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Abstract
Managed languages improve programmer productivity with
type safety and garbage collection, which eliminate mem-
ory errors such as dangling pointers, double frees, and buffer
overflows. However, because garbage collection uses reach-
ability to over-approximate live objects, programs may still
leakmemory if programmers forget to eliminate the last ref-
erence to an object that will not be used again. Leaks slow
programs by increasing collector workload and frequency.
Growing leaks eventually crash programs.

This paper introducesleak pruning, which keeps pro-
grams running by predicting and reclaiming leaked objects
at run time. It predicts dead objects and reclaims them based
on observing data structure usage patterns. Leak pruning
preserves semanticsbecause it waits for heap exhaustion be-
fore reclaiming objects andpoisonsreferences to objects it
reclaims. If the program later tries to access a poisoned ref-
erence, the virtual machine (VM) throws an error. We show
leak pruning has low overhead in a Java VM and evaluate it
on 10 leaking programs. Leak pruning does not help two pro-
grams, executes five substantial programs 1.6-81X longer,
and executes three programs, including a leak in Eclipse, for
at least 24 hours. In the worst case, leak pruning defers fatal
errors. In the best case, it keeps leaky programs running with
preserved semantics and consistent throughput.

Categories and Subject DescriptorsD.3.4 [Programming
Languages]: Processors—Debuggers, Memory management,
Run-time environments

General Terms Reliability, Performance, Experimentation
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1. Introduction
Managed languagessuch as Java, C#, Python, and Ruby pro-
vide garbage collection and type safety, which eliminate (1)
memory corruption errors such as dangling pointers, dou-
ble frees, and buffer overflows and (2) memory leaks due
to unreachable objects. The increasing use of managed lan-
guages is due in part to these features. Unfortunately, pro-
grams may still leak objects that are reachable, but will not
be used again, because garbage collection usesreachability
to over-approximateliveness. A reachable object is not live
if the program never uses it again. Computing reachability
is relatively straightforward; collectors perform a transitive
closure over the object graph from programroots (globals,
stacks, and registers). Liveness is much harder to determine
and is in general undecidable.

Memory leaks hurt performance by consuming unneces-
sary memory resources, and they increase garbage collection
frequency and workload. Leaks occur frequently in managed
languages and a number of tools help programmers diagnose
them [7, 19, 22, 27, 30, 32]. Leaks are hard to reproduce,
find, and fix because they have no immediate symptoms [16].
For example,whena leaking Java program exhausts mem-
ory depends on the heap size, choice of garbage collector,
and nondeterministic factors not directly related to the leak.
Despite extensive in-house testing, leaks exist in production
software because they are input and environment sensitive.

This paper introducesleak pruning, which preserves se-
mantics, usesbounded resources, and runs leaky programs
longer than before or, in some cases, indefinitely. Leak prun-
ing defers out-of-memory errors by predicting which objects
are dead and reclaiming them when the program is about to
run out of memory. As long as the program does not attempt
to access reclaimed objects, it may run indefinitely. If the
program attempts to access a reference to reclaimed mem-
ory, the leak pruning-enabled VM intercepts the access and
throws an error. This behavior preserves semantics since the
program already ran out of memory. In the worst case, leak
pruning only defers out-of-memory errors. In the best case,
it enables leaky programs with unbounded reachable mem-
ory to run indefinitely in bounded memory. In this case, leak
pruning provides the illusion that the garbage collector is
liveness-based rather than reachability-based.



Prior work tolerates leaks by identifyingstaleobjects not
used in a while and offloading them to disk [8, 9, 15, 35].
These systems tolerate mispredictions by retrieving objects
from disk. Staleness alone is too imprecise for leak pruning’s
more aggressive approach, as we show experimentally in
Section 6.1.

Leak pruning uses a new, dynamic prediction algorithm
that considers both staleness and data structure usage. Our
algorithm piggybacks on the garbage collector to identify
stale data structures, i.e., stale subgraphs in the heap. It
records the source and target classes of the first reference
into a stale subgraph and the size of the subgraph. When the
VM runs out of memory, leak pruningpoisonsreferences
to instances of the data structure type consuming the most
bytes. Poisoning invalidates and specially marks references.
The collector then reclaims objects that were only unreach-
able from these references. If the program subsequently ac-
cesses a poisoned reference, the VM throws an error.

We implement leak pruning in a high-performance Java
VM and show that it adds on average 3-5% to execution
time due to its software read barrier (instrumentation at
every read [6]). Although our implementation is for Java, the
approach is applicable to other garbage-collected languages.
We evaluate ten leaking programs, including two leaks in
Eclipse. For two leaks, leak pruning provides no help. It
executes two programs 1.6-4.7X longer and three leaks 21-
81X longer. The remaining three leaky programs execute for
at least 24 hours, when we terminate them. In all cases but
one, when leak pruning cannot defer an out-of-memory error
indefinitely, the program’s working set is growing and thus
the objects arelive. Other leak tolerance approaches that
preserve semantics cannot tolerate live leaks either.

One objection to error tolerance is that it may encourage
poor programming practices. Since modern software is never
bug free, error tolerance in general should be viewed as
a temporary measure that gives users a better experience,
buys developers time to fix bugs, and provides protection
against some attacks. Leak pruning may not be appropriate
for all programs, e.g., programs that catch out-of-memory
errors to abort speculative computation, and it should be a
configuration parameter at deployment time.

The contributions of this paper are (1) leak pruning, a
novel semantics-preserving approach for reclaiming mem-
ory instead of exhausting memory, (2) an algorithm for accu-
rately identifying likely dead objects, and (3) an evaluation
of leak pruning’s effectiveness on ten leaks: five benchmarks
and five real applications. Leak pruning’s preservation of se-
mantics and low overhead make it a compelling configura-
tion choice for many deployed systems.

