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Abstract
Managed languages improve programmer productivity with

1. Introduction
Managed languagesich as Java, C#, Python, and Ruby pro-

type safety and garbage collection, which eliminate mem- vide garbage collection and type safety, which eliminaje (1

ory errors such as dangling pointers, double frees, anébuff

memory corruption errors such as dangling pointers, dou-

overflows. However, because garbage collection uses reachble frees, and buffer overflows and (2) memory leaks due

ability to over-approximate live objects, programs mai} sti
leakmemory if programmers forget to eliminate the last ref-
erence to an object that will not be used again. Leaks slow
programs by increasing collector workload and frequency.
Growing leaks eventually crash programs.

This paper introducekeak pruning which keeps pro-
grams running by predicting and reclaiming leaked objects

to unreachable objects. The increasing use of managed lan-
guages is due in part to these features. Unfortunately, pro-
grams may still leak objects that are reachable, but will not
be used again, because garbage collection resehability

to over-approximatéveness A reachable object is not live

if the program never uses it again. Computing reachability
is relatively straightforward; collectors perform a triaine

at run time. It predicts dead objects and reclaims them basedclosure over the object graph from programots (globals,
on observing data structure usage patterns. Leak pruningstacks, and registers). Liveness is much harder to determin

preserves semantibgcause it waits for heap exhaustion be-
fore reclaiming objects anploisonsreferences to objects it

and is in general undecidable.
Memory leaks hurt performance by consuming unneces-

reclaims. If the program later tries to access a poisoned ref sary memory resources, and they increase garbage catlectio
erence, the virtual machine (VM) throws an error. We show frequency and workload. Leaks occur frequently in managed
leak pruning has low overhead in a Java VM and evaluate it languages and a number of tools help programmers diagnose
on 10 leaking programs. Leak pruning does not help two pro- them [7, 19, 22, 27, 30, 32]. Leaks are hard to reproduce,
grams, executes five substantial programs 1.6-81X longer,find, and fix because they have no immediate symptoms [16].
and executes three programs, including a leak in Eclipse, fo For examplewhena leaking Java program exhausts mem-
at least 24 hours. In the worst case, leak pruning deferk fata ory depends on the heap size, choice of garbage collector,

errors. In the best case, it keeps leaky programs runnirg wit
preserved semantics and consistent throughput.

Categories and Subject DescriptordD.3.4 [Programming
Languagef Processors—Debuggers, Memory management,
Run-time environments

General Terms Reliability, Performance, Experimentation
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and nondeterministic factors not directly related to thakle
Despite extensive in-house testing, leaks exist in pradnct
software because they are input and environment sensitive.
This paper introducelgak pruning which preserves se-
mantics usesbounded resourcesnd runs leaky programs
longer than before or, in some cases, indefinitely. Leak-prun
ing defers out-of-memory errors by predicting which obgect
are dead and reclaiming them when the program is about to
run out of memory. As long as the program does not attempt
to access reclaimed objects, it may run indefinitely. If the
program attempts to access a reference to reclaimed mem-
ory, the leak pruning-enabled VM intercepts the access and
throws an error. This behavior preserves semantics simce th
program already ran out of memory. In the worst case, leak
pruning only defers out-of-memory errors. In the best case,
it enables leaky programs with unbounded reachable mem-
ory to run indefinitely in bounded memory. In this case, leak
pruning provides the illusion that the garbage collector is
liveness-based rather than reachability-based.



Prior work tolerates leaks by identifyirggaleobjects not
used in a while and offloading them to disk [8, 9, 15, 35].
These systems tolerate mispredictions by retrieving dbjec
from disk. Staleness alone is too imprecise for leak prusing
more aggressive approach, as we show experimentally in
Section 6.1.

Leak pruning uses a new, dynamic prediction algorithm
that considers both staleness and data structure usage. Our
algorithm piggybacks on the garbage collector to identify
stale data structuresi.e., stale subgraphs in the heap. It 0 L L A EL AL |
records the source and target classes of the first reference 0 500 1000 1500 2000
into a stale subgraph and the size of the subgraph. When the Iteration
VM runs out of memory, leak pruningoisonsreferences Figure 1. Reachable heap memory for the EclipseDiff
to instances of the data structure type consuming the mostieak: an unmodified VM running the leak and a manually

bytes. Poisoning invalidates and specially marks ref@enc  fixed version, and a VM with leak pruning running the leak.
The collector then reclaims objects that were only unreach-

able from these references. If the program subsequently ac- i o
cesses a poisoned reference, the VM throws an error. _Even well-tested and widely used applications can con-
We implement leak pruning in a high-performance Java tain leaks. Consider th_e exampl_e in Figure 1,_V\(h|c_h shows
VM and show that it adds on average 3-5% to execution (€ memory consumption over time measurederations
time due to its software read barrier (instrumentation at (fixeéd amounts of program work for a leakin Eclipse, called
every read [6]). Although our implementation is for Java, th EclipseDiff (Section 6 discusses this leak in detail). The graph
approach is applicable to other garbage-collected larggiag ShOWs reachable memory at the end of each full-heap col-
We evaluate ten leaking programs, including two leaks in lection with a 200 MB maximum heap size. The solid I|n_e
Eclipse. For two leaks, leak pruning provides no help. It shows that the_leak causes reachable memory to grow with-
executes two programs 1.6-4.7X longer and three leaks 21-0ut bound until the VM throws an out-of-memory error.
81X longer. The remaining three leaky programs execute for 1€ dashed line shows reachable memory if we modify the
at least 24 hours, when we terminate them. In all cases butSOUrce code to fix the leak, resulting in fairly constant heac
one, when leak pruning cannot defer an out-of-memory error 21 memory. The dotted line shows reachable memory with
indefinitely, the program’s working set is growing and thus €@k pruning. When the program is about to run out of mem-
the objects ardive. Other leak tolerance approaches that OTY: leak pruning reclaims objects that it predicts are dead
preserve semantics cannot tolerate live leaks either. It cannot reclaim all dead objects promptly because objects
One objection to error tolerance is that it may encourage "€€d time to become stale. Section 6 shows that leak prun-
poor programming practices. Since modern software is neveri"d K€epsEclipseDiff from running out of memory for over
bug free, error tolerance in general should be viewed as®0,000 iterations (24 hours).

