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1. INTRODUCTION

While languages such as LISP and Smalltalk have always used garbage collection (GC),
the dramatic increase in the number of programs written in Java, C#, and other modern
languages has prompted a corresponding surge in GC research. A number of these studies
use garbage collection traces and simulations to examine the effectiveness of new GC algo-
rithms [Hirzel et al. 2003; Stefanović et al. 1999; Zorn 1989]. Other research uses traces to
tune garbage collection via profile feedback [Blackburn et al. 2001; Cheng et al. 1998; Sha-
ham et al. 2000; Ungar and Jackson 1992]. A perfect trace for garbage collection includes
the birth and death time of all objects, measured in bytes allocated. (The memory man-
agement community uses memory rather than operations to measure lifetime.) Computing
perfect lifetimes can be a very time-consuming process. Forinstance, atracing collec-
tor must determine all the reachable objects in the heap at every allocation by computing
reachability from the stacks, global variables, and local variables:

n

∑
i=1

jlive objectsj at ai

wheren is the number of objects the program allocates, andai is an allocation event.
This cost is prohibitive even for modest programs that allocate on the order of 100MB
and have an average live size on the order of 10MB, such as the widely used SPECjvm98
benchmarks [SPECjvm98 1998]. On current processors, many of these programs execute
in under a minute, but brute-force trace generation takes over 3 months. Costs are similar
even for a reference counting collector because it also requires a form of tracing to handle
cycles. While future technology advances will reduce this time, these same trends inspire
programmers to use larger data sets.

To avoid this cost, previous research often usesgranulatedtraces which estimate object
lifetimes periodically (e.g., after everyk bytes of allocation). However, researchers have
not studied the effects of granularity on the accuracy of garbage collection simulations
or measures computed from them. While Zorn and Grunwald [1992] examined better
methods of approximating traces, no one has studied what effects these approximations
have either. In this work, we run simulations using granulated traces on a variety of copying
garbage collection algorithms and metrics for evaluating them. The results demonstrate
that granulated traces can produce significantly differentresults and thus that conclusions
drawn from research based on simulations of granulated traces may be problematic.

We introduce the Merlin object lifetime algorithm which efficiently computes object
lifetimes. The Merlin algorithm timestamps live objects when they lose an incoming ref-
erence and later uses the timestamps to reconstruct the timeat which the object became
unreachable. By using timestamps rather than tracing to identify the time of death, the new
algorithm does not require frequent collections nor does itrequire whole-heap collections.
Rather, it makes use of those collections that the system (virtual machine) normally per-
forms to identifywhichobjects have died, and then uses the timestamps to identifywhen
they died. Ordering the dead objects from the latest timestamp to the earliest, the algorithm
works from the current collection time backwards. Merlin thus only processes each object
once to compute its death time after it knows that the object is dead. Merlin’s execution
time is proportional to the total allocations plus the number of times each object loses an
incoming reference,m.
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n

∑
i=1

jobject allocatedj at ai + m

∑
j=1

r j

Experimental results on SPECjvm98 and other programs show that in practice the Merlin
algorithm can improve performance by more than a factor of 800 over brute-force tracing,
though it is 70 to 300 times slower than an untraced program. Merlin thus makes producing
perfect traces much more attractive.

This paper extends our prior work [Hertz et al. 2002a] which introduced the Merlin
algorithm with (1) a better description of the Merlin algorithm, (2) qualitative as well as
quantitative analysis of the effects of trace granulation,(3) a more detailed performance
analysis, (4) an algorithm that uses Merlin to generate granulated traces, and (5) results
and analysis of Merlin heap lifetime visualizations.

As a demonstration of the usefulness of perfect traces, we present heap lifetime visual-
izations. Stefanović [1999] used brute-force traces to produce similar visualizations for a
set of small programs to explore garbage collection performance. By reducing the time to
generate traces, we examine here much larger and more realistic programs. These graphs
reveal lifetime behaviors and trends that enhance the understanding of object lifetimes and
design of garbage collection algorithms, and we offer some analysis here.

The remainder of the paper analyzes the effects of trace granularity on garbage collection
simulation fidelity for a number of collectors, introduces the Merlin trace generation algo-
rithm, and describes additional uses of lifetime traces. Section 2 gives some background
on garbage collection, lifetime traces, and trace granularity. Section 3 describes our exper-
imental methodology for analyzing the effects of trace granularity. Section 4 and 5 present
and discuss the results of our granularity analysis. Section 6 introduces the Merlin trace
generation algorithm and describes how it improves on the previous approaches. Section 7
presents and analyzes results from the new algorithm. Section 8 presents additional uses of
perfect lifetime traces. Finally, Section 9 presents related work and Section 11 summarizes
this study.

2. BACKGROUND

This section explains three background concepts:garbage collection (GC), garbage col-
lection traces and their use in simulations, andgarbage collection trace granularity.

2.1 Garbage Collection

Garbage collection automates the reclamation of heap objects that are no longer needed
[Jones and Lins 1996]. While a wide variety of systems use garbage collectors, we assume
a system that uses an implicit-free environment, i.e., a system that defines an explicitnew
command for object allocation, but not afree command. Since garbage collectors cannot
know which objects the program will use in the future withoutadditional information,
collectorsconservativelyapproximate liveness with reachability; all reachable objects are
assumed live, and all unreachable objects may be reclaimed since it is not possible for
the program to access them again.1 To determine reachability, a collection begins at a
program’s roots. Therootscontain all the pointers from outside of the heap into the heap,

1Systems with finalization must maintain pointers to these objects until they perform the finalization operations,
at which point the collector can reclaim them.
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such as the program stacks, static (global) variables, and local variables in the current
procedure. The collector then finds the live objects by finding all objects in the transitive
closure over the points-to (reachability) relationship.