2. Motivation, Background, and Semantics
This section gives motivation, background, and semantics
for leak pruning. Section 3 overviews the approach and Sec-
tion 4 presents algorithmic and implementation details.
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Figure 1. Reachable heap memory for the EclipseDiff

leak: an unmodified VM running the leak and a manually
fixed version, and a VM with leak pruning running the leak.

Even well-tested and widely used applications can con-
tain leaks. Consider the example in Figure 1, which shows
the memory consumption over time measured initerations
(fixed amounts of program work) for a leak in Eclipse, called
EclipseDiff (Section 6 discusses this leak in detail). The graph
shows reachable memory at the end of each full-heap col-
lection with a 200 MB maximum heap size. The solid line
shows that the leak causes reachable memory to grow with-
out bound until the VM throws an out-of-memory error.
The dashed line shows reachable memory if we modify the
source code to fix the leak, resulting in fairly constant reach-
able memory. The dotted line shows reachable memory with
leak pruning. When the program is about to run out of mem-
ory, leak pruning reclaims objects that it predicts are dead.
It cannot reclaim all dead objects promptly because objects
need time to become stale. Section 6 shows that leak prun-
ing keepsEclipseDiff from running out of memory for over
50,000 iterations (24 hours).

Garbage collection and memory exhaustion.Garbage
collection (GC) reclaims only unreachable memory.Reach-
ability approximatesliveness—an object is live if the pro-
gram will use it again. The VM invokes the collector each
time the program fills the heap. Atracing1 collector per-
forms a transitive closure over the heap starting from the
roots, which include stack pointers, global variables, and
references in registers. The collector retains all transitively
reachable objects and reclaims all memory used by unreach-
able objects. The next collection occurs after the sum of this
reachable memory plus new allocation exceeds the available
heap memory.

Whenan application exceeds the available heap memory
and triggers a collection or exhausts memory, is not well
defined because of collector and VM implementation de-
tails, including object header sizes, collector meta-data, and
choice of collector algorithm. Increasing the maximum heap

1 Our discussion and implementation use a tracing collector.Reference
counting must also trace to collect cycles.



Figure 2. State diagram for leak pruning.

size helps some leaky programs. However, many embed-
ded systems have hard upper bounds on maximum memory.
Even with virtual memory and swap space on stock hard-
ware, physical memory sizes effectively limit the heap’s up-
per bound because exceeding this bound causes the collector
to thrash since its working set is the entire heap [18, 37].

Reachability versus liveness.Reachability often approxi-
mates liveness well. However, developers may neglect to re-
move the last reference to an object or data structure that
the program will not use again. Dead-but-reachable objects
areleaks, which (1) slow the program down as the heap fills
by increasing the frequency and workload of garbage collec-
tion and (2) eventually cause the program to throw an out-
of-memory error by exhausting memory resources.

Leak pruning seeks to close the gap between liveness
and reachability by providing functionality and performance
consistent with GC that is based on liveness instead of reach-
ability. When a program starts to run out of memory, leak
pruning observes program execution to predict which reach-
able objects are dead and therefore will not be used again.
When the program actually runs out of memory, leak prun-
ing poisonsreferences to these objects and reclaims them.
If the application subsequently attempts to read a poisoned
reference, the VM throws an error, giving the original out-
of-memory error as the cause. Since the program hasex-
ecuted beyondan out-of-memory error, throwing an error
does not violate semantics. Leak pruning’s goal is to defer
out-of-memory errors indefinitely by eliminating space and
time overheads due to leaks.

Exception and collection semantics.The Java VM speci-
fication says anOutOfMemoryError may be thrown only at
program points responsible for allocating resources, e.g.,
new expressions or expressions that may trigger class ini-
tialization [20]. In general, programs will access pruned ref-
erences at other points. However, the specification permits
InternalError to be thrown asynchronously at any program
point. Our implementation thus throws anInternalError if the
program accesses a pruned reference.

When the VM runs out of memory, leak pruning records
and defers the error. However, if the application can catch
and handle the out-of-memory error, then deferring the er-
ror violates semantics. Catching out-of-memory errors is un-
common since these errors are not easy to remedy. In Java,

a regulartry { ... } catch (Exception ex) { ... } will not catch
an OutOfMemoryError since it is on a different branch of
the Throwable class hierarchy. Some applications, such as
Eclipse, catch all errors in an outer loop and allow other
components to proceed, but the Eclipse leaks we evaluate
cannot perform useful work after they catch out-of-memory
errors. Deciding whether to reclaim memory or throw an out-
of-memory error when there is a correspondingcatch block,
should be an option set by users or developers. Our imple-
mentation currently always reclaims memory when the pro-
gram exhausts memory.

Leak pruning may affect object finalizers, which are cus-
tom methods that help clean up non-memory resources when
an object is collected, e.g., to close a file associated with an
object. Pruning causes objects to be collected earlier than
without pruning, so calling finalizers could change seman-
tics. A strict leak pruning implementation would disable fi-
nalizers for the rest of the program after it started prun-
ing, which does not technically violate the Java specifica-
tion since there is no timeliness guarantee for finalizers. Our
implementation currently continues to call finalizers after
pruning starts, which would likely be the option selected by
developers and users in order to avoid exhausting other re-
sources while tolerating memory leaks.

3. Leak Pruning Overview
Figure 2 shows a high-level state diagram for leak pruning.
State changes are based on how close the program is to
running out of memory. Leak pruning performs most of its
work during full-heap garbage collections. It changes state
(or stays in the same state) depending on how full the heap
is at theendof every full-heap collection.

3.1 Triggering Leak Pruning

Initially, leak pruning isINACTIVE and does not observe pro-
gram behavior. This state avoids the overhead of leak prun-
ing’s analysis when the program is not running out of mem-
ory. Subsequent analysis focuses on the most recent behav-
ior. Leak pruning remainsINACTIVE until reachable mem-
ory exceeds “expected memory use,” a configurable thresh-
old. We use a 50% default threshold since users typically ex-
ecute programs in heaps at least twice as large as maximum
reachable memory. Leak pruning is not very sensitive to the
exact value of this threshold. If set too low, leak pruning may



incur some overhead when the program is not leaking; if set
too high, it will have less time to observe program behavior
before selecting memory to reclaim.

When memory usage crosses this threshold, leak prun-
ing enters theOBSERVE state and then analyzes program
reference patterns to choose pruning candidates. Once leak
pruning enters theOBSERVE state, it never returns toINAC-

TIVE because it permanently considers the application to be
in an unexpected state. Leak pruning moves fromOBSERVE

to SELECT when the program has nearly run out of memory,
which is configurable and 90% by default. TheSELECT state
chooses references to prune, based on information collected
during theOBSERVE state.

In principle, we would like to move to thePRUNE state
only when the program has completely exhausted mem-
ory. However, executing until reachable objects fill available
memory can be expensive. Because reachable memory usu-
ally grows more slowly than the allocation rate, allocations
trigger more and more collections as memory fills the heap.
Thus, we support two options: (1) moving toPRUNE when
the heap is still 100% full after a collection and the VM
is about to throw an out-of-memory error or (2) moving to
the PRUNE state after finishing a collection in theSELECT

state. In either case, after enteringPRUNE once, leak prun-
ing always entersPRUNE on thenextcollection after enter-
ing SELECT, since the program has exhausted memory at
least once. We believe (2) is more appealing since it avoids
the VM grinding to a halt before pruning can commence.
Option (2) does not generally violate program semantics be-
cause the VM has flexibility in how it reports memory us-
age, as discussed in Section 2. Programmers should consider
the “nearly full” threshold to be the maximum heap size and
“full” to be the extra headroom to perform GC efficiently.
We use (2) by default and also evaluate (1).

The PRUNE statepoisonsselected references by invali-
dating them and not traversing the objects they reference.
The collector then automatically reclaims objects that were
reachable only from the pruned references. If the collector
reclaims enough memory so that the heap is no longer nearly
full, leak pruning returns to theOBSERVE state. Otherwise,
it returns toSELECT, identifying more references to prune.

Figure 3 shows an example heap afterSELECT, when en-
tering thePRUNE state. Each circle is a heap object. Each
object instance has a name based on itsclass, e.g.,b1, b2,
b3, andb4 are instances of classB. The selection algorithm
uses class to select references to prune (Section 4). The fig-
ure shows that objectsa1 ande1 are directly reachable from
the program roots (registers, stacks, and statics), and other
objects are transitively reachable. Suppose leak pruning se-
lects three references to prune, labeledsel in the figure:b1

→ c1, b3 → c3, andb4 → c4.

3.2 Reclaiming Reachable Memory

During a full-heap collection in thePRUNE state, the collec-
tor repeats its analysis, but this time poisons selected refer-

Figure 3. Example heap after the SELECT state. Refer-
ences selected for pruning are marked withsel.

Figure 4. Example heap at the end of GC in the PRUNE

state. Poisoned references end in an asterisk (*).

ences and reclaims all objects reachable only from these ref-
erences as shown in Figure 4. The collector reclaims objects
reachableonly from pruned references since it does not trace
pruned references. The subtree rooted atc4 is not reclaimed
because it is transitively reachable via objecte1.

Leak pruning poisons a reference by setting its second-
lowest-order bit (Section 4.3). Setting the reference tonull

is insufficient since that could change program semantics.
If the program accesses a poisoned reference, the VM in-
tercepts the access and throws an internal error whoseget-

Cause() method returns the originalOutOfMemoryError that
would have been thrown previously. This behavior preserves
semantics since the program previously ran out of memory
when it entered thePRUNE state for the first time. To help
programmers, leak pruning optionally reports (1) an out-of-
memory “warning” when the program first runs out of mem-
ory and (2) the data structures it prunes.

4. Algorithm and Implementation
This section describes our algorithm and implementation
for predicting which references to prune, poisoning them,
and detecting accesses to poisoned references. Leak pruning
identifies references to data structures that are highly stale. It
prunes stale data structures based on the following criteria:
(1) no data structure instance was stale for a while and then
used again, and (2) the data structures contain many bytes.



Our prediction algorithm has the following objectives: (1)
perfect accuracy, (2) high coverage, and (3) low time and
space overhead. If prediction is not perfect, the program will
access a pruned object and will terminate. However, if the
prediction algorithm is not aggressive enough, it will not
prune all the leaking objects. Of course, predicting liveness
perfectly in all cases is beyond reach. We have developed an
algorithm with high coverage and accuracy that works well
in many cases. Any prediction algorithm preserves correct-
ness since leak pruning ensures accesses to reclaimed mem-
ory are intercepted (Section 2).

4.1 The OBSERVE State

Tracking staleness. The OBSERVE state tracks each ob-
ject’s staleness, i.e., how long since the program last used
it. Our implementation maintains staleness using a three-bit
logarithmic stale counterin each object’s header [7]. A value
k in an object’s stale counter means the program last used the
object approximately2k collections ago. We maintain each
stale counter’s value by (1) incrementing object counters in
each collection and (2) inserting instrumentation that clears
an object’s counter when the program uses it.

Every full-heap collectioni increments an object’s stale
counter if and only ifi evenly divides2k, wherek is the cur-
rent value of the counter. In addition, the collector sets the
lowest bit of every object-to-objectreference, which is avail-
able since objects are word aligned. Setting this bit allows
instrumentation to test quickly whether the target object’s
stale counter has been reset since the last collection [8].

We modify the VM’s just-in-time compiler to insertread
barriers[6] at reference loads, e.g.,b = a.f, that setb’s stale
counter to zero, as shown in the following pseudocode.

b = a.f; // Application code

if (b & 0x1) { // Read barrier

// out-of-line cold path

t = b; // Save ref

b &= ~0x1; // Clear lowest bit

a.f = b; [iff a.f == t] // Atomic

b.staleCounter = 0x0; // Atomic

}

If a reference’s lowest bit is set, the barrier clears this bit
and also clears the referenced object’s stale counter. The
instrumentation is efficient because it takes no action if the
lowest bit of the reference (a.f) is cleared. Since the VM
initializes the bit to zero for all newly allocated objects,the
barrier condition is true at most once for each reference after
each full-heap collection. Since the barrier’s body does not
execute in the common case, we force the compiler to put it
out-of-linein a separate method.

The barrier updates the referenceatomicallywith respect
to the read to avoid overwriting another thread’s write. The
notation[iff a.f == t] indicates the store occurs if and
only if the reference slot has not been modified by another

thread. If the atomic update fails, the barrier simply contin-
ues, which is a valid serialization because another thread has
written a valid reference toa.f, and the current thread can
safely useb. The barrier also clearsb.staleCounter atomi-
cally to avoid losing updates to other bits in the object header
(used for locking and hashing in many VMs). Since the bar-
rier condition is usually false, these atomic updates add un-
noticeable overhead.

Edge table. TheOBSERVE state starts maintaining anedge
tableto track the staleness of heap references based on type.
For a stale edge in the heap,src → tgt, the table records
the Java class of the source and target objects:srcclass →
tgtclass. Each entry summarizes an equivalence relationship
over object-to-object references: two references are equiv-
alent if their source and target objects each have the same
class. Each edge entrysrcclass → tgtclass recordsbytesUsed

(for use in theSELECT state) andmaxStaleUse, which iden-
tifies edge types that are stale for a long time, but not dead.
Leak pruning only prunes objects that are more stale than
their entry’smaxStaleUse value. We record inmaxStaleUse

the all-time maximum value oftgt’s stale counter when a
barrier accesses a referencesrcclass→ tgtclass. The read bar-
rier executes the following code as part of its out-of-line cold
path.

if (b.staleCounter > 1) {

edgeTable[a.class->b.class].maxStaleUse =

max(edgeTable[a.class->b.class].maxStaleUse,

b.staleCounter);

}

The update occurs only if the object’s stale counter is at least
2, since a value of 1 is not very stale (stale only since the last
full-heap collection). Stale objects are used infrequently, so
the edge table update occurs infrequently.

4.2 The SELECT State

A full-heap collection inSELECT choosesone edge type
for pruning during a subsequent GC in thePRUNE state.
It divides the regular transitive closure, which marks all
reachable objects, into the following two phases.

1. The in-use transitive closurestarts with the roots (reg-
isters, stacks, statics) and marks live objects, except
for when it encounters a stale reference whose target
object has a stale counter at least two greater than its
maxStaleUse value. (We conservatively use two greater,
instead of one, since the stale counters only approximate
the logarithm of staleness.) These references arecandi-
datesfor pruning. Instead of processing them, we add
them to acandidate queue.

2. Thestale transitive closuremarks objects live, starting
with references in the candidate queue. These references
point to stale rootsof data structures. The stale closure



Figure 5. Example heap during the SELECT state.

computes the bytes reachable from each stale root, i.e.,
the size of the stale data structure, and adds this value to
bytesUsed for the stale root’s edge entry.

At the end of this process, leak pruning iterates over each
entry in the edge table, finding the entry with the greatest
bytesUsed value, and resets allbytesUsed values. ThePRUNE

state then prunes data structures that match this edge type.

Example. Figure 5 shows the heap and an edge table for
Figures 3 and 4 duringSELECT. Each object is annotated
with the value of its stale counter. The in-use closure adds
the references markedcand to the candidate queue, but it
does not addb2 → c2 sincec2’s stale counter is less than 2.
It also does not adde1 → c4 since its stale counter would
need to be at least 4 (2 more than themaxStaleUse of 2 for E

→ C). The stale closure processes the objects reachable only
from candidate references, which are shaded gray. Objects
c4, d7, andd8 are processed by thein-use closuresince they
are reachable from non-candidate referencee1 → c4. If we
suppose each object is 20 bytes, thenbytesUsed for B → C

is 120 bytes. This edge entry is selected for pruning since it
has the greatest value ofbytesUsed.

4.3 The PRUNE State

The PRUNE state performs only the in-use closure, during
which it prunes all references corresponding to the selected
edge type and whose target objects have staleness values that
are at least two more than the entry’smaxStaleUse. The col-
lector poisons each reference in the candidate set by setting
its second-lowestbit, as well as its lowest bit. The collector
does not trace the reference’s target. Future collections see
the reference is poisoned and do not dereference it.

4.4 Intercepting Accesses to Pruned References

To intercept program accesses to pruned references, the
barrier also checks for poisoned references. The following
check is performed at the beginning of the barrier’s cold
path:

if (b & 0x2) { // Check if poisoned

InternalError err = new InternalError();

err.initCause(avertedOutOfMemoryError);

throw err;

}

/* rest of read barrier cold path */

If the reference is poisoned, the barrier throws anInternal-

Error with the originalOutOfMemoryError attached.

4.5 Concurrency and Thread Safety

Our implementation supports multithreaded programs exe-
cuting on multiple processors. Above, we discussed how
atomic updates in the read barrier preserve thread safety. The
edge table is a global structure that can be updated by mul-
tiple threads in read barriers or during collection. We need
global synchronization on the edge table only when adding
a new edge type, which is rare, and we never delete an edge
table entry. When updating an entry’s data, our implemen-
tation should use fine-grained synchronization to protect the
entry. However, our prototype implementation does not syn-
chronize these updates since we expect conflicts to be rare,
and edge selection is not sensitive to exact values ofbyte-

sUsed andmaxStaleUse.
By default, the garbage collector is parallel [4]. It uses

multiple collector threads to traverse all reachable objects.
The implementation uses a shared pool from which threads
obtain local work queues to minimize synchronization and
balance load. Because many objects have multiple refer-
ences to them, the collector prevents more than one thread
from processing an object with fine-grained synchronization
on the object. We piggyback on these mechanisms to im-
plement the in-use and stale transitive closures. In the stale
closure, a single thread processes all objects reachable from
a candidate edge. The stale closure is parallel since multiple
collector threads can process the closures of distinct candi-
dates simultaneously.

5. Performance of Leak Pruning
This section presents our performance evaluation methodol-
ogy and shows that the overheads of leak pruning are low.

VM configurations. We implement leak pruning in Jikes
RVM 2.9.2,2 a high-performance Java-in-Java virtual ma-
chine [1, 2]. As of August 2008, Jikes RVM performs the
same as Sun Hotspot 1.5, and 15 to 20% worse than Hotspot
1.6, JRockit, and J9 1.9, all configured for high perfor-
mance.3 Our performance measurements are therefore rela-
tive to an excellent baseline. We have made our implementa-
tion publicly available on the Jikes RVM Research Archive.4

Jikes RVM recompiles hot methods with increasingly ag-
gressive optimizations. Because timer-based sampling iden-

2http://www.jikesrvm.org
3http://jikesrvm.anu.edu.au/~dacapo/
4http://www.jikesrvm.org/Research+Archive
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Figure 6. Run-time overhead of leak pruning on two platforms.

tifies hot methods, compilation decisions are nondeterminis-
tic. To achieve determinism in performance experiments, we
usereplaycompilation [5, 14] to produce the same compila-
tion decisions on different runs. Replay executes two itera-
tions. The first includes compilation. We report the second,
which executes only the application and is representative of
steady-state application behavior.

Our experiments add leak pruning to a parallel, stop-the-
world, generational mark-sweep collector in the Memory
Management Toolkit (MMTk) [4]. MMTk supports a variety
of garbage collectors with most functionality residing in
shared code. Our implementation resides almost exclusively
in this shared code, allowing leak pruning to support other
collectors by specifying which space(s) contain objects that
leak pruning should track.

Benchmarks. We measure leak pruning’s overhead on
the DaCapo benchmarks version 2006-10-MR1, a fixed-
workload version of SPECjbb2000 calledpseudojbb, and
SPECjvm98 [5, 33, 34].

Platform. All experiments execute on a dual-core 3.2 GHz
Pentium 4 system. Each processor has a 64-byte L1 and L2
cache line size, a 16-KB 8-way set associative L1 data cache,
a 12-Kµops L1 instruction trace cache, and a 1-MB unified
8-way set associative L2 on-chip cache. Additionally, we
measure read barrier overheads on a Core 2 Quad 2.4 GHz
system. Each core has a 64-byte L1 and L2 cache line size,
an 8-way 32-KB L1 data/instruction cache, and each pair of
cores shares a 4-MB 16-way L2 on-chip cache. Both systems
have 2 GB of main memory and run Linux 2.6.20.3.

Application overhead. Leak pruning adds overhead be-
cause it inserts read barriers into application code, tracks
staleness, and selects references to prune during garbage col-
lection. Using replay compilation, Figure 6 includes applica-
tion and collection, but not compilation overheads. Each bar
is the median overhead of five trials. To control the mem-
ory size, we fix the heap at two times the minimum in which
each benchmark can run. The two bars are overhead on the
Pentium 4 and Core 2, respectively.
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Figure 7. Normalized collection times across heap sizes
(y-axis starts at 1.0).

The bars show the overhead of exercising leak pruning:
even though these benchmarks do not leak memory, we
force leak pruning to be in theSELECT state continuously.
However, we find that virtually all run-time overhead comes
from the overhead of read barriers; tracking staleness and
selecting references add negligible overhead. On average,
overhead is 5% on the Pentium 4 and 3% on the Core 2.

Non-leaking programs do not need barriers as long as
leak pruning remains in theINACTIVE state. For simplic-
ity, our implementation uses all-the-time barriers, but a pro-
duction implementation should trigger recompilation of all
methods with read barriers only when leak pruning enters
theOBSERVE state. With the increasing importance of con-
current software, future general-purpose hardware is likely
to provide read barriers with no overhead, and Azul hard-
ware has them already [12].

Garbage collection overhead.Figure 7 plots the geomet-
ric mean of normalized GC time on the P4 (Core 2 times
are similar) over all the benchmarks as a function of heap
sizes 1.5 to 5 times the minimum heap size in which each
benchmark executes. The smaller the heap size, the more
often the program exhausts memory and invokes the col-
lector.Base is GC time on unmodified Jikes RVM.Observe
forces leak pruning to be in theOBSERVE state all the time,
which involves maintaining each object’s staleness bits dur-



Leak (LOC) Effect Reason
EclipesDiff (2.4M) Runs>200X longer Almost all reclaimed
ListLeak (9) Runs indefinitely All reclaimed
SwapLeak (33) Runs indefinitely All reclaimed
EclipseCP (2.4M) Runs 81X longer Almost all reclaimed
MySQL (75K) Runs 35X longer Most reclaimed
SPECjbb2000 (34K) Runs 4.7X longer Some reclaimed
JbbMod (34K) Runs 21X longer Most reclaimed
Mckoi (95K) Runs 1.6X longer Some reclaimed
DualLeak (55) No help None reclaimed
Delaunay (1.9K) No help Short-running

Table 1. Ten leaks and leak pruning’s effect on them.

ing collection and updatingmaxStaleUse for edge types that
are used after being stale for a while.Observeadds up to 5%
overhead.Selectadds the rest of leak pruning’s functional-
ity without actually pruning references: performing the stale
trace and selection of an edge type to prune. This configura-
tion adds up to 9% more to GC time, for a total of 14%.

Compilation overhead. Inserting read barriers adds com-
piler overhead by bloating the intermediate representation
(IR) and thus increasing work for downstream optimizations.
To mitigate this overhead, the compilers insert only the con-
ditional test and a method call for the barrier’s body. We
measure compilation time using the first iteration of replay
compilation. Inserting read barriers adds 17% to compilation
time on average and at most 34% (forraytrace). In practice,
this overhead is negligible because compilation accounts for
just 4% of overall execution time, and long-running pro-
grams are likely to spend an even smaller fraction of total
time compiling. Read barriers increase code size by 10% on
average and 15% at most (forjavac).

6. Tolerating Leaks
We evaluate 10 leaks, summarized in Table 1. Four are re-
ported leaks from open-source programs (EclipseDiff, EclipseCP,

MySQL, Mckoi); one is a leak in an application written by
our colleagues (Delaunay); two are leaks in a benchmark
program (SPECjbb2000, JbbMod); and three are third-party
microbenchmarks (ListLeak, SwapLeak, DualLeak). The table
shows lines of code and leak pruning’s effect. Each program
executes in a heap chosen to be about twice the size needed
to run the program if it did not leak. We evaluate four other
heap sizes for each leak and find leak pruning’s effectiveness
is generally not sensitive to maximum heap size, except that
it sometimes fails to identify and prune the right references
in tight heaps.

The programs fall into three categories: three execute for
at least 24 hours, four execute longer with leak pruning
than without, and two do not execute longer. Leak pruning
fails to executeJbbMod indefinitely because it fails to select
and prune key reference types. It fails to executeEclipseCP,
MySQL, SPECjbb2000, Mckoi, andDualLeak indefinitely be-

cause some or all of their heap growth islive. In some cases,
memory is live because the programmer intentionally ac-
cesses leaked objects, e.g.,SPECjbb2000 processes all ob-
jects in a list including those that the programmer intendedto
remove. In other cases, the program inadvertently accesses
objects it no longer needs due to the data structure imple-
mentation. For example, whenMySQL causes the size of one
of its hash tables to grow, it accesses all the elements to re-
hash them.

Other leak tolerance approaches that preserve semantics
also cannot tolerate live leaks since the memory is in use [8,
9, 15, 35]. Leak pruning and Melt [8] perform about the
same on all the leaks exceptJbbMod andEclipseCP, as de-
scribed below. However, while disk-based approaches fail
when they run out of disk space, leak pruning can run some
leaks indefinitely. Leak pruning and disk-based approaches
are complementary, and a combined approach could get the
benefits of both. Here we evaluate the most challenging case
for leak pruning: identifying and pruning leaks without using
any disk space.

Next we describe each leak and leak pruning’s effect on
it. For space, some descriptions are short; our prior work
presents more leak details [8].

EclipseDiff. Eclipse is a popular integrated development
environment (IDE) with 2 million lines of Java source.5 Bug
report #115789 states that performing a structural recursive
compare (diff ) leaks memory in Eclipse 3.1.2.EclipseDiff

reproduces it with a plugin that repeatedly performs struc-
tural diffs. The program leaks because each diff creates an
entry in a component calledNavigationHistory that points
to objects of typeResourceCompareInput. The entries in the
NavigationHistory and theResourceCompareInput are not dead
since Eclipse traverses the list and accesses them. However,
a large, dead subtree with the diff results is rooted at each
ResourceCompareInput object. Leak pruning correctly selects
and prunes several edge types with source typeResource-

CompareInput. We reported a fix for this leak [7], which de-
velopers applied in time for Eclipse 3.2.

EclipseDiff with leak pruning should eventually exhaust
memory since some heap growth is live, but the subtree
rooted at eachResourceCompareInput is comparatively much
larger, so leak pruning turns a fast-growing leak into a very
slow-growing leak. We runEclipseDiff with leak pruning for
24 hours, and it does not run out of memory. Figure 1 shows
reachable memory in the heap with and without leak pruning
for its first 2,000 iterations. Figure 8 plots time for each
iteration for 55,780 iterations, using a logarithmic x-axis.
Leak pruning occasionally doubles an iteration’s execution
time, but long-term throughput is constant.

EclipseCP. Eclipse bug report #155889 states that when
the user repeatedly cuts text, saves the file, pastes the text,
and saves again, memory leaks. We reproduce thisEclipseCP

5http://www.eclipse.org/
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Figure 8. Time per iteration for EclipseDiff (logarithmic
x-axis).

1 10 100

Iteration

0

128

256

384

R
ea

ch
ab

le
 m

em
or

y 
(M

B
)

Base
Leak pruning

Figure 9. Reachable memory for EclipseCP with and
without leak pruning (logarithmic x-axis).
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Figure 10. Time per iteration for EclipseCP with and
without leak pruning (logarithmic x-axis).

(cut-paste) leak by writing a plugin that repeatedly exercises
this sequence with about 3 MB of text. Each instance of cut-
save-paste-save is an iteration.

Figure 9 shows reachable memory over iterations of
EclipseCP using a logarithmic x-axis. Without leak pruning,
it quickly runs out of memory after 11 iterations. Leak prun-
ing reclaims enough reachable but dead memory to keep it
running for 971 iterations (9.5 hours). However, steady-state
reachable memory slowly increases over time, either due to
objects that our algorithm fails to prune, or object caches
(common in Eclipse) that Eclipse would eventually flush
before running out of memory. Initially, leak pruning repeat-
edly prunes the reference typesorg.eclipse.jface.text.Default-

UndoManager$TextCommand → String andorg.eclipse.jface.-

text.DocumentEvent → String. Eventually, after about 490

iterations, space is so tight that theSELECT state chooses
another reference type, and it ultimately reclaims over 100
different reference types beforeEclipseCP uses a reclaimed
instance, terminating the program.

ListLeak, SwapLeak, and DualLeak. These leaks are sim-
ple and fast-growing examples posted to the Sun Developer
Network6 and IBM developerWorks.7 Leak pruning toler-
atesListLeak andSwapLeak indefinitely by repeatedly select-
ing and pruning the correct reference type. It cannot tolerate
DualLeak, which involveslive heap growth.

MySQL. TheMySQL leak is a simplified version of a JDBC
application from a colleague that exhausts memory unless
it reacquires a connection periodically. The leak occurs be-
cause the JDBC library keeps already-executed SQL state-
ments in a collection unless the connection or statements are
explicitly closed.MySQL repeatedly creates a SQL statement
and executes it on a JDBC connection; we count 1,000 state-
ments as an iteration. The application stores the statement
objects in a hash table. The program periodically accesses
them when the hash table grows and re-hashes its elements.
Although the hash table and statements are live, each state-
ment references a dead data structure with relatively many
bytes, so leak pruning can significantly increaseMySQL’s
lifetime. It correctly selects and prunes several types of refer-
ences pointing from statement objects, allowing the program
to execute 35 times as many iterations.

SPECjbb2000. SPECjbb2000 is a Java benchmark that sim-
ulates an order processing system [34]. We count 100,000
SPECjbb2000 transactions as an iteration. The program has
a known, growing leak that manifests when it is run for a
long time without changing warehouses. The leak occurs be-
cause it never removes some orders from an order processing
list. Leak pruning cannot tolerateSPECjbb2000’s leak indef-
initely because the program accesses orders in the order list,
keeping them live. However, leak pruning can still reclaim
some memory. This leak grows very slowly. Leak pruning
prunes 82 distinct edge types, most near the end of the run,
sometimes netting fewer than 100 bytes. For example, leak
pruning deletes character set objects in the class libraries that
the application is not using. The program ultimately accesses
a pruned reference.

JbbMod. BecauseSPECjbb2000 has significantlive heap
growth, Tang et al. modified it to make much of its heap
growth stale [35]. We call this versionJbbMod, and leak
pruning runs it for about 10 hours before exhausting mem-
ory, executing 20X more iterations. We note Melt [8] and
LeakSurvivor [35] tolerate this leak until they exhaust the
disk. To determine why leak pruning fails sooner, we modi-
fied Melt to report the bytes used by different types of highly

6http://forum.java.sun.com/thread.jspa?threadID=456545

andhttp://forum.java.sun.com/thread.jspa?threadID=446934
7http://www.ibm.com/developerworks/rational/library/05/

0816_GuptaPalanki/index.html



stale objects that it moves to disk.Leak pruningrepeatedly
selects and prunesspec.jbb.Orderline → java.lang.String →
char[]. In addition to these types,Melt transfers many objects
of typesspec.jbbOrder, java.util.Date, and java.lang.Object[]

to disk. From examining leak pruning’s diagnostic output,
it appears that objects of typeObject[] point to Order ob-
jects, which point toObject[] andDate. Leak pruning does
not prune references fromObject[] to Order because this ref-
erence type’smaxStaleUse value is high (5). Tolerating this
leak longer would require a different policy, e.g., categoriz-
ing references some way other than source-target type, or pe-
riodically decaying each reference type’smaxStaleUse value
to account for possible phased behavior.

Mckoi. Mckoi SQL Database is a database management
system written in Java. This leak8 is primarily a thread leak.
Our current implementation cannot reclaim a thread’s stack,
although it could be modified to do so. Leak pruning runs
Mckoi 60% longer by selecting and pruning dead memory
referenced bythe leaked threads’ stacks.

Delaunay. Delaunay is short running, so it is not clear if it
truly leaks memory or simply keeps some memory reachable
longer than it should. Unlike the other leaks,Delaunay does
not use an unbounded amount of memory. Leak pruning
does not have time to observe it and prune references.

6.1 Alternative Prediction Algorithms

This section evaluates whether our algorithm’s complexity
is merited, by comparing it to two simpler alternatives:

Most stale. In the SELECT state, this algorithm identifies
the highest staleness level of any object. In theDELETE

state, it prunes all references to every object with this
staleness level. This algorithm is effectively the same as
those that move objects to disk [8, 9, 15, 35].

Individual references. This algorithm modifies our default
algorithm by eliding the candidate queue and the stale
transitive closure from theSELECT state. The resulting
algorithm prunes individual stale references rather than
stale subtrees.

Table 2 shows the effectiveness of these prediction algo-
rithms measured in iterations. For example,EclipseCP with
Indiv refs terminates after 41 iterations because the algo-
rithm selects and prunes highly stale, but live,String→ char[]

references. In contrast, our default algorithm prunes refer-
ence typesorg.eclipse.jface.text.DefaultUndoManager$Text-

Command → String andorg.eclipse.jface.text.DocumentEvent

→ String, automatically reclaiming the growing, leaked
String objects without deleting other liveString objects. In
general, our algorithm matches or outperforms the others
since it considers reference types (unlikeMost stale) and
data structures (unlikeIndividual references).

8http://www.mckoi.com/database/mail/subject.jsp?id=2172

LS[35] & Leak Default
Melt [8] Indiv pruning edge

Leak Base Most stale refs Default types
EclipseDiff 259 228 3,380 ≥55,780 1,817
ListLeak 110 108 ≥2.7M ≥2.7M 56
SwapLeak 5 5 11 ≥11,368 83
EclipseCP 11 10 41 971 2,203
MySQL 18 35 114 634 230
SPECjbb2000 135 97 625 632 197
JbbMod 204 41 911 4,267 209
Mckoi 44 47 71 72 308
DualLeak 145 149 144 143 69

Table 2. Iterations executed by leak programs using leak
pruning with several prediction algorithms. Baseis un-
modified Jikes RVM;Most staleis the algorithm used by
LeakSurvivor [35] and Melt [8];Indiv refsdoes not consider
data structures; andDefault is leak pruning’s algorithm.
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Figure 11. Time per iteration for EclipseDiff when it
must exhaust memory prior to pruning.

6.2 Space Overhead

Our implementation adds space overhead to store informa-
tion about edge types in the edge table. For simplicity, it
uses a fixed-size table with 16K slots using closed hash-
ing [13]. Each slot has four words—source class, target
class,maxStaleUse, andbytesUsed—for a total of 256K. A
production implementation could size the table dynamically
according to the number of edge types. The last column of
Table 2 shows the number of edge types used by leak prun-
ing for each leak, measured at the end of the run because
the table never shrinks. Eclipse is complex and uses a few
thousand edge types; the database and JBB leaks are real
programs but less complex and store hundreds of types; and
the microbenchmark leaks store fewer than 100 edge types.

6.3 Full Heap Threshold

By default, our implementation starts pruning references
when the heap is 90% full (Section 3.1). Optionally, it can
wait to prune until the heap is 100% full, i.e., when the VM is
just about to throw an out-of-memory error. Figure 11 shows
the throughput ofEclipseDiff for its first 600 iterations using
a 100% heap fullness threshold. The first spike, at about



125 iterations, occurs because Eclipse slows significantlyas
GCs become very frequent; each GC reclaims only a small
fraction of memory, so the next GC occurs soon after. Later
spikes are smaller because successive pruning occurs when
the heap is only 90% full (since the program has already
exhausted memory once). The spike is about 2.5X taller
than the other spikes, which may be a reasonable tradeoff
to execute programs as long as possible before commencing
pruning.

7. Related Work
Prior work tolerates memory corruption and concurrency
bugs using redundancy, randomness, checkpointing, pad-
ding, and ignoring errors, but these approaches do not help
memory leaks [3, 29, 31]. One industrial response to leaks is
restarting the application, but this mechanism reduces avail-
ability and loses application state that may not be recov-
erable. The prior work most closely related to leak prun-
ing is cyclic memory allocation[25] and offloading leaks to
disk [8, 9, 15, 35].

Detecting leaks. Static leak detectors for C and C++ iden-
tify objects that the programmer forgot to free and are un-
reachable [10, 17]. Dynamic leak detectors for C and C++
find these objects at run time by tracking allocations, frees,
and pointer mutations [16, 21, 24] or by tracking stale-
ness [11, 28]. Leak detectors for managed languages re-
port dynamic heap growth [19, 22, 27, 30, 32] and stale ob-
jects [7]. Leak pruning uses staleness to predict liveness.

Tolerating leaks. Cyclic memory allocationseeks to bound
memory usage by controlling the number of live objects
produced by an allocation site tom [25]. Off-line profil-
ing determinesm and a modified allocator uses a cyclic
buffer. Cyclic memory allocation assumes each allocation
site produces a bounded footprint of live objects, but some
leaks do not have this property. Cyclic memory allocation
may change program semantics since the program is silently
corrupted if it uses more thanm objects, althoughfailure-
oblivious computing[31] often mitigates the effects.

Plug segregates objects at allocation time and re-maps
virtual to physical pages to save physical memory in C
and C++ programs [26]. It differs from leak pruning by
using disk space and not addressing challenges presented by
garbage collection.

Prior work considers memory management for programs
with large working sets executing on Lisp machines [23, 36].
Solutions include incremental copying collection, segregat-
ing objects based on expected lifetime, hardware support for
data type tags, and even avoiding garbage collection alto-
gether by using tertiary memory storage.

LeakSurvivor, Panacea,andMelt tolerate leaks by trans-
ferring potentially leaked objects to disk [8, 9, 15, 35]. They
reclaim virtual and physical memory and modify the col-
lector to avoid accessing objects moved to disk. Leak prun-

ing borrows Melt’s low-overhead, reference-based read bar-
riers. Although not designed to tolerate leaks,bookmarking
collectionmay tolerate some leaks by saving physical, not
virtual, memory and tracking staleness on page granular-
ity [18].

These approaches preserve semantics since they retrieve
objects from disk if the program accesses them. Since they
retrieve objects from disk, the prediction mechanisms do not
have to be perfect, just usually right to keep performance
from suffering. All will eventually exhaust disk space and
crash. Leak pruning requires perfect prediction and uses a
more precise algorithm for predicting dead objects, as shown
in Section 6.1. Leak pruning is less tolerant of errors because
it must throw an error if it makes a mistake. However, it
bounds memory usage, making it suitable when disk space
runs out or no disk is available, e.g., in embedded systems.

8. Conclusion
Leak pruning is an automatic approach for bounding the
memory consumption of programs with leaks, in many cases
increasing availability significantly. It prunes likely leaked
data structures when a program runs out of memory. It
preserves semantics by intercepting any future accesses to
pruned objects. Leak pruning adds overhead low enough for
deployed use. It improves the user experience while buying
developers time to fix bugs, making it a compelling feature
for production systems.
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