation site from the tag. This apgii@dlows
different sites to use different sample rates and frees dheator
from knowinga priori whether an object had been sampled. Life-
time sampling computes transient and total object surgialistics
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VM Address al |l oc(int bytes)
throws VM Pragmal nLi ne {
VM _Addr ess ol dCursor = cursor;
VM _Addr ess newCur sor = ol dCursor. add(bytes);
if (newCursor.GI(limt)) /1 need nore menory?
return all ocSl ow bytes);
cursor = newCursor;
return ol dCursor;

(a) Original bump pointer allocation

VM Address al |l oc(int bytes,
throws VM Pragmalnline {
VM _Addr ess ol dCursor = cursor;

VM _Addr ess newCursor = ol dCursor. add(bytes);

if (newCursor.GI(sanpleLimt)) /1 need to sanple?
return sanpl e(bytes, sitelD);

cursor = newCursor;

return ol dCursor;

int sitelD)

VM Addr ess sanpl e(int bytes,
throws VM PragmaNol nline {
VM _Address rtn;
int required = bytes + SAMPLE_BYTES;

VM _Addr ess newCursor = cursor.add(required);
if (newCursor.Gr(limt)) { /1 need nore nenory?
rtn = allocSlowrequired, sitelD);
if (rtn.isZero()) returnrtn; // we need to GC
} else {
rtn = cursor;
cursor = newCursor;
sanpl eLim t = roundUp(cursor,

int sitelD)

SAMPLE_PERI OD) ;

}
al |l ocSanpl e(rtn, bytes, sitelD);
return rtn. add( SAMPLE_BYTES);

/1 record sanple
/1 skip object tag

(b) Sampling bump pointer allocation

Figure 1: Changes to the Bump Pointer Allocation

in an array indexed by sitélransientstatistics are for one collec-
tion phase (or several), while total statistics accumurgtagmation
over the entire program.

This mechanism samples larger objects more frequentlytarsd t
yields more accurate statistics for them. As Harris [14hpoout,
large objects are important — especially if they are prolific

3.1 Overhead and Accuracy

To evaluates the lifetime sampling overhead and accuraayas-
tion of sample rate, we start by briefly describing our experital
setting, collector organizations, and Jikes RVM. We themaie-
strate that sampling overheads are on average low, betvéamd

patible with other mature generation organizations. In Miifhie
boundednursery takes a command line parameter as the initial
nursery size, collects after the nursery is full, and resthe nurs-
ery below the bound only when the mature space cannot accom-
modate a nursery of survivors. When the nursery size falts\ba
lower bound (we use 256KB), it triggers a mature space didiec

The mark-sweep mature space is organized as a segregated-fit
free-list with lazy freeing. The allocator divides memanya blocks
of same size chunks. The collector traces and marks livectshje
and puts blocks with free objects on the appropriate freekblist.
The allocator constructs the free object list for the bldo& first
time it allocates from the block. (See Blackburn et al. [5]dddi-
tional MMTk details.)

3.2.2 Jikes RVM and Jikes Compilers

Jikes RVM is a high-performance VM written in Java with an ag-
gressive optimizing compiler [2, 3]. We only use configurat
that precompile as much as possible, including key libsased
the optimizing compiler (thd=ast build-time configuration), and
turn off assertion checking. We report two configurationslyfop-
timized compilation and pseudoadaptive compilation. kfilly
optimized methodology, the optimizing compiler precorapikll
methods Pseudoadaptiveompilation deterministically applies the
optimizing compiler to frequently executed methods chdsethe
adaptive compiler in previous (offline) runs. This methadpl
gives us a realistic mixture of optimized and unoptimizedesdout
does not expose the experiments to the natural variatioalfoica-
tion and time due to timer-based adaptive compilation.

Eeckhout et al. [12] show that including adaptive compdati
in performance measurements obscures application behatvie
thus report only application performance by running tweait®ns
of each benchmark. The first run uses one of the compiler con-
figurations from above, and then turns off compilation. Befthe
second iteration, a whole heap collection flushes comphgats
from the heap.

Jikes RVM compiler aggressively inlines methods. This@poli
is a doubled-edged sword. On the positive side, it providése
context to differentiate call sites. If context is unneeggsi.e., all
calls to this allocation have very similar lifetime statst it takes
longer to determine lifetimes for each individual inlinégeghan it
will if one site does all the allocation. Previous work on @laiL
suggest this context is useful [4, 8], whereas work on Jawadat
may not always be necessary [7].

3.2.3 Benchmarks, Architecture, and Measurements

3%, and at worst 6%, for sample periods of 256 and 512 bytes. We evaluate our techniques using the SPEC JVM benchmarks and
Even sampling every object adds an overhead of only on agerag pseudojbb, a variant of SPEC JBB2000 [20, 21] that executes a
8% to 9%, but the worst case rises to 18%. We then compare thefixed number of transactions to perform comparisons undeced fi

accuracy of sampling for collecting lifetime statistics fample
periods of between 32 and 4K bytes compared with sampling eve
object. We find that modest sample rates are sufficient taratady
predict nursery survival rates.

3.2 Methodology

We use the system and methodology described here for alethe r
sults in this paper.

3.2.1 Collector

We implement our technique in MMTk, a memory management
toolkit in Jikes RVM version 2.3.0.1 (formerly known as Ja#o0).
MMTk implements a number of collectors [5, 6]. We use a well
performing [5] 4 MBboundedbump-pointer nursery and a mark-
sweep mature generatioBénMS. However, our technique is com-

garbage collection load. We perform all of our experimentsao
3.2 GHz Intel Pentium 4 with hyper-threading enabled, an 8KB
way set associative L1 data cache, a l@ps L1 instruction trace
cache, a 512KB unified 8-way set associative L2 on-chip cache
and 1GB of main memory, running Linux 2.6.0.

We explore the time-space trade-off by executing each progr
on five heap sizes, ranging from the smallest one possiblthéor
execution of the program to three times that size. We exdoute
ing runs five times in each configuration and choose the best ex
ecution time (i.e., the one least disturbed by other effecthe
system). We perform separate statistics gathering rurnisatica-
mulate overall and individual collection statistics. Wergmute and
report statistics such as the number of collections, thebaurof
samples, the number of surviving samples, bytes allocatttden
collections, and bytes copied per collection.
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Figure 3: Sampling Overhead for Optimizing Compilation
3.3 Lifetime Sampling Overhead slightly lower with the optimizing compiler. This mutatoverhead
This section presents sampling time and space overheawsn s includes the additional instructions required to sample atso in-
Figure 2 with the pseudoadaptive methodology and in Figuvit8 cludes the effects of data and instruction locality, whickgpmably
fully optimized application code. The figures normalize pingy account for the tiny performance improvements. The ovetliea

against no sampling for a range of heap sizes using the geomet Still low on average (4% to 5%) for 64 bytes.
mean of our benchmarks. Error bars show show the variatmns f ~ For sample rates of 256 and 512, total time overhead ranges fr

sampling every 512, 256, and 64 bytes, as well as all objdtts. 6% to less than -1%. The average rate is between 1% and 3%s and i
direct overhead of sampling has two componentsstitial over- slightly higher using the optimizing compiler. The averaggect
head of a four byte site identifier and themputationaloverhead ~ Size is 32 bytes which includes Jikes RVM's 8 byte header.[10]
of periodically executinganpl e() (Figure 1(b), lines 10-25). Sampling every 64 bytes thus samples approximately eveoy tw

Since lifetime sampling adds a four byte site identifier torea ~ Objects. When sampling every 64 bytes or all objects, owethie
sampled object, it increases space requirements by at gt 0 9row substantially, up to 18% worst case, but 7% to 9% on geera
for a 512 byte sample rate, and 1.6% for 256. The impact of this e . .
spatial overhead on garbage collection time is subtle, asrstin 3'4 L!fetlme Sampllng _Accuracy ]

Figures 2(a) and 3(a). One would assume that the dominant cos This section evaluates the error introduced by samplingweoen-

would always be the additional work associated with coiferthe puting nursery survival rates. For each allocation sitepnagram,
nursery more frequently, but more subtle effects of peigrisol- we establish the actual survival rate (the number of surgib-
lection trigger points can dominate. Changing when a cttiac ~ jects over the total number of objects allocated), and tieisal
occurs can have cascading positive and negative effectsoomop rate predicted with sampling. Depending on the particutana-
tion results and locality. For example, if the program is b graphics of the subset of objects at that site which were Eamp
allocate some medium lifetime objects, an earlier coltectivoids the survival rate can be overestimated or underestimated.
copying them. Any change in the amount of allocation resnults We use asurvival thresholdo classify sites as either short-lived
these effects [7]. Only when every allocation is sampledhésav- or long-lived. For example, one might classify all siteshaatsur-
erage collection time overhead significant (5% to 10%). &g 2  Vival rate higher than 80% as long-lived, and all others astsh
and 512 byte sample rates the average collection overheglis lived. We then measure sampling accuracy in termsitefmispre-
gible and is dominated by perturbations, which can prodyctou diction. At each site, we determine for each sample rate whether
15% degradation and 10% improvement. the sampled survival ratevould cause the site to be classified dif-

The mutator time overheads are very reasonable. They a/erag ferently from the site’sactual survival rate We then quantify this
between 0.5% and 2% of mutator time for sample rates of 256 and Misprediction by summing for a given survival threshold tie
512. Figures 2(b) and 3(b) show mutator time overhead anjd 2(c jects and bytes allocated at mispredicted sites. We repisapito-
and 3(c) show the total time overhead. The error bars show the cess for a range of survival thresholds from O to 1.
worst case overheads and a few tiny improvements. For sagnpli ~ Figure 4 plots site mispredictions fd202_jess and_213_javac,

at 256 and 512 bytes these range from -0.5% to 3.5%, and areWhich are representative and diverse. The x-axis variesutheval
threshold and the y-axis plots the level of mispredictiargibsites
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Figure 4: Site Mispredictions as a Function of Survival Threshold and Sample Rate

that are mispredicted at a given survival threshold. Canrsidsite same curve as (a), but with a considerable spike just befer2G%
with anactual survival rate of 20% and jaredictedsurvival rate of survival threshold. Note that only the two coarsest samgiiesrex-
80%. For survival thresholds between 0% and 20% the sitedvoul perience this spike. This spike reflects a site that allecktmge
becorrectlyclassified as ‘long lived’ (both predicted and actual sur- objects with a survival rate a little under 20%.

vival rates are greater than the threshold). However, fastiolds Figure 4(c) shows site misprediction f&13_javac accounts for
between 20% and 80% it would lxecorrectly classified as ‘long nearly ten times as many objects (around 20% of all allonajio
lived’ (the predicted survival rate is greater than the shéd, but The level of misprediction in213_javac is almost the same for all
the actual survival rate is not). For thresholds above 80&oitld sample rates greater than 32, suggesting that the mistgddiites
be correctly classified as ‘short lived’ (both predicted and actual are predominately allocating objects64 bytes in size. The flat
survival rates are lower than the threshold). All objectd bytes curve illustrates a 20% misprediction rate between suktirash-
allocated at this site would be included in all points on tite mis- olds of 20% to 90%. Figure 4(d) shows that as a percentage of
prediction curve between the 20% and 80% survival threshald bytes, mispredictions are much lower, only around 6%. Mispr
site that was perfectly predicted would never contributthtosite dicted sites thus tend to allocate very small objec®l13_javac
misprediction curve. The figures plot site mispredictiorighwe- has a sensitive spot at around 75% where the very coarseptesam
spect to objects (Figure 4(a) & (c)), and bytes (Figure 4(k)d® rates see substantial degradation. This result suggeistsaa sites
of allocation associated with each mispredicted site. kanmgple, allocating large objects with around 75% survival rate.
sampling is less accurate for sites that have short-livgebtd(sur- Overall, sample rates between 128 and 1024 bytes have high ac
vival rates between 5% and 15%) on both programs, compatéd wi  curacy, with typical site misprediction rates in bytes riaggrom
predicting objects with long lifetimes (rates above 60%). nearly zero to around 6%. For these benchmarks with few long-
The figures include one line for each sample rate from 32 bytes lived objects, their behavior follow02_jess; i.e., mispredictions
through to 4KB. Figure 4(a) shows that the level of mispredicin are highest at the lowest thresholds.

_202_jess is very low (< 2%), even at coarse sample rates. As the . .

threshold grows, mispredictions become even less commbis T 4. Dynamic Pretenuring

trend reflects that202_jess has mostly low survival sites. Fig-  This section describes an example use of object sampling: dy
ure 4(b) measures site mispredictions in bytes and has &lm®s  namic pretenuring. Pretenuring seeks to reduce the loaden t



nursery collector by allocating long-lived objects ditgdh to the
mature space. Our dynamic pretenuring system consistseof th
following steps: (1) determining which allocation siteguce
long-lived objects; (2) redirecting the allocation siteedily into

the old space; and (3) backsampling to detect allocatienpsiase
changes in a timely manner. The policy components use the fol
lowing thresholds.

Minimum Samples : The minimum number of samples required
from an allocation site during an allocation phase for the si
to be considered for pretenuring.

Pretenuring Threshold : The survival rate above which a site is
pretenured.

Backsampling Policy : The backsampling functions include con-
stant €b9, linear (bs), and exponentialgps.

Backsampling Shift : The backsampling trigger as a function of
the number of objects used to make the pretenuring decision.

Decay Shift : The amount by which mature statistics should be
decayed.

We now describe these components in more detail.

4.1 Pretenuring Statistics and Policies

We compute aggregate and transient lifetime statisticgrigenur-
ing. As Section 3 describes, the sampler increments a cofarte
the allocation site of every sampled object. During a nyrsei-
lection, the collector increments a site counter for anyisurg
sampled objects allocated from each site. At the end of eenyrs
collection, we compute survival rates for this collectitnaiisien)
and aggregate statistics. We only use one collection ploaseah-
sient in our experiments. This separation focuses on thtesethat
changed in the last allocation phase (those with non-zareigent
entries). For a site with sufficient samples and survivas,ray-
namic pretenuring starts to allocate from the site into tdespace
after the first garbage collection.

Pretenuring polices can use either transient or aggretgtis-s
tics. To react quickly to phase changes, we use transieti$-sta
tics to begin pretenuring any site with a survival rate erasg a
thresholdts. This policy is very aggressive and introduces some
errors but quickly captures newly allocating sites prodgdong-
lived objects.

4.2 Dynamic Allocation Targets

In order to act on pretenuring decisions, we add a dynamiddes
the allocation sequence (see Figure 5). It uses only a twnums
tions, an array lookup (line 12)nd a conditional branch (line 3).
This implementation is simple and easily generalizes. Asreu
sults section shows, when the optimizing compiler inlifesentire
allocation sequence and then optimizes it in context, tleztmad
of this additional test is on average 1% to 2%.

Another approach would be to backpatch the allocationuastr
tions, which completely removes allocation time overheatle
originally implemented this approach, but later concludeat it
was a premature optimization. The backpatcher was compigx a
extremely brittle as it had to parse and manipulate indoocte-
guences generated by an aggressive optimizing compildrtren
nature of those sequences was different between platfarchsid-
ject to change as the code in the allocation sequence andmie c
piler evolved. We ultimately choose this simpler approacdbesit
is very robust and although the overhead is not zero, it ig hoav.

1Our implementation uses a special instruction that avtielsitray
bounds check.

1 ...
2 case NURSERY_SPACE
3 region = nursery. alloc(isScal ar, bytes);
4 br eak;
5 .
(a) Original allocation
1 ...
2 case NURSERY_SPACE
3 if (Dynam cPretenure.nurseryAlloc(site))
4 region = nursery. all oc(isScal ar, bytes, site);
5 el se
6 region = matureAl |l oc(isScal ar, bytes, site);
7 br eak;
8 .
9
10 public final static boolean nurseryAlloc(int site)

throws VM Pragnal nline {
12 return pretenureTable[site] >= 0;
13 }

(b) Allocation with Dynamic Test
Figure 5: Dynamic Test Added to the Allocation Sequence

4.3 Backsampling

Once the system decides to pretenure a site, allocatingjists
into the mature space, the sampler can no longer computsitiat
nursery survival rate. If the decision were wrong or the iajtibn
behavior changed, the system would never know. To avoid this
situation, we usdacksampling Backsampling periodically allo-
cates pretenured sites back in the nursery for one allotatiase,
thereby providing an opportunity to reassess the sitelg\alrate.

We experiment with different policies that vary the freqagnf
backsampling, based on the backsampled transient andstotal
vival rates. We implement backsampling by initializing site’s
mature countetto the negative of thbacksampling targetwhich
is the total number of allocations used in making the preiagu
decision. Each time an object is allocated into the matuseesgghe
mature counter is incremented, and when it reaches zergajtthe
allocates into the nursery for one allocation phase. If atriext
collection the survival rate is no longer high enough, thstey
reverses the pretenuring decision. Otherwise, the sysgrforces
the pretenuring decision by changing the backsamplingetaag-
cording to one of the following heuristics:

e The constant heuristic (cbs) leaves the backsamplingttarge
as the number of allocations used to make the original deci-
sion ().

e The linear heuristic (Ibs) makes it harder to backsample the
site by initializing the backsampling interval to a mulépl
(f > 1) of nwhere f grows linearly with each consecutive
agreeing decision.

e The exponential (ebs) heuristi€,grows exponentially as a
power of 2.

The constant heuristic backsamples the most frequengyliribar
less than constant, and the exponential backsamples thieflea
quently. Backsampling is a conservative mechanism. ltgeslthe
effectiveness of good choices, but protects the system fram-
pling errors and changes in allocation lifetime phase biehav

5. Dynamic Pretenuring Results

This section evaluates dynamic pretenuring. We first disitapo-
tential on our benchmarks and find two programs that mighefieen



from pretenuring. We then present the overheads due to tiregeh
in the allocation sequence (see Figure 5), and the combmafi
this together with sampling overheads. We show that thédoea-
head is on average 0 to 4%.

Next, we evaluate the accuracy and coverage of the pretenuri
decisions, some decisions are accurate, but coverage iis Y\
miss pretenuring opportunities due to the warm-up and lzewks
pling periods or lack of allocation site lifetime homogegeiWe
explored the parameter space for pretenuring to find goofigten
rations and report the ones with the best performancefi8_javac.
Table 1 shows these configurations. One thing that we did
vary is the use of transient or aggregate statistics, thesdts al-
ways use transient statistics. Aggregate are more coriservand
would probably reduce some errors.

We report total time, garbage collection time, and mutdtoet
results for dynamic pretenuring for these configurations. Show
that dynamic pretenuring improves one program by up to 9%, an
degrades all the others. Reasonable configurations caadieger-
formance by up to 16%, and poor ones by even more.

not

5.1 Potential of Pretenuring

Table 2 shows key characteristics of our benchmarks usiag-ps
doadaptive compilation and an infinite heap with a 4MB nwser
Thealloc column in Table 2 indicates the total number of megabytes
allocated. The second column lists the ratio of total alioceto the
minimum heap size (the smallest heap that the benchmarkucan r
in) for the GenMS collector in MMTk and thus quantifies garbag
collection load. We order the table by the s srvratio, which
indicates the percentage of objects that survive a nursdigction.
This percentage indicates the potential for dynamic pretag to
eliminate unnecessary copying.

Only three of these programs are likely to benefit from pnaten
ing, pseudojbb, _213_javac, and 209_db. In particular with a
4MB nurserypseudojbb and_213_javac perform 50 and 53 nurs-
ery collections (respectively), where@09_db performs 20. How-
ever, closer examination aR09_db and pseudojbb show pre-
tenuring is unlikely to improve them. lpseudojbb, only a few al-
location sites produce the majority of long-lived objedist these
same sites produce many short lived objects as well. Thaesgth
sites never produce survival rates high enough to benefit fne-
tenuring without more calling context than we examine hdre.
_209_db, all the long-lived objects are allocated in the first 8MB of
allocation. Dynamic pretenuring misses these opporesitihile
it is warming up.

5.2 Pretenuring Overheads

Figure 6 reports the overhead for the dynamic test that ieddd
to the allocation sequence. Since we are measuring overtiead
test is set to dynamically resolve to false. It shows thatrtire
time overhead of the dynamic test in Figure 5 is around 1%én th
fully optimized case and in the noise in the adaptive casea In
non-optimized setting the overhead of the extra memory et
conditional will be swamped by other inefficiencies. The rafx
optimized and non-optimized code in the adaptive case hiues
small overhead in the optimized code.

Figures 7 and 8 reports the overhead for sampling and the dy-

namic allocation test. We measure this by running dynamée pr
tenuring with a configuration which will not actually preter by
setting the pretenuring threshold above 100%. Figure 7 thees
pseudoadaptive methodology, and Figure 8 the fully optahiap-
plication code. Again, all the results exclude the compiiself.
Using the optimizing compiler on the adaptive pretenuritigca-

tion sequence lowers its average overhead by 2% to 3%, but in-

OLPT parameter values
parameter 80 LBS 80 EBS 85LBS
minimum samples 8 4 10
pretenuring threshold 80% 80% 85%
backsampling policy| linear  exponential linear
backsampling shift 1 4 1
decay shift 0 0 1

Table 1: Configuration Settings for Base Results

alloc [ alloc: | % nrs

Benchmark|| (MB) min srv
pseudojbb 210 4.1 41
213 javac 172 6:1 28
_209.db 74 4:1 11

227 _mtrt 117 6:1 6
_228_jack 225| 181 3
_205_raytrace 110 6:1 3
202_jess 261 | 18:1 1
_201_compress 105 7:1 0

Table 2: Benchmark Characteristics

Optimizing
Pseudoadaptive

Normalized Mutator Time

25 3
Heap size relative to minimum heap size

Figure 6: Dynamic Allocation Test Overhead with the Optimiz
ing Compiler: Geometric Mean of Total Execution Time

creases the variation from a range of 8% to -10%, to a range of
12% to -15%. The compilation differences again reflect tHathg
optimized setting exposes any overhead more.

5.3 Accuracy and Coverage

We now quantify theaccuracyand coverageof pretenuring deci-
sions in bytes of allocation. Accuracy measures how manhef t
objects chosen for pretenuring were actually long-livedveZage
measures how many of the long-lived objects were actuathgeh
for pretenuring. Accuracy can be high while missing oppaittes
(low coverage).

Figure 9(a) shows accuracy, and 9(b) shows coverage for each
benchmark and a range of pretenuring thresholds. We assame a
infinite mature space, thus the nursery is always 4MB. Thidige
uration therefore examines accuracy without cascadingéehealty
of mistakes. The other parameters values are the same asS0 LB
from Table 1.

In Figure 9(a) the height of the bars represents the totalwelof
pretenured objects. The solid portion shows long-livectotsj (i.e.
correctly pretenured), and the striped portion indicates short lived
objects (i.e.incorrectly pretenured). Pretenuring accuracy is 80%
or better for_213_javac, which is the only benchmark we speed up.
The error rate for209_db is 34%, and even worse f@seudojbb
at just under 50%. We expect errors to grow with a lower troksh
because while decisions are per-allocation site, here wasune
individual objects. For example, if a site has an 80% sutvizge
and is pretenured, the 20% of objects which are short livetait
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Figure 9: Accuracy (a) and Coverage (b) of Pretenuring in Pecent of Total Volume

site will be incorrectly pretenured. These results baraiywsthis
trend, thus the errors are most likely due to sampling erfiars
call that we used a 256 byte sample rate), and from heterogsne
allocation lifetime phases. Error rates are higher 227_mtrt,
_228_jack, _205_raytrace, and_202 _jess, but the pretenuring vol-

ume is extremely low.

long-lived objects that aneot pretenured under different pretenur-

threshold, although onlpseudojbb, _213_javac, -209_db, and
_227_mtrt show any sensitivity to the threshold. The proximity of
these bars to the ‘None’ bar shows dramatic under-preteguit
best we see 43% coverage (d13_javac with 75% pretenuring
threshold), but in most cases the coverage is much loweisdrea

for under-pretenuring include objects missed during ‘warphof
Figure 9(b) shows coverage; each bar represents the voltime othe sampling mechanism, objects missed due to the samgle rat

and lack of homogeneity at allocation sites (long-livedeats al-

ing regimes. The first bar, ‘None’, shows the volume when no located from predominantly short-lived sites). Noticeslézan 5%

pretenuring is performed, and therefore reflects the tathlme

of long-lived objects. The remaining bars vary the pretemur

of allocation is long lived for the remaining programs.
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Figure 10: Garbage Collection Time

5.4 Pretenuring Results

We examined a range of these thresholds and policies. Faoethe
maining experiments, we use the values in Table 1 which gdiper
but not uniformly, give the best results in our experiments.

The goal of pretenuring is to reduce garbage collection.|&agt
ure 10 shows that we are only able to systematically redudzge
collection load in.213_javac, where improvements are as much as
a factor of 2.5. We see some modest improvement227_mtrt.
_209_db and_228_jack are not significantly changed by pretenur-
ing, but the remaining benchmarks all see degradationsrivage
collector performance. In a small heap, erroneously pteezhob-
jects needlessly occupy the mature space, reducing thedbdun
nursery size and triggering expensive full-heap collexio The
pretenuring configurations also show sensitivity to heap;s85
LBS is particularly bad in a small heap, but matches the best p
formance in large heaps.

The improvements in GC time fa227_mtrt and _213_javac
translate to total time in Figure 12213 _javac improves by around
3% on average and by as much as 9% in a tight he2gd¥ _mtrtim-
proves by around 2% but degrades significantly in a tight hadip
other benchmarks show degradations in total time. Integigt

_213_javac shows a greater degradation in mutator time, presum-

ably due locality degradations caused by the disruptionlota
tion order that follows from a relatively high pretenurirage.

6. Conclusion

This paper introduces a low-overhead object sampling igolen
We show that sampling can accurately predict allocatios ir-
vival rates. To use these predictions, we introduce a dynang-

tenuring scheme. Since few of our benchmark programs casfiben

from dynamic pretenuring, attaining performance improgata on

even these is very challenging. Although we are the first tavsh
significant performance improvements on any of the SPEC8/m9
benchmarks using dynamic pretenuring [14, 15], we also sigw
nificant degradations. The question therefore remainswhéther
there is a pretenuringolicy or other optimization policies that can
benefit from lifetime sampling.
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