Whole-heap collectors compute the reachability of every object and remove all unreach-
able objects on every collection. Many collectors (e.g., generational collectors [Lieberman
and Hewitt 1983; Ungar 1984]) often collect part of the heap,limiting the work at a col-
lection. Because the collector reclaims only unreachable objects, it must conservatively
assume that the regions of the heap not examined contain onlylive objects. If objects in
the unexamined region point to objects in the examined region, the target objects must re-
main in the heap. Collectors typically usewrite barriersto find pointers into the collected
region. A write barrier is code executed by the system in conjunction with each pointer
store operation. A write barrier typically tests if the pointer target is in a region that will
be collected before the region containing the pointer source, and records such pointers in
some data structure.

2.2 Copying Garbage Collection Algorithms

We use four copying GC algorithms for evaluating trace granularity: a semi-space collec-
tor, a fixed-size nursery generational collector [Lieberman and Hewitt 1983; Ungar 1984],
a variable-sized nursery generational collector [Appel 1989], and an Older-First collec-
tor [Stefanović et al. 1999; Stefanović et al. 2002]. We briefly describe each of these here
and refer the reader to previous work for more details [Jonesand Lins 1996].

A semi-space collector (SS) allocates intoFrom space using a bump pointer. A bump
pointer defines a boundary between allocated and free memorywithin a larger contiguous
region. It allows simple and efficient allocation by incrementing the pointer by the size of
the allocated object. When SS runs out of space, it collects this entire space by finding all
reachable objects and copying them into a second space, called To space. The collector
then reversesFrom andTo space and continues allocating. Since all objects inFrom space
may be live, it must conservatively reserve half the total heap for theTo space, as do the
generational collectors that generalize this collector.

A fixed-size nursery (FG) two-generation collector dividestheFrom space of the heap
into a nursery and an older generation. It allocates into thenursery. When the nursery is
full, it collects the nursery and copies the live objects into the older generation. It repeats
this process until the older generation is also full. It thencollects the nursery together with
the older generation and copies survivors into theTo space of the older generation.

A variable-size nursery two-generation collector (VG) also divides theFrom space into
a nursery and an older generation, but does not fix the boundary between them. In the
steady state, the nursery is some fraction ofFrom space. When the nursery is full, VG
copies live objects into the older fraction. The new nurserysize is reduced by the size of
the survivors. When the nursery becomes too small, VG collects all of From space. The
obvious generalization of these variants ton generations apply.

The Older-First collector (OF) organizes the heap in order of object age. It collects a
fixed-size window that slides through the heap from older to younger objects. When the
heap is full in the steady state, OF collects the window, returns the free space to the nursery,
compacts the survivors, and then positions the window for the next collection at objects just
younger than those that survived. If the window bumps into the allocation point, OF resets
the window to the oldest end of the heap. OF need only reserve space the size of one
window for collection (as opposed to half the heap for the other algorithms).
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2.3 Garbage Collection Traces and Simulations

Given the typical difficulty of implementing a known garbagecollector, implementing and
debuggingnewgarbage collection algorithms and optimizations can be a daunting process.
Especially when a collector is designed to take advantage ofnew or unavailable hardware
(e.g., a 64-bit address space [Stefanović 1999]) or compiler optimizations (e.g., [Hirzel
et al. 2003]), researchers have often used simulators to enable rapid prototyping and eval-
uation before investing in a full implementation. By loosening restrictions on the knowl-
edge available to a collector and what a GC algorithm may do, simulators are also useful
for oracle-driven limit studies [Hertz and Berger 2004; Stefanović 1999]. A final value of
simulators is their ability to support evaluations of a single implementation of a garbage
collector with input from any number of different programming languages or virtual ma-
chines. As a portion of our study is an examination of simulator fidelity, here we provide
the reader a basic description of GC simulators and the traces that drive them.

A garbage collection traceis a chronological record of every object allocation, heap
pointer update, and object death (object becoming unreachable) over the execution of a
program. Following common practice, traces measure time inbytes of allocation and not
number of operations. Each event includes the information that a memory manager needs
for its processing. Processingobject allocationrecords requires an identifier for the new
object and the object’s size;pointer updaterecords include the object and field being up-
dated and the new value of the pointer;object deathrecords indicate which object became
unreachable. These events constitute the minimum amount ofinformation that GC simu-
lations need. Depending on the algorithm and detail of simulation, other events, such as
procedure entry and exit, field reads, or root pointer enumeration may also be necessary
and/or useful.

Simulators then apply one or more GC algorithms and optimizations to a given pro-
gram trace. The trace must contain all the information that agarbage collection algorithm
would actually use in a live execution and all of the events upon which the collector may
be required to act, independent of any specific GC implementation. Traces do not record
all aspects of program execution, but only those which are needed to recreate collector
performance accurately. While even single-threaded garbage collection may not be deter-
ministic, simulations return deterministic results sincethe trace file is fixed. With repre-
sentative trace files, researchers can rely upon these results, making simulation attractive
and accurate traces critical.

GC trace generators must be integrated into the memory manager of the interpreter or
virtual machine in which the program runs. If the program is compiled into a stand-alone
executable, the compiler back end must generate trace generation code in addition to the or-
dinary memory management code at each object allocation point and pointer update. The
generator can log pointer updates by instrumenting pointerstore operations; this instru-
mentation is particularly easy if the language and GC implementation use write barriers,
since the generator can simply piggyback its instrumentation onto existing code.