a temporary measure that gives users a better experienceGarbage collection and memory exhaustionGarbage
buys developers time to fix bugs, and provides protection gjjection (GC) reclaims only unreachable memdgach-
against some attacks. Leak pruning may not be appropriateapility approximatediveness—an object is live if the pro-
for all programs, e.g., programs that catch out-of-memory gram will use it again. The VM invokes the collector each
errors to a_lbort speculative computation: and it should be a{jme the program fills the heap. Bacing! collector per-
configuration parameter at deployment time. . forms a transitive closure over the heap starting from the
The contributions of this paper are (1) leak pruning, & root5 which include stack pointers, global variables, and
novel semantics-preserving approach for reclaiming mem- yeferences in registers. The collector retains all travesit
ory instead of exhausting memory, (2) an algorithm for accu- yeachable objects and reclaims all memory used by unreach-
rately identifying likely dead objects, and (3) an evaloati  gpje objects. The next collection occurs after the sum sf thi
of leak pruning’s effectiveness on ten leaks: five benchmark eachable memory plus new allocation exceeds the available
and five real applications. Leak pruning’s preservatioreef s heap memory.
r_nantics_and low overhead make it a compelling configura-  \wnenan application exceeds the available heap memory
tion choice for many deployed systems. and triggers a collection or exhausts memory, is not well
defined because of collector and VM implementation de-

2. Motivation, Background, and Semantics tails, including object header sizes, collector meta-data
choice of collector algorithm. Increasing the maximum heap

—_

Leak
1 — — — - Manually fixed leak
l e With leak pruning

Reachable memory (MB)

This section gives motivation, background, and semantics
f_or leak pruning. Sec_t'on 3 Over\_/'eWS the approach a_nd SeC'1Our discussion and implementation use a tracing colle®eference
tion 4 presents algorithmic and implementation details. counting must also trace to collect cycles.
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Figure 2. Statediagram for leak pruning.

size helps some leaky programs. However, many embed-a regulafry { ... } catch (Exception ex) { ... } will not catch

ded systems have hard upper bounds on maximum memoryan OutOfMemoryError Since it is on a different branch of
Even with virtual memory and swap space on stock hard- the Throwable class hierarchy. Some applications, such as
ware, physical memory sizes effectively limit the heap’s up Eclipse, catch all errors in an outer loop and allow other
per bound because exceeding this bound causes the collectasomponents to proceed, but the Eclipse leaks we evaluate
to thrash since its working set is the entire heap [18, 37]. cannot perform useful work after they catch out-of-memory

B ) B ) errors. Deciding whether to reclaim memory or throw an out-
Reachability versus liveness.Reachability often approxi- of-memory error when there is a correspondiagh block,

mates liveness well. However, developers may neglect to re-gn4,1d be an option set by users or developers. Our imple-

move the last _reference to an object or data structure_ thatmentation currently always reclaims memory when the pro-
the program will not use again. Dead-but-reachable obJectsgram exhausts memory.

areleaks which (1) slow the program down as the heap fills = | ¢4k pruning may affect object finalizers, which are cus-

by increasing the frequency and workload of garbage collec- 1o m methods that help clean up non-memory resources when
tion and (2) eventually cause the program to throw an out- 4 gpiect is collected, e.g., to close a file associated with a

of-memory error by exhausting memory resources. object. Pruning causes objects to be collected earlier than
Leak pruning seeks to close the gap between liveness,ithout pruning, so calling finalizers could change seman-
and reachability by providing functionality and perfornsan icq A strict leak pruning implementation would disable fi-
consistent with GC thatis based on liveness instead of reach 5jizers for the rest of the program after it started prun-
ability. When a program starts to run out of memory, leak g \yhich does not technically violate the Java specifica-

pruning observes program execution to predict which reach-jon, since there is no timeliness guarantee for finalizets. O
able objects are dead and therefore will not be used againjmpjementation currently continues to call finalizers mfte

When the program actually runs out of memory, leak prun- 5 ning starts, which would likely be the option selected by
ing poisonsreferences to these objects and reclaims them. geyelopers and users in order to avoid exhausting other re-
If the application subsequently attempts to read a poisonedgq,rces while tolerating memory leaks.

reference, the VM throws an error, giving the original out-
of-memory error as the cause. Since the programexas 3 | egk Pruning Overview

ecuted beyon@n out-of-memory error, throwing an error ] ) ) )
does not violate semantics. Leak pruning’s goal is to defer Figure 2 shows a high-level state diagram for leak pruning.

out-of-memory errors indefinitely by eliminating space and State changes are based on how close the program is to

time overheads due to leaks. running out of memory. Leak pruning performs most of its
work during full-heap garbage collections. It changesestat
Exception and collection semantics.The Java VM speci-  (or stays in the same state) depending on how full the heap

fication says arOutOfMemoryError may be thrown only at s at theendof every full-heap collection.
program points responsible for allocating resources, e.g.
new expressions or expressions that may trigger class ini-
tialization [20]. In general, programs will access pruned r  Initially, leak pruning iSNACTIVE and does not observe pro-
erences at other points. However, the specification permitsgram behavior. This state avoids the overhead of leak prun-
InternalError to be thrown asynchronously at any program ing’'s analysis when the program is not running out of mem-
point. Our implementation thus throws BiernalError if the ory. Subsequent analysis focuses on the most recent behav-
program accesses a pruned reference. ior. Leak pruning remain8NACTIVE until reachable mem-
When the VM runs out of memory, leak pruning records ory exceeds “expected memory use,” a configurable thresh-
and defers the error. However, if the application can catch old. We use a 50% default threshold since users typically ex-
and handle the out-of-memory error, then deferring the er- ecute programs in heaps at least twice as large as maximum
ror violates semantics. Catching out-of-memory errorgiis u  reachable memory. Leak pruning is not very sensitive to the
common since these errors are not easy to remedy. In Javaexact value of this threshold. If set too low, leak pruninggma

3.1 Triggering Leak Pruning



incur some overhead when the program is not leaking; if set roots
too high, it will have less time to observe program behavior
before selecting memory to reclaim.

When memory usage crosses this threshold, leak prun-
ing enters theOBSERVE state and then analyzes program
reference patterns to choose pruning candidates. Once leak
pruning enters th@BSERVE state, it never returns t10IAC-
TIVE because it permanently considers the application to be
in an unexpected state. Leak pruning moves f@BSERVE
to SELECT when the program has nearly run out of memory,
which is configurable and 90% by default. T$SELECT state
chooses references to prune, based on information callecte Figure 3. Example heap after the SELECT state. Refer-
during theOBSERVE state. ences selected for pruning are marked wih

In principle, we would like to move to theRUNE state
only when the program has completely exhausted mem- roots
ory. However, executing until reachable objects fill avalida ]
memory can be expensive. Because reachable memory usu-
ally grows more slowly than the allocation rate, allocasion e
trigger more and more collections as memory fills the heap. al e e
Thus, we support two options: (1) moving B®RUNE when e
the heap is still 100% full after a collection and the VM e
is about to throw an out-of-memory error or (2) moving to
the PRUNE state after finishing a collection in tisELECT @ e e
state. In either case, after enterihbBUNE once, leak prun- °! @
ing always enter®RUNE on thenextcollection after enter-

ing SELECT, since the program has exhausted memory at Figure 4. Example heap at the end of GC in the PRUNE
least once. We believe (2) is more appealing since it avoids ¢tate. Poisoned references end in an asterisk (*).
the VM grinding to a halt before pruning can commence.

Option (2) does not generally violate program semantics be- ences and reclaims all objects reachable only from these ref

cause the VM has flexibility in how it reports memory us- N . ;
. . . . . erences as shown in Figure 4. The collector reclaims objects
age, as discussed in Section 2. Programmers should consider

M ., . . reachablenlyfrom pruned references since it does not trace
the “nearly full” threshold to be the maximum heap size and runed references. The subtree rootedids not reclaimed
“full” to be the extra headroom to perform GC efficiently. b :

We use (2) by default and also evaluate (1). because it is transitively reachable via objeict

The PRUNE statepoisonsselected references by invali- Leak pruning poisons a reference by setting its second-

dating them and not traversing the objects they reference.!oweSt'OrOIer bit (Section 4.3). Setting the referenceo

: . : is insufficient since that could change program semantics.
The collector then automatically reclaims objects thatever . X
If the program accesses a poisoned reference, the VM in-
reachable only from the pruned references. If the collector .
. : tercepts the access and throws an internal error whase
reclaims enough memory so that the heap is no longer nearly o
. : Cause() method returns the origin@utOfMemoryError that
full, leak pruning returns to th@BSERVE state. Otherwise, ! : .
: . o would have been thrown previoushhis behavior preserves
it returns toSELECT, identifying more references to prune. . . .
. semantics since the program previously ran out of memory
Figure 3 shows an example heap afELECT, when en- . L
. . . . when it entered th®RUNE state for the first time. To help
tering thePRUNE state. Each circle is a heap object. Each rogrammers, leak pruning optionally reports (1) an ost-of
object instance has a name based ortl#ss e.g.,bl, b2, brog ' P gop yrep

b3, andb4 are instances of clags The selection algorithm memory "warning” when the program first runs out of mem-

uses class to select references to prune (Section 4). The ﬁg_ory and (2) the data structures it prunes.

ure shows that objecta andel are directly reachable from . .
the program roots (registers, stacks, and statics), araf oth 4. _ Alg(_)”thm ahd Implemeﬁtatlon _ _
objects are transitively reachable. Suppose leak prurdng s This section describes our algorithm and implementation

lects three references to prune, labedexin the figure:b1 for predicting which references to prune, poisoning them,

— cl, b3 — 3, andb4 — c4. and detecting accesses to poisoned references. Leak grunin
o identifies references to data structures that are highly.dta

3.2 Reclaiming Reachable Memory prunes stale data structures based on the following aiteri

During a full-heap collection in theRUNE state, the collec- (1) no data structure instance was stale for a while and then
tor repeats its analysis, but this time poisons selectedt-ref used again, and (2) the data structures contain many bytes.



Our prediction algorithm has the following objectives: (1) thread. If the atomic update fails, the barrier simply conti
perfect accuracy, (2) high coverage, and (3) low time and ues, which is a valid serialization because another thraad h
space overhead. If prediction is not perfect, the prograln wi written a valid reference ta. £, and the current thread can
access a pruned object and will terminate. However, if the safely use. The barrier also cleaks staleCounter atomi-
prediction algorithm is not aggressive enough, it will not cally to avoid losing updates to other bits in the object leead
prune all the leaking objects. Of course, predicting linane (used for locking and hashing in many VMs). Since the bar-
perfectly in all cases is beyond reach. We have developed arrier condition is usually false, these atomic updates add un
algorithm with high coverage and accuracy that works well noticeable overhead.

N many cases. Any pred|ct|on algorithm preserves correct Edge table. TheOBSERVE state starts maintaining aolge

ness since leak pruning ensures accesses to reclaimed men)-

ory are intercepted (Section 2). tableto track the st_aleness of heap references based on type.
For a stale edge in the heagc — tgt, the table records

4.1 The OBSERVE State the Java class of the source and target objexrtsjss —

Tracking staleness. The OBSERVE state tracks each ob- Qloiass Each entry summarizes an equivalence relationsh.ip
ject's stalenessi.e., how long since the program last used over c_)bject_—to—object references: tyvo references arevequi
it. Our implementation maintains staleness using a thiee-b alent if their source and target objects each have the same

class. Each edge entsyCyass — tQtclass recordsbytesUsed

éfor use in theSELECT state) andnaxStaleUse, which iden-
tifies edge types that are stale for a long time, but not dead.
Leak pruning only prunes objects that are more stale than
their entry’smaxStaleUse value. We record imnmaxStaleUse

the all-time maximum value ofgt's stale counter when a
barrier accesses a referersre,ass — tgtass The read bar-
rier executes the following code as part of its out-of-lin&dc
path.

logarithmic stale countein each object’s header [7]. A value

k in an object’s stale counter means the program last used th
object approximatel2” collections ago. We maintain each
stale counter’s value by (1) incrementing object counters i
each collection and (2) inserting instrumentation thaaide
an object’s counter when the program uses it.

Every full-heap collectioni increments an object’s stale
counter if and only ifi evenly divide*, wherek is the cur-
rent value of the counter. In addition, the collector sets th
lowest bit of every object-to-objertferencewhich is avail-
able since objects are word aligned. Setting this bit allows if (b.staleCounter > 1) {

instrumentation to test quickly whether the target obgect’ edgeTable[a.class->b.class] .maxStaleUse =
stale counter has been reset since the last collection [8]. max (edgeTable[a.class->b.class] .maxStaleUse,
We modify the VM'’s just-in-time compiler to inser¢éad b.staleCounter) ;

barriers[6] at reference loads, e.¢.,= a.f, thatseb’s stale
counter to zero, as shown in the following pseudocode.
The update occurs only if the object’s stale counter is @tlea

b=a.f; // Application code 2, since a value of 1 is not very stale (stale only since the las
if (b & 0x1) { // Read barrier full-heap collection). Stale objects are used infrequest

// out-of-line cold path the edge table update occurs infrequently.

t = b; // Save ref

b &= ~0x1; // Clear lowest bit 4.2 TheSELECT State

a.f = b; [iff a.f == t] // Atomic A full-heap collection inSELECT choosesone edge type
) b.staleCounter = 0x0; // Atomic for pruning during a subsequent GC in tRRUNE state.

It divides the regular transitive closure, which marks all
reachable objects, into the following two phases.
If a reference’s lowest bit is set, the barrier clears thts bi
and also clears the referenced object’s stale counter. The
instrumentation is efficient because it takes no actiondf th
lowest bit of the referencea(f) is cleared. Since the VM
initializes the bit to zero for all newly allocated objedise
barrier condition is true at most once for each referenes aft
each full-heap collection. Since the barrier's body dods no
execute in the common case, we force the compiler to put it
out-of-linein a separate method.

The barrier updates the refereratemicallywith respect
to the read to avoid overwriting another thread’s write. The 2. Thestale transitive closurenarks objects live, starting
notation [iff a.f == t] indicates the store occurs if and with references in the candidate queue. These references
only if the reference slot has not been modified by another  point to stale rootsof data structures. The stale closure

1. Thein-use transitive closurstarts with the roots (reg-
isters, stacks, statics) and marks live objects, except
for when it encounters a stale reference whose target
object has a stale counter at least two greater than its
maxStaleUse value. (We conservatively use two greater,
instead of one, since the stale counters only approximate
the logarithm of staleness.) These referencexandgli-
datesfor pruning. Instead of processing them, we add
them to acandidate queue



roots

if (b & 0x2) { // Check if poisoned
InternalError err = new InternalError();
err.initCause(avertedOQutOfMemoryError) ;
throw err;

}

/* rest of read barrier cold path */

If the reference is poisoned, the barrier throwsl@arnal-
Error with the originalOutOfMemoryError attached.

45 Concurrency and Thread Safety

B=>C maxStaleUse =0  bytesUsed = 120 Our implementation supports multithreaded programs exe-
E=>C maxStaleUse =2  bytesUsed = 0 cuting on multiple processors. Above, we discussed how
atomic updates in the read barrier preserve thread satety. T
edge table is a global structure that can be updated by mul-
tiple threads in read barriers or during collection. We need
computes the bytes reachable from each stale root, i.e.,global synchronization on the edge table only when adding
the size of the stale data structure, and adds this value toa new edge type, which is rare, and we never delete an edge
bytesUsed for the stale root’s edge entry. table entry. When updating an entry’s data, our implemen-
tation should use fine-grained synchronization to proteet t
entry. However, our prototype implementation does not syn-
chronize these updates since we expect conflicts to be rare,
and edge selection is not sensitive to exact values/ef

sUsed andmaxStaleUse.

Example. Figure 5 shows the heap and an edge table for By default, the garbage collector is parallel [4]. It uses
Figures 3 and 4 durin§ELECT. Each object is annotated multiple collector threads to traverse all reachable dbjec
with the value of its stale counter. The in-use closure adds The implementation uses a shared pool from which threads
the references markethnd to the candidate queue, but it obtain local work queues to minimize synchronization and
does not ad#2 — c2 sincec2’s stale counter is less than 2. balance load. Because many objects have multiple refer-
It also does not addl — c4 since its stale counter would ences to them, the collector prevents more than one thread
need to be at least 4 (2 more than theStaleUse of 2 for E from processing an object with fine-grained synchronizatio
— C). The stale closure processes the objects reachable onlyn the object. We piggyback on these mechanisms to im-
from candidate references, which are shaded gray. Objectgplement the in-use and stale transitive closures. In tHe sta
c4, d7, andd8 are processed by the-use closuresince they  closure, a single thread processes all objects reachainte fr
are reachable from non-candidate referesices c4. If we a candidate edge. The stale closure is parallel since rfwultip
suppose each object is 20 bytes, thgtesUsed for B — C collector threads can process the closures of distincticand
is 120 bytes. This edge entry is selected for pruning since it dates simultaneously.

has the greatest value BftesUsed.

Figure5. Exampleheap during the SELECT state.

At the end of this process, leak pruning iterates over each
entry in the edge table, finding the entry with the greatest
bytesUsed value, and resets dijtesUsed values. The®RUNE

state then prunes data structures that match this edge type.

5. Performance of Leak Pruning

43 ThePRUNE State This section presents our performance evaluation methodol
The PRUNE state performs only the in-use closure, during ogy and shows that the overheads of leak pruning are low.
which it prunes all references corresponding to the sedecte
edge type and whose target objects have staleness valties th
are at least two more than the entryisxStaleUse. The col-
lector poisons each reference in the candidate set by gettin
its second-lowedbit, as well as its lowest bit. The collector
does not trace the reference’s target. Future collectieas s
the reference is poisoned and do not dereference it.

VM configurations. We implement leak pruning in Jikes
fvm 2.9.22 a high-performance Java-in-Java virtual ma-
chine [1, 2]. As of August 2008, Jikes RVM performs the
same as Sun Hotspot 1.5, and 15 to 20% worse than Hotspot
1.6, JRockit, and J9 1.9, all configured for high perfor-
mance® Our performance measurements are therefore rela-
tive to an excellent baseline. We have made our implementa-
4.4 |ntercepting Accesses to Pruned References tion publicly available on the Jikes RVM Research Arctive.

To intercept program accesses to pruned references, the Jlk_es RVM r_eco_mplles hotmeth_ods with mcreasm_gly_ag-
barrier also checks for poisoned references. The following gressive optimizations. Because timer-based sampling ide
check is performed at the beginning of the barrier’s cold 2nttp://www.jikesrvm.org

path: Shttp://jikesrvm.anu.edu.au/ dacapo/

4http://www.jikesrvm.org/Research+Archive
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Figure 6. Run-time overhead of leak pruning on two platforms.
tifies hot methods, compilation decisions are nondetegnini 2.4+ Base
tic. To achieve determinism in performance experiments, we 2.2, — — - Observe
usereplaycompilation [5, 14] to produce the same compila- 20 T Select

Normalized GC time

tion decisions on different runs. Replay executes two itera 1.8
tions. The first includes compilation. We report the second, 1.6
which executes only the application and is representafive o 1.4
steady-state application behavior. 1.2

Our experiments add leak pruning to a parallel, stop-the- 101t
world, generational mark-sweep collector in the Memory
Management Toolkit (MMTK) [4]. MMTKk supports a variety
of garbage collectors with most functionality residing in
shared code. Our implementation resides almost exclysive :
in this shared code, allowing leak pruning to support other (y-axis starts at 1.0).
collectors by specifying which space(s) contain objecds th
leak pruning should track. The bars show the overhead of exercising leak pruning:
even though these benchmarks do not leak memory, we
force leak pruning to be in th€ELECT state continuously.
However, we find that virtually all run-time overhead comes
from the overhead of read barriers; tracking staleness and
selecting references add negligible overhead. On average,
Platform. All experiments execute on a dual-core 3.2 GHz overhead is 5% on the Pentium 4 and 3% on the Core 2.
Pentium 4 system. Each processor has a 64-byte L1 and L2 Non-leaking programs do not need barriers as long as
cache line size, a 16-KB 8-way set associative L1 data cacheJeak pruning remains in theNACTIVE state. For simplic-

a 12-Kuops L1 instruction trace cache, and a 1-MB unified ity, our implementation uses all-the-time barriers, but@ p
8-way set associative L2 on-chip cache. Additionally, we duction implementation should trigger recompilation df al
measure read barrier overheads on a Core 2 Quad 2.4 GHmethods with read barriers only when leak pruning enters
system. Each core has a 64-byte L1 and L2 cache line sizethe OBSERVE state. With the increasing importance of con-
an 8-way 32-KB L1 data/instruction cache, and each pair of current software, future general-purpose hardware igylike
cores shares a 4-MB 16-way L2 on-chip cache. Both systemsto provide read barriers with no overhead, and Azul hard-
have 2 GB of main memory and run Linux 2.6.20.3. ware has them already [12].

Minimum heap size multiplier

| Figure 7. Normalized collection times across heap sizes

Benchmarks. We measure leak pruning’s overhead on
the DaCapo benchmarks version 2006-10-MR1, a fixed-
workload version of SPECjbb2000 callg@deudojbb, and
SPECjvm98 [5, 33, 34].

Application overhead. Leak pruning adds overhead be- Garbage collection overhead.Figure 7 plots the geomet-
cause it inserts read barriers into application code, frack ric mean of normalized GC time on the P4 (Core 2 times
staleness, and selects references to prune during garlage ¢ are similar) over all the benchmarks as a function of heap
lection. Using replay compilation, Figure 6 includes apgli sizes 1.5 to 5 times the minimum heap size in which each
tion and collection, but not compilation overheads. Eaah ba benchmark executes. The smaller the heap size, the more
is the median overhead of five trials. To control the mem- often the program exhausts memory and invokes the col-
ory size, we fix the heap at two times the minimum in which lector.Base is GC time on unmodified Jikes RVMDbserve
each benchmark can run. The two bars are overhead on thdorces leak pruning to be in tf@BSERVE state all the time,
Pentium 4 and Core 2, respectively. which involves maintaining each object’s staleness bits du



Leak (LOC)

Effect Reason

EclipesDiff (2.4M)
ListLeak (9)
SwapLeak (33)

Runs>200X longer Almost all reclaimed
Runs indefinitely All reclaimed
Runs indefinitely All reclaimed

EclipseCP (2.4M)
MySQL (75K)
SPECjbb2000 (34K)
JbbMod (34K)

Runs 81X longer  Almost all reclaimed
Runs 35X longer Most reclaimed
Runs 4.7X longer Some reclaimed
Runs 21X longer Most reclaimed
Some reclaimed

cause some or all of their heap growthive. In some cases,
memory is live because the programmer intentionally ac-
cesses leaked objects, e §PECjbb2000 processes all ob-
jectsin alistincluding those that the programmer intertded
remove. In other cases, the program inadvertently accesses
objects it no longer needs due to the data structure imple-
mentation. For example, whémySQL causes the size of one

of its hash tables to grow, it accesses all the elements to re-
hash them.

Mckoi (95K)
DualLeak (55)
Delaunay (1.9K)

Runs 1.6X longer
No help
No help

Other leak tolerance approaches that preserve semantics
also cannot tolerate live leaks since the memory is in use [8,
9, 15, 35]. Leak pruning and Melt [8] perform about the
same on all the leaks excefiibMod andEclipseCP, as de-
scribed below. However, while disk-based approaches fail
when they run out of disk space, leak pruning can run some
leaks indefinitely. Leak pruning and disk-based approaches
overheadSelectadds the rest of leak pruning’s functional- are complementary, and a combined approach could get the
ity without actually pruning references: performing thalest benefits of both. Here we evaluate the most challenging case
trace and selection of an edge type to prune. This configura-for leak pruning: identifying and pruning leaks withoutnipi
tion adds up to 9% more to GC time, for a total of 14%. any disk space.

Next we describe each leak and leak pruning’s effect on
it. For space, some descriptions are short; our prior work
presents more leak details [8].

None reclaimed
Short-running

Table 1. Ten leaksand leak pruning's effect on them.

ing collection and updatingaxStaleUse for edge types that
are used after being stale for a whi@hserveadds up to 5%

Compilation overhead. Inserting read barriers adds com-
piler overhead by bloating the intermediate representatio
(IR) and thus increasing work for downstream optimizations
To mitigate this overhead, the compilers insert only the-con EclipseDiff. Eclipse is a popular integrated development
ditional test and a method call for the barrier's body. We environment (IDE) with 2 million lines of Java soure&ug
measure compilation time using the first iteration of replay report #115789 states that performing a structural reeirsi
compilation. Inserting read barriers adds 17%to compitati  compare diff) leaks memory in Eclipse 3.1.ZclipseDiff
time on average and at most 34% (feytrace). In practice, reproduces it with a plugin that repeatedly performs struc-
this overhead is negligible because compilation accownts f  tural diffs. The program leaks because each diff creates an
just 4% of overall execution time, and long-running pro- entry in a component calleMavigationHistory that points
grams are likely to spend an even smaller fraction of total to objects of typeResourceComparelnput. The entries in the
time compiling. Read barriers increase code size by 10% onNavigationHistory and theResourceComparelnput are not dead
average and 15% at most (fiakac). since Eclipse traverses the list and accesses them. Hawever
a large, dead subtree with the diff results is rooted at each
6. Tolerating Leaks ResourceComparelnput object. Leak pruning correctly selects

We evaluate 10 leaks, summarized in Table 1. Four are re-8nd prunes several edge types with source f@eurce-
ported leaks from open-source prograsipseDiff, EclipseCP, ~ Comparelnput. We reported a fix for this leak [7], which de-
MySQL, Mckoi); one is a leak in an application written by velopgrs a.ppl|e_d in time for Eclipse 3.2.
our colleaguesMelaunay); two are leaks in a benchmark EclipseDiff with leak pruning shou_ld _eventually exhaust
program GPECjbb2000, JbbMod); and three are third-party ~Memory since some heap growth is live, bu_t the subtree
microbenchmarks (stLeak, SwapLeak, DualLeak). The table ~ rooted at eacResourceComparelnput is comparatively much
shows lines of code and leak pruning’s effect. Each program larger, so leak pruning tumns a fast-growing leak into a very
executes in a heap chosen to be about twice the size neededlOW-growing leak. We ruiclipseDiff with leak pruning for
to run the program if it did not leak. We evaluate four other 24 hours, and it does not run out of memory. Figure 1 shows
heap sizes for each leak and find leak pruning’s effectienes réachable memory in the heap with and without leak pruning
is generally not sensitive to maximum heap size, except that{or its first 2,000 iterations. Figure 8 plots time for each
it sometimes fails to identify and prune the right reference iteration for 55,780 iterations, using a logarithmic xsaxi
in tight heaps. Leak pruning occasionally doubles an iteration’s executio
The programs fall into three categories: three execute for ime, but long-term throughputis constant.

at least 24 hours, four execute longer with leak pruning gcjipsecp. Eclipse bug report #155889 states that when
than without, and two do not execute longer. Leak pruning e yser repeatedly cuts text, saves the file, pastes the text

fails to executgbbMod indefinitely be_cause it fails to select 54 saves again, memory leaks. We reproducethiigseCP
and prune key reference types. It fails to exedidéseCP,

MySQL, SPECjbb2000, Mckoi, andDuallLeak indefinitely be-

Shttp://www.eclipse.org/
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Figure 10. Time per iteration for EclipseCP with and
without leak pruning (logarithmic x-axis).

(cut-paste) leak by writing a plugin that repeatedly exsasi
this sequence with about 3 MB of text. Each instance of cut-
save-paste-save is an iteration.

Figure 9 shows reachable memory over iterations of
EclipseCP using a logarithmic x-axis. Without leak pruning,
it quickly runs out of memory after 11 iterations. Leak prun-

iterations, space is so tight that teELECT state chooses
another reference type, and it ultimately reclaims over 100
different reference types befoEelipseCP uses a reclaimed
instance, terminating the program.

ListLeak, SwapLeak, and DualLeak. These leaks are sim-
ple and fast-growing examples posted to the Sun Developer
Network® and IBM developerWork$.Leak pruning toler-
atesListLeak andSwapLeak indefinitely by repeatedly select-
ing and pruning the correct reference type. It cannot ttdera
DuallLeak, which involvedive heap growth.

MySQL. TheMySQL leakis a simplified version of a JDBC
application from a colleague that exhausts memory unless
it reacquires a connection periodically. The leak occurs be
cause the JDBC library keeps already-executed SQL state-
ments in a collection unless the connection or statemeaets ar
explicitly closed MySQL repeatedly creates a SQL statement
and executes it on a JDBC connection; we count 1,000 state-
ments as an iteration. The application stores the statement
objects in a hash table. The program periodically accesses
them when the hash table grows and re-hashes its elements.
Although the hash table and statements are live, each state-
ment references a dead data structure with relatively many
bytes, so leak pruning can significantly increaggSQL'’s
lifetime. It correctly selects and prunes several typesfair
ences pointing from statement objects, allowing the pnogra

to execute 35 times as many iterations.

SPECjbb2000. SPECjbb2000 is a Java benchmark that sim-
ulates an order processing system [34]. We count 100,000
SPECjbb2000 transactions as an iteration. The program has
a known, growing leak that manifests when it is run for a
long time without changing warehouses. The leak occurs be-
cause it never removes some orders from an order processing
list. Leak pruning cannot tolerag®ECjbb2000’s leak indef-
initely because the program accesses orders in the orfjer lis
keeping them live. However, leak pruning can still reclaim
some memory. This leak grows very slowly. Leak pruning
prunes 82 distinct edge types, most near the end of the run,
sometimes netting fewer than 100 bytes. For example, leak
pruning deletes character set objects in the class lilsrtrag

the application is not using. The program ultimately acesss

a pruned reference.

JbbMod. BecauseSPECjbb2000 has significantive heap
growth, Tang et al. modified it to make much of its heap
growth stale [35]. We call this versiosbbMod, and leak

ing reclaims enough reachable but dead memory to keep itPruning runs it for about 10 hours before exhausting mem-

running for 971 iterations (9.5 hours). However, steadyest

ory, executing 20X more iterations. We note Melt [8] and

reachable memory slowly increases over time, either due toLeakSurvivor [35] tolerate this leak until they exhaust the

objects that our algorithm fails to prune, or object caches
(common in Eclipse) that Eclipse would eventually flush
before running out of memory. Initially, leak pruning repea
edly prunes the reference types.eclipse.jface.text.Default-
UndoManager$ TextCommand — String andorg.eclipse.jface.-
text.DocumentEvent — String. Eventually, after about 490

disk. To determine why leak pruning fails sooner, we modi-
fied Melt to report the bytes used by different types of highly

Shttp://forum. java.sun.com/thread. jspa?threadID=456545
andhttp://forum. java.sun.com/thread. jspa?threadID=446934

"http://www.ibm.com/developerworks/rational/library/05/
0816_GuptaPalanki/index.html



stale objects that it moves to didkeak pruningrepeatedly LS[35] & Leak || Default
selects and prunespec.jbb.Orderline — java.lang.String — Melt[8] | Indiv | pruning edge
char[]. In addition to these typeMelt transfers many objects ~ Leak Base |Moststale| refs | Default | types
of typesspec.jbbOrder, java.util.Date, andjava.lang.Object]] EclipseDiff 259 228 | 3,380|>55,780 | 1,817
to disk. From examining leak pruning’s diagnostic output, Listleak 110 108 | >2.7M | >2.7M 56
it appears that objects of typ@bject[] point to Order ob- Swapleak 5 5 11 |>11,368 83
jects, which point tdObject[] and Date. Leak pruning does f/ld'g;efp 1; :132 1‘& 2;11 2‘2223
not prune references fro@bject[] to Order because this ref- S|>yEqbb2000 135 97 625 632 197
erence type’snaxStaleUse value is high (5). Tolerating this JbbMod 204 a1 911 4,267 209
leak longer would require a different policy, e.g., catégor Mckoi 44 47 71 72 308
ing references some way other than source-target type; or pe DualLeak 145 149 144 143 69

riodically decaying each reference typeisxStaleUse value

to account for possible phased behavior. Table 2. Iterationsexecuted by leak programsusing leak

pruning with several prediction algorithms. Baseis un-
Mckoi. Mckoi SQL Database is a database managementmodified Jikes RVM;Most staleis the algorithm used by
system written in Java. This le&ls primarily a thread leak.  LeakSurvivor [35] and Melt [8]Indiv refsdoes not consider
Our currentimplementation cannot reclaim a thread's stack data structures; aridefaultis leak pruning’s algorithm.
although it could be modified to do so. Leak pruning runs
Mckoi 60% longer by selecting and pruning dead memory
referenced byhe leaked threads’ stacks.

Delaunay. Delaunay is short running, so it is not clear if it
truly leaks memory or simply keeps some memory reachable
longer than it should. Unlike the other leaksslaunay does

not use an unbounded amount of memory. Leak pruning
does not have time to observe it and prune references.

Time(s)
o = N w N [6)]

o -

I j T j 1
200 400 600
This section evaluates whether our algorithm’s complexity lteration

is merited, by comparing it to two simpler alternatives:

6.1 Alternative Prediction Algorithms

Figure 11. Time per iteration for EclipseDiff when it

Most stale. In the SELECT state, this algorithm identifies ~Mmust exhaust memory prior to pruning.
the highest staleness level of any object. InH®ETE
state, it prunes all references to every object with this 6.2 SpaceOverhead

staleness level. This algorithm is effectively the same as ) ) _
those that move objects to disk [8, 9, 15, 35]. Our implementation adds space overhead to store informa-

tion about edge types in the edge table. For simplicity, it
uses a fixed-size table with 16K slots using closed hash-
ing [13]. Each slot has four words—source class, target
class,maxStaleUse, and bytesUsed—for a total of 256K. A
production implementation could size the table dynamycall
according to the number of edge types. The last column of

Table 2 shows the effectiveness of these prediction algo- 1aPIe 2 shows the number of edge types used by leak prun-
rithms measured in iterations. For examEelpseCP with ing for each leak, measured at the end of the run because

Indiv refs terminates after 41 iterations because the algo- the table never shrink.s. Eclipse is complex and uses a few
rithm selects and prunes highly stale, but lising — char[] thousand edge types; the database and JBB leaks are real

references. In contrast, our default algorithm prunesrrefe Programs but less complex and store hundreds of types; and
ence typesorg.eclipse.jface.text.DefaultUndoManager$ Text- the microbenchmark leaks store fewer than 100 edge types.

Comma?nd — String andorg.ecllpsg.]face.text.Docum_entEvent 6.3 Full Heap Threshold

— String, automatically reclaiming the growing, leaked ) ) )

String objects without deleting other livetring objects. In By default, our implementation starts pruning references
general, our algorithm matches or outperforms the otherswhen the heap is 90% full (Section 3.1). Optionally, it can

since it considers reference types (unliMest stal¢ and ~ Waitto prune untilthe heap is 100%full, i.e., whenthe VMis
data structures (unlikadividual referencels just about to throw an out-of-memory error. Figure 11 shows

the throughput oEclipseDiff for its first 600 iterations using
8http://www.mckoi.com/database/mail/subject . jsp?id=2172 a 100% heap fullness threshold. The first spike, at about

Individual references. This algorithm modifies our default
algorithm by eliding the candidate queue and the stale
transitive closure from th6ELECT state. The resulting
algorithm prunes individual stale references rather than
stale subtrees.




125 iterations, occurs because Eclipse slows significastly ing borrows Melt's low-overhead, reference-based read bar
GCs become very frequent; each GC reclaims only a smallriers. Although not designed to tolerate lealtsspkmarking
fraction of memory, so the next GC occurs soon after. Later collectionmay tolerate some leaks by saving physical, not
spikes are smaller because successive pruning occurs whenmirtual, memory and tracking staleness on page granular-
the heap is only 90% full (since the program has already ity [18].

exhausted memory once). The spike is about 2.5X taller These approaches preserve semantics since they retrieve
than the other spikes, which may be a reasonable tradeoffobjects from disk if the program accesses them. Since they
to execute programs as long as possible before commencingetrieve objects from disk, the prediction mechanisms do no

pruning. have to be perfect, just usually right to keep performance
from suffering. All will eventually exhaust disk space and
7. Rdated Work crash. Leak pruning requires perfect prediction and uses a

Pri K tolerat i d more precise algorithm for predicting dead objects, as show
rior work tolerales memaory Corruption and ConCurrency 3, geciion 6.1, Leak pruning is less tolerant of errors beeau
bugs using redundancy, randomness, checkpointing, pad-

. ; . it must throw an error if it makes a mistake. However, it
ding, and ignoring errors, but these approaches do not he.lpbounds memory usage, making it suitable when disk space

memory leaks [3, 2.9' ?1]' One mdustnal response to I.eaks 'S runs out or no disk is available, e.g., in embedded systems.
restarting the application, but this mechanism reduceis-ava

ability and loses application state that may not be recov- 8. Conclusion
erable. The prior work most closely related to leak prun-

ing is cyclic memory allocatiofi25] and offloading leaks to ~ Leak pruning is an automatic approach for bounding the
disk [8, 9, 15, 35]. memory consumption of programs with leaks, in many cases

increasing availability significantly. It prunes likelydked
Detecting leaks. Static leak detectors for C and C++ iden- data structures when a program runs out of memory. It
tify objects that the programmer forgot to free and are un- preserves semantics by intercepting any future accesses to
reachable [10, 17]. Dynamic leak detectors for C and C++ pruned objects. Leak pruning adds overhead low enough for
find these objects at run time by tracking allocations, frees deployed use. It improves the user experience while buying

and pointer mutations [16, 21, 24] or by tracking stale- developers time to fix bugs, making it a compelling feature
ness [11, 28]. Leak detectors for managed languages re<for production systems.

port dynamic heap growth [19, 22, 27, 30, 32] and stale ob-
jects [7]. Leak pruning uses staleness to predict liveness.  Acknowledgments
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