The common brute-force method of computing object lifetimes determines reachability
by performing a whole-heap GC after every allocation. The brute-force method incurs the
expense of collecting theentireheap prior to allocatingeachobject. In current technology,
brute-force accurate trace generation for a small micro-benchmark at all allocation points
takes days; traces of simple single-threaded programs fromSPECjvm98 can require several
months.
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Even though objects may die between allocations, the memorymanagement literature
uses bytes of allocation to measure object lifetimes. Many GC algorithms only trigger
collection when they need additional space in the heap, i.e., immediately before allocating
a new object, and thus this measurement is fully accurate. GCalgorithms such as deferred
reference counting [Deutsch and Bobrow 1976; Blackburn andMcKinley 2003] can initiate
collections at other GC safe points as well, such as a procedure call or return. A GCsafe
point requires that the garbage collector correctly enumerate all root pointers. Although
we do not consider these additional points here, such a tracewould include markers for
all such points, and a brute-force trace generator would perform additional reachability
analyses at all these points as well.

2.4 Garbage Collection Trace Granularity

To reduce the prohibitive cost of brute-force trace generation, previous work often performs
object lifetime analysis only periodically, e.g., after every k bytes of allocation. It also
guarantees the trace to be accurate only at those specific points; the rest of the time the
trace may overestimate the set of live objects. For correctness, any simulation must assume
that objects become unreachable only at the accurate points. Thegranularity of a trace is
the period between these moments of accurate death knowledge.

3. EFFECTS OF TRACE GRANULARITY

This section evaluates the effects of trace granularity on simulation accuracy using copying
garbage collectors as the set of client algorithms. We first describe our simulator and pro-
grams. To our knowledge, all previous GC simulation work (including our own) neglected
to consider precisely the question of information accuracyat different points in a trace with
a given granularity. We explore a variety of methods for handling granularity in simulation.
We find that although some methods yield better results than others, all methods introduce
inaccuracies into GC algorithm simulations, even with relatively modest trace granularity.

3.1 Simulator Suite

For our trace granularity experiments, we usedgc-sim, a GC simulator suite from the Uni-
versity of Massachusetts with front-ends for Smalltalk andJava traces. In our simulator,
we implemented four different GC algorithms: SS, FG, VG, andOF, as described in Sec-
tion 2.2. The first three collectors are in widespread use. For each collector, we use a
number of fixed heap sizes to explore the inherent space-timetrade off in garbage collec-
tion. We simulate eight differentFrom space sizes, from 1.25 to 3 times the maximum
size of the live objects within the heap, at 0.25 increments.For FG and VG we simulated
each heap size with five different nursery sizes, and for OF, five window sizes. These latter
parameters ranged from16 to 5

6 of From space, in1
6 increments.

3.2 Granularity Schemes

We designed and implemented four different schemes to handle trace granularity. Each
of these schemes is independent of the simulated GC algorithm. By affectingwhenthe
collections occur, they explore the limits of trace granularity.

3.2.1 Unsynchronized.When we began this research, our simulator used this naive
approach to handling trace granularity: it did nothing. We call this methodUnsynchro-
nized. Unsynchronized simulations allow a GC to occur at any time in the trace; simulated
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collections occur at the natural collection points for the garbage collection algorithm (such
as when the heap or nursery is full). This scheme allows the simulator to run the algorithm
as it is designed and does not consider trace granularity when determining when to collect.
Unsynchronized simulations may treat an object as reachable because the object death
record was not yet reached in the trace, even though the object is unreachable. However,
they allow a GC algorithm to perform collections at their natural points, unconstrained by
the granularity of the input trace.

3.2.2 Synchronized Schemes.Three other schemes, which we callSynchronized, sim-
ulate collections only at those points in the trace with accurate knowledge of unreachable
objects. The schemes check if a GC is needed, or will be neededsoon, only at the accu-
rate points and simulate a collection only at these points. Figure 1 shows how each of the
Synchronized schemes makes collection decisions. In each of these figures, the solid line
labeled N is the natural collection point for the algorithm.The triangles denote points with
perfect knowledge and the shaded region indicates one granule of the trace. Each scheme
performs the collection at the point in the trace with perfect knowledge within the shaded
region. This point is shown by the arrow labeled C.

SyncEarly.The first scheme we callSyncEarly. Figure 1(a) shows how SyncEarly de-
cides when to collect. If, at a point with perfect knowledge,the simulator determines that
the natural collection point will be reached within the following granule of the trace, Sync-
Early forces a collection. SyncEarly always performs a collectionat or beforethe natural
point is reached. Even assuming there are no effects from trace granularity, SyncEarly sim-
ulations may still perform extra garbage collections, e.g., when the last natural collection
point occurs between the end of the trace and what would be thenext point with perfect
knowledge. But SyncEarly ensures that the simulated heap will never grow beyond the
bounds it is given.

SyncLate.The second scheme isSyncLate. Figure 1(b) shows how SyncLate decides
when to collect. At a point with perfect knowledge, if SyncLate computes that the natural
collection point occurred within the preceding granule of the trace, SyncLate invokes a
garbage collection. SyncLate collectsat or after the natural point is reached. SyncLate
simulations may collect too few times, e.g., when the last natural collection point occurs
between the last point with perfect knowledge and the end of the trace. SyncLate allows
the heap and/or nursery to grow beyond their nominal bounds between points with perfect
knowledge, but enforces the bounds whenever a collection iscompleted.

SyncMid.The last Synchronized scheme isSyncMid. Figure 1(c) shows how SyncMid
decides when to collect. SyncMid forces a GC invocation at a point with perfect knowledge
if a natural collection point is within half of a granule in the past or future. SyncMid
requires a collection at the point with perfect knowledgeclosestto the natural collection
point. SyncMid simulations try to balance the times they invoke collections too early and
too late to achieve results close to the average. SyncMid simulations may, like SyncEarly,
perform more or may, like SyncLate, perform fewer garbage collections. Between points
with perfect knowledge, SyncMid simulations may also require the heap and/or nursery
to grow beyond their nominal bounds. However, heap bounds are enforced immediately
following a collection.
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Fig. 1. These figures show points with perfect knowledge (triangles) and the natural collection point (N) (where
the collector runs out of space). The shaded region highlights a granule-sized region of the trace and contains the
collection point (C) where the Synchronization scheme willactually simulate a collection.

4. TRACE GRANULARITY RESULTS

Using our simulator suite, we performed a number of experiments to determine if trace
granularity affects garbage collection simulations. We examined the performance of each
combination of collector and trace granularity scheme described above on a variety of
Java and Smalltalk benchmarks across several commonly usedGC metrics. Our results
show that even small trace granularities produce differences in simulator results and that
algorithm choice could help limit, but not eliminate, this problem. The remainder of this
section describes in more detail the metrics we considered,the experiments we performed,
and presents an overview of these results.

4.1 GC Simulation Metrics

Each GC simulation measures the following: the number of simulated collections, the
mark/consratio, the number ofwrite-barrier stores, and thespace-time product. For a
given trace, these metrics are deterministic.

The mark/cons ratio is the number of bytes that the collectorcopied (marked) divided
by the number of bytes allocated (cons’ed, in LISP terminology). The ratio approximates
the amount of work done by a collector. Higher mark/cons ratios suggest an algorithm will
need more time, because it must process and copy more objectsand more bytes.

Another metric we report is the number of write-barrier stores during a program run.
Since many garbage collectors do not collect the entire heap, they use a write barrier to
find pointers between collection regions (as discussed in Section 2.1). The write barrier
instruments pointer store operations to determine if the pointer crosses from one collec-
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tion region to another. Depending on the GC algorithm, pointers crossing particular region
boundaries in particular directions must be recorded (“remembered”) so that they can sub-
sequently be examined at GC time; these stores are calledwrite-barrier stores. The number
of pointer stores, and the cost to instrument each of these, does not vary in a program run,
but the number of write-barrier stores varies between GC algorithms at run time and affects
their performance.

We measure the space-time product, computing the sum of the number of bytes used
by objects within the heap at each allocation point multiplied by the size of the allocation,
i.e., the integral of the number of bytes used by objects within the heap with respect to
bytes of allocation (time). Since the number of bytes allocated does not vary between al-
gorithms, this metric captures how well an algorithm manages issues such as fragmentation
throughout the program execution.

None of these metrics is necessarily sufficient in itself to determine how well an algo-
rithm performs. Algorithms can perform better in one or moreof the metrics at the expense
of another. The importance of considering the totality of the data can be seen in models de-
veloped that combine the data to determine the total time each algorithm needs [Stefanović
et al. 1999].

4.2 GC Traces

We used 15 GC traces in this study. Nine of the traces are from the Jikes RVM [Alpern
et al. 1999; Alpern et al. 2000], a compiler and run-time system for Java in which we
implemented our trace generator. Because it is written in Java, these traces include heap
allocations from both the application and the Jikes RVM. Thenine Java traces are: bloat-
bloat (Bloat [Nystrom 1998] using its own source code as input), two different configu-
rations of Olden health (5 256 and 4 512) [Cahoon and McKinley2001], and compress,
jess, raytrace, db, javac, and jack from SPECjvm98 [SPECjvm98 1998]. We also have six
GC traces that we generated previously using the Universityof Massachusetts Smalltalk
Virtual Machine. The Smalltalk traces are: lambda-fact5, lambda-fact6, tomcatv, heapsim,
tree-replace-random, and tree-replace-binary [Hosking et al. 1992; Stefanović et al. 1999].
More information about the programs appears in Table I. These programs are widely used
in the garbage collection literature.

We implemented a filter that accepts a perfect trace and target value, and outputs the
trace with the targeted level of granularity. From our perfectly accurate traces for each
of the programs we generated 7 granulated versions of each trace with trace granularities
ranging from 1KB to 64KB. To examine the effects of very largetrace granularity, we use
granularities of 512KB, 1024KB and 2048KB. We selected the minimum 1KB granularity
to be smaller than most prior traced-based research but still large enough to provide some
savings in trace generation time. Table II shows an example of the simulator output wherejGCj is the number of collections,xcopy bis the number of excess copied bytes (unreach-
able bytes copied), andmut. i/s is the number of write-barrier stores that occur during
program execution.

4.3 Analysis

We began our experiments by simulating all combinations of benchmark, trace granularity,
granularity scheme, GC algorithm, andFrom space and nursery (window) size, recording
the four metrics from above for each combination. This provided us with 600 OF, VG, and
FG simulation runs and 120 SS simulation runs for each combination of trace granularity
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Table I. Traces used in the experiment. Sizes are expressed in bytes.
Program Description Max. Live Bytes Alloc Objs Alloc
bloat-bloat Bytecode-Level Optimization and

Analysis Tool 98 using its own
source code as input

3 207 176 164 094 868 3 653 255

Olden Health (5 256) Columbian health market simulator
from the Olden benchmarks, recoded
in Java

2 337 284 14 953 944 662 395

(4 512) A smaller run of Olden health 1 650 444 9 230 756 353 094
SPEC 201 compress Compresses and decompresses

20MB of data using the Lempel-Ziv
method

8 144 188 120 057 332 138 931

SPEC 202 jess Expert shell system using NASA
CLIPS

3 792 856 321 981 032 8 575 988

SPEC 205 raytrace Raytraces a scene into a memory
buffer

5 733 464 154 028 396 6 552 000

SPEC 209 db Performs series of database functions
on a memory resident database

10 047 216 85 169 104 3 314 278

SPEC 213 javac Sun’s JDK 1.0.4 compiler 11 742 640 274 573 404 8 096 562
SPEC 228 jack Generates a parser for Java programs3 813 624 322 274 664 8 107 004
lambda-fact5 Untyped lambda calculus interpreter

evaluating 5! in the standard Church
numerals encoding

25 180 1 111 760 53 580

lambda-fact6 Untyped lambda calculus interpreter
evaluating 6! in the standard Church
numerals encoding

54 700 4 864 988 241 864

tomcatv Vectorized mesh generator 126 096 42 085 496 3 385 900
heapsim Simulates a garbage collected heap 549 504 9 949 848 764 465
tree-replace-random Builds a binary tree then replaces

random subtrees at a fixed height
with newly built subtrees

49 052 2 341 388 121 588

tree-replace-binary Builds a binary tree then replaces
random subtrees with newly built
subtrees

39 148 818 080 34 729

Table II. Simulator output from a fixed-sized nursery (FN) simulation of Health (4, 512). The top lines are the
metrics after six collections, when the differences first become obvious; the bottom lines are the final results of
the simulation.jGCj alloc b copy b xcopy b garbage b mark/con xcopy/copy mut. i/s

6 5 221 236 1 098 480 268 088 3 770 048 0.210 387 0.244 054 14 243

10 9 230 756 1 552 152 284 404 6 622 732 0.168 150 0.183 232 40 675

(a) Perfect TracejGCj alloc b copy b xcopy b garbage b mark/con xcopy/copy mut. i/s
6 4 787 328 1 443 608 355 768 2 824 328 0.301 548 0.246 444 11 644

11 9 230 756 2 007 252 375 464 6 392 528 0.217 453 0.187 054 41 949

(b) SyncMid With 1KB Granularity
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and granularity scheme. From this large population of data we perform qualitative and
statistical analyses of the results.

We exclude the following sets of simulations that do not exercise the memory system
well, and/or yield incomplete information. We remove simulations with fewer than 10 gar-
bage collections. We remove simulations where the trace granularity equaled 50% or more
of the simulatedFrom space size, since trace granularity would obviously impactthese
results. We also excluded simulations where either the simulation using the perfect trace
or granulated trace could not run within the given heap size.For example, the heap size
was too small to accommodate imperfect collection due to late or early synchronization.

For our statistical study, the number of experiments remaining at the 1KB granularity
was about 90 for SS, 200 for VG, 250 for FG, and 425 for OF. The number of valid
simulations does not vary by more than 2%–3% until the 32KB granularity. At the 32KB
granularity, there are 20% fewer valid simulations. The numbers continue to drop as the
granularity increases; by the 2048KB granularity there arefewer than half the number of
usable simulations as at the smallest granularity.

We analyze the data as follows to reveal if trace granularityaffects GC simulations and
if it does, at what granularities do differences appear. To aggregate the data, we normalize
the granulated trace simulation results to the results of anidentically configured simulation
using a perfect trace. We use the logarithm of this ratio so that values twice as large and half
as much average to 1. To provide a qualitative analysis of theeffects of trace granularity, we
compared the normalized simulator result of each metrics versus the granularity of the trace
being simulated. We found that expressing the trace granularity by different methods helps
show different causes of these errors. The three graphs in Figure 2 all show normalized
mark/cons values for SyncMid with VN, but using three different methods of expressing
the trace granularity.

Figure 2(a) plots the relative mark/cons ratio as a functionof the trace granularity. This
graph reveals that normalized simulator results for this metric range from 1.6 to 0.5 at even
the smallest granularity with the spread increasing at larger granularities. From this graph,
however, it is difficult to determine how much of this behavior is due to the relative size
of the trace. Figure 2(b) shows the same results as a functionof trace granularity relative
to the maximum live size of the trace. It separates the data, and shows the range of errors
for the mark/cons ratio that can occur at a single heap size. Figure 2(c) expresses the trace
granularity relative to the size of thesimulatedheap and is a better predictor of error, but
still does not place a tight bound on the deviations. Figure 3plots relative trace granularity
for VN using SyncEarly, SyncLate, and Unsynchronized. In comparison to Figure 2(c),
SyncMid is as good as or better than the other granulation schemes.

While these results are helpful for understanding when errors occur, statistical analysis
is needed to determine (1) if measures of trace granularity are simulation-dependent, (2)
if there exists some granularity size that could yield acceptable error at trace generation
time; and (3) if even when relative trace granularity is quite small, we will continue to see
a sizable error in simulated results.

For a more definitive answer as to whether trace granularity affects GC simulations, we
performed two-tailed t-tests on the aggregated results forall metrics. A two-tailed t-test
determines if the difference between the actual mean (e.g.,the result from the granulated
trace) and expected mean (e.g., the result if trace granularity had no effect on the simula-
tor results) is the result of natural variance in the data or the effects of trace granulation
are larger than can be explained by normal variance. Following convention, we consid-
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Table III. Smallest granularity (in KB) at which each metricbecomes significantly different, by simulation
method and collector. Differences were tested using a two-tailed t-test at the 95% confidence level (p = 0.05).

Unsynced SyncMid SyncEarly SyncLate
SS FG VG OF SS FG VG OF SS FG VG OF SS FG VG OF

Mark/Cons 1 1 1 1 none 1 none 1 1 1 4 4 1 8 16 4
Space-Time 1 1 1 1 none 1 2 1 1 1 1 1 1 1 1 2jGCj 1 1 16 1 none 1 16 1 1 1 4 4 1 1 1 1
WB Stores n/a 16 16 1 n/a 32 16 nonen/a 2 8 4 n/a 2 4 8

Table IV. Smallest granularity (in KB) at which each metric becomes significantly different, by simulation
method and collector. Differences were tested using a two-tailed t-test at the 95% confidence level (p= 0.05).
This table considers only data from traces with a maximum live size of 2MB or more.

Unsynced SyncMid SyncEarly SyncLate
SS FG VG OF SS FG VG OFSS FG VG OFSS FG VG OF

Mark/Cons 1 1 4 32none 512 none 64 8 512 none 832 1 1024 16
Space-Time 4 1 512 1 1 1 512 32 1 1 512 2 16 1 512 512jGCj 32 1 512 16none 1 512 102464 1 512 8 16 1 64 8
WB Storesn/a 512 2098 512 n/a 16 1 nonen/a 32 1 8n/a 16 1024 16

ered only differences at the 95% confidence level or higher (p� 0.05) to be statistically
significant (more than the result of the random variations observable in the simulator re-
sults). When the t-test finds that the granulated results aresignificantly higher at the 95%
confidence level, it signifies that were the experiment repeated with similarly granulated
traces, 95% of repeated experiments will also find that the granulated trace mean will be
larger than results generated from perfect traces [Natrella 1963]. A similar argument exists
for results that the t-test determine are significantly lower. Table III shows the smallest
granularity, in Kbytes, at which we observe a statisticallysignificant difference for each
combination of collector, metric, and simulation method. It includes the mark/cons ra-
tio, Space-Time–which measures fragmentation,jGCj–the number of collections, andWB
Stores–the number of pointers the write barrier must record for incremental collection (i.e.,
older to younger pointers in FG and VG, and cross increment pointers in OF). Section 4.1
describes these in more detail.

Programs with smallerFrom space and nursery (window) sizes will obviously be more
sensitive to trace granularity. Just as we removed simulations where the granularity was
over half ofFrom space size, we re-ran our analysis using only those traces that, at some
point, had enough live objects to equal the largest trace granularity. The excluded programs
are small enough that a trace generator using the brute-force method of lifetime analysis
can generate perfect traces in under 8 hours. The traces remaining in this analysis are
those for which tracing using the brute-force method would need to generate granulated
traces. The number of remaining simulations ranged from around 40 (for SS) to around
220 (for OF) at the 1KB granularity and does not vary by more than 1 or 2 until the 2048KB
granularity where the counts of the OF and all Unsynchronized simulations decrease by
about 10%. The results of this analysis appear in Table IV.

5. TRACE GRANULARITY DISCUSSION

The data in Table III are quite revealing about the effects oftrace granularity and the use-
fulness of the different schemes in handling granulated traces. While Figure 2(a) shows
that there can be a considerable range of errors, Table III shows that this still isn’t enough to
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(a) Mark/cons results for SyncMid runs of VN
by trace granularity. At even the smallest granu-
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(b) Mark/cons results for SyncMid runs of VN
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(c) Mark/cons results for VN by ratio of trace
granularity to the simulated heap size. Shows
larger relative granularities can cause smaller
simulated mark/cons values.

Fig. 2. Qualitative analyses of the effects of trace granularity on simulator fidelity of mark/cons measurements for
runs of VN using SyncMid. While relatively large errors occur at even the smallest trace granularities, patterns
emerge when the results are plotted against the ratio of trace granularity versus simulated heap size.

establish statistically significant distortions. For a majority of the metrics, however, a gran-
ularity as fine as one kilobyte is enough to cause this distortion. Clearly, trace granularity
significantly affects the simulator results.

5.1 Unsynchronized Results

Unsynchronized collections dramatically distort simulation results. In Table III, two col-
lectors (SS and OF) have statistically significant differences for every metric at the 1KB
granularity. In both cases, the granulated traces copied more bytes, needed more col-
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 0.25

 0.5

 1

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

R
e

la
ti
v
e

 M
a

rk
/C

o
n

s
 R

a
ti
o

Trace Granularity Relative to Heap Size

Mark/Cons Ratio for SyncEarly Runs of the Generational (VN) Collector

(a) Mark/cons results for SyncEarly runs of VN
versus the ratio of trace granularity to simulated
heap size. While the results initially tend to be
too high, at the largest relative granularity the re-
sults are too low.
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(b) Mark/cons results for SyncLate runs of VN
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(c) Mark/cons results for Unsynchronized runs
of VN by trace granularity relative to simulated
heap size. This graph shows the largest set of
distortions for VN.

Fig. 3. Qualitative analyses of the effects of trace granularity on simulator fidelity for measurements of mark/cons
on VN. At even the smallest granularities, there are wide ranges in simulator results.

lections, and their heaps were consistently fuller. For both collectors the differences were
actually significant at the 99.9% confidence level or higher (p� 0.001), meaning we would
expect similar results in 999 out of 1000 experiments. The generational collectors did not
fare much better. VG and FG simulations using traces with only 1KB of granularity av-
eraged 2.8% and 5.0% higher mark/cons ratios than with perfect traces, respectively. As
one would expect, these distortions grew with the trace granularity. In Unsynchronized
simulations, collections may come at inaccurate points in the trace; the garbage collector
must process and copy objects that are reachable only because the trace has not reached the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Generating Object Lifetime Traces with Merlin � 15

next set of death records. Once copied, these objects increase the space-time product and
cause the heap to be full sooner, and thus require more frequent GCs. At the 16KB gran-
ularity, FG averaged “only” 2.0% more collections—the other collectors averaged from
6.9% (VG) to 10.5% (SS) more. As these incorrectly promoted objects cause needless
promotion of the objects to which they point, this process snowballs so that even small
granularities quickly produce significant differences. Only the number of write-barrier
stores for the generational collectors and the number of collections required for VG are not
immediately affected. There are not significantly more pointers from the older generation
to the nursery because Unsynchronized collections tend to incorrectly promote objects that
are unreachable and cannot be updated.

We expect simulations using larger heaps to be less affectedby these issues. The results
in Table IV show that this hypothesis is true. The space-timeproduct and mark/cons results
for SS show that objects are staying in the heap longer. For VGsimulations, however, we
do not see a significant increase in the number of collections(at 16KB granularity, these
simulations average only 0.09% more collections); the extra objects require the collector
to perform more whole-heap collections and not just nurserycollections. Therefore each
collection does more work: a conclusion validated by the significantly higher mark/cons
ratio (at 16KB granularity VG’s mark/cons ratio is 15.7% greater on average than perfect
simulation). Irrespective of the collection algorithm, Unsynchronized simulations clearly
distort the results. This finding suggests that trace file formats should clearly label the
points in the trace with perfect knowledge.

5.2 Synchronized Results

Synchronized simulations tend to require slightly higher granularities than Unsynchronized
before producing significant distortions. As can be seen in Table III, every Synchronized
scheme significantly distorts the results for each metric for at least one collector and at least
one metric for each collector. Examining the results from Table III and Table IV reveals
a few patterns. Considering all the traces, SyncEarly and SyncLate still produce differ-
ences from simulations using perfect traces, but require slightly larger trace granularities
than Unsynchronized before the differences become statistically significant. SyncMid has
several cases where significant distortions do not appear, but this result is both collector-
and metric-dependent. In addition, there are still statistically significant distortions when
using traces with granularities as small as 1KB. In Table IV,which considers only traces
with larger maximum live sizes, Synchronized simulations provide better estimates of the
results from simulating perfect traces. There still exist significant differences at fairly small
granularities, however.

Because Synchronized simulations affect only when the collections occur, they do not
copy unreachable objects merely because the object death record has not been reached. In-
stead, adjusting the collection point causes other problems. Objects that are allocated and
those whose death records should occur between the natural collection point and the Syn-
chronized collection point are initially affected. Depending on the Synchronized scheme,
these objects may be removed from the heap or processed and copied earlier than in a
simulation using perfect traces. Once the heap is in error (containing too many or too few
objects), it is possible for the differences to be compounded as the Synchronized simula-
tion may collect at points even further away (and make different collection decisions) than
the simulation using perfect traces. Just as with Unsynchronized simulations, small initial
differences can snowball.
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SyncEarly.SyncEarly simulationstendto decrease the space-time products and increase
the number of collections, write-barrier stores, and mark/cons ratios versus simulations
using perfect traces. While generally true, FG contradictsthis trend, which produces a
higher space-time product at smaller granularities. Normally, FG copies objects from the
nursery because they have not had time to die before collection. SyncEarly exacerbates
this situation, collecting even earlier and copying more objects into the older generation
than similar simulations using perfect traces. At even 1KB of granularity, the average FG
simulation’s space-time product is more than 1.0% larger than identical simulations using
perfect traces considering all experiments and just those with larger live sizes. As trace
granularity grows, however, this result disappears (the simulations still show significant
distortions, but in the expected direction) because the number of points in the trace with
perfect knowledge limits the number of possible GCs.

SyncLate.In a similar, but opposite manner, SyncLate simulationstendto decrease the
mark/cons ratio and number of collections. As trace granularity increases, these distortions
become more pronounced as the number of potential collection points is limited as well.
Not every collector produces the same distortion on the samemetric, however. Excluding
the traces with smaller live sizes, FG averages 1.8% higher mark/cons ratios and 0.5%
more GCs versus perfect traces at even a 1KB granularity. While SyncLate simulations
allow it to copy fewer objects early on, copying fewer objects causes the collector to delay
whole-heap collections. The whole-heap collections remove unreachable objects from the
older generation and prevent them from forcing the copying of other unreachable objects
in the nursery. The collector eventually promotes more and more unreachable objects, so
that it often must perform whole-heap collections soon after nursery collection, boosting
both the mark/cons ratio and the number of GCs.

SyncMid.As expected, the best results are for SyncMid. From Table IV,the larger
From space sizes produce similar results for SyncMid simulations and simulations using
perfect traces at even large granularities. The design of SyncMid averages the times that
it collects too early with those it collects too late. This balance makes the effects of trace
granularity hard to predict. Both SyncEarly and SyncLate showed collector-dependent
behavior. While conclusions for a new or unknown collector should not be drawn from
their results, one could make assumptions about how they affect simulated metrics. In
contrast, SyncMid simulations produce biases that are dependent upon both the metric
and the collector: at a 2KB granularity, FG averages a mark/cons ratio 1.6% higher than
simulations with perfect traces while VG’s average mark/cons ratio is 0.4% too low. While
the results were very good on the whole, there is still not a single metric for which every
collector returned results without statistically significant distortions.

5.3 Trace Granularity Conclusion

While Unsynchronized simulations clearly caused extreme distortions, SyncMid some-
times allowed the use of traces with very small granularities to be simulated without sig-
nificant differences. However, all of the Synchronized simulations suffer from statisti-
cally significant deviations. Because the metrics are distorted differently depending on
the metric and simulated garbage collection algorithm, it would be impossible to “adjust”
simulator results for novel algorithms or optimizations. Although we simulate copying
garbage-collection, most of the metrics and algorithms arenot dependent on copying, and
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should hold for other algorithms such as mark-sweep (see Section 10 for additional discus-
sion). These results prove the need for an accurate tracing and simulation environment in
which to evaluate and compare garbage collection algorithms.

6. TRACE GENERATION USING MERLIN LIFETIME COMPUTATION

Life can only be understood backwards; but it must be lived forwards.–Søren Kierkegaard

The previous section motivates accurate traces for use in GCsimulations, but the cost of
whole-heap collection after each object allocation in a tracing collector is prohibitive. This
section presents our newMerlin Algorithmfor computing accurate object lifetimes. We de-
signed Merlin for use with tracing copying collectors that we had already built. However,
the key propagation of time stamps is similar to the use of decrements in reference count-
ing (see Section 9) and could easily be used with other collectors, such as mark-sweep
(see Section 10). Merlin reduces the time needed to generatethe Java traces discussed in
Section 4.2 from several years to a single weekend. Merlin does not require frequent col-
lections and thus places less stress on the underlying system than the brute-force method
of computing object lifetimes.

According to Arthurian legend, the wizard Merlin began lifeas an old man. He then
lived backwards in time, dying at the time of his birth. Merlin’s knowledge of the present
was based on what he had already experienced in the future. Merlin, both the mythical
character and our algorithm to compute object lifetimes, works in reverse chronological
order so that each decision can be made correctly based upon knowledge of the outcome.
Because our algorithm works backwards in time, the first timeMerlin encounters an object
in its calculation is the time the object dies (i.e., is not reachable).

The remainder of this section overviews how Merlin computeswhen objects transition
from reachable to unreachable, gives a detailed explanation of why Merlin works, and
discusses implementation issues. While our initial discussion focuses on using Merlin on-
line for generating the perfect traces needed for simulation, we also present how Merlin
can be used to compute object lifetimes off-line from an otherwise complete trace, and
finally we discuss, if using granulated traces is appropriate, how Merlin can generate them.

6.1 Merlin Algorithm Overview

The brute-force method of computing object lifetimes is slow because, at each possible
time, it computes which objects are unreachable by collecting the entire heap. The Mer-
lin algorithm improves upon brute force by instead computing the last time objects are
reachable. Since time advances in discrete steps, an object’s death time is the time interval
immediately following the one when it was last reachable.

Merlin has three key parts: (1) a forward pass that records events that make objects
unreachable, (2) garbage collections that identify dead objects, and (3) a backward pass
that computes for all dead objects the time at which they become unreachable.

During the forward pass, Merlintimestampseach object with the current timewhenever
it may become unreachable—i.e., whenever an object loses anincoming reference. If the
object later loses another incoming reference (because theearlier update did not leave it
unreachable), then Merlin simply overwrites the previous timestamp with the current time.
Since an object only dies once when it becomes unreachable, Merlin computes this time
after it knows an object is dead. Merlin could compute this time at the end of program
execution when all objects are dead. Merlin instead uses a more efficient solution that pig-
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Fig. 4. When the program eliminates the last incoming references to objects A and B, they transition to unreach-
able. When the program eliminates the last reachable reference to object C, it becomes unreachable, even though
it has other incoming references. Updates to objects that point directly or transitively to objects D, E, and F make
them unreachable.

Table V. How objects become unreachable

(1) A pointer update transitions an object from one to zero incoming references. For example, objects A and B
in Figure 4.

(2) A pointer update transitions an object fromn to n�1 incoming references, and now alln�1 references are
from unreachable objects. For example, object C in Figure 4.

(3) An object’s number of incoming references does not change, but a pointer update transitions the last reach-
able objects pointing to it to unreachable. For example, objects labeled D, E, and F in Figure 4.

gybacks on a host system garbage collection to identify garbage objects periodically. Given
a set of dead (unreachable) objects, Merlin then computeswhenthey were last reachable
in a backward pass.

If a dead object has no incoming references, its current timestamp directly indicates
its death time. However, some objects become unreachable even though they still have
incoming references as shown in Figure 4. Merlin thus performs a timestamp propagation
phase on unreachable objects. (By definition, no reachable object points to an unreachable
one.) It starts with the unreachable object with the latest timestamp (ts) and continues
processing unreachable objects in decreasing timestamp order. Sorting the list isΘ(nlogn)
in the number of dead objects. For each object with a pointer (s) t), if sts> tts, Merlin
propagates the later timestamp from the source to the target. Otherwise, Merlin stops
propagating. Since it starts with the latest timestamp, worst case processing time is the
number of unreachable (dead) objects.

6.2 Details and Implementation

This section expands on the key insights and implementationissues for Merlin. It first
compares the time complexity of the brute-force and Merlin algorithms. It then discusses
trace requirements, object reachability, timestamp propagation, and other uses of Merlin.

Finding dead objects requires a reachability analysis which with brute-force tracing on
every allocation costs:

n

∑
i=1
jlive objectsj at ai

wheren is the number of objects the program allocates, andai is an allocation event. Merlin
eliminates the need to perform reachability analysis on every allocation. Merlin instead
records object timestamps when an object loses an incoming pointer, and delays the bulk
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of its propagation step until it can piggyback on a reachability analysis that occurs during
a garbage collection. After a collection, Merlin works backward in time to find exactly
when each dead object was last reachable. Merlin’s execution time is thus proportional
to processing each object once plus the number of times each object loses an incoming
reference,m.

n

∑
i=1

jobject allocatedj at ai + m

∑
j=1

r j

6.2.1 Trace Requirements.The in-order brute-force method processing adds death
records as it produces the trace. Since Merlin determines death times out-of-order, it needs
to introducetimekeepinginto the traces. Time is related to trace granularity; time must
advance wherever object death records may occur.2

6.2.2 How Objects Become Unreachable.Table V lists a series of generalizations that
demonstrate how objects within the heap transition from reachable to unreachable. Scenar-
ios 1 and 2 describe an object that is reachable until an action involving the object; Scenario
3 describes an object that becomes unreachable without direct involvement in an action.
Not every pointer store kills an object, but if an objectd dies,d either loses an incoming
pointer or some other objecto loses a reference which points tod directly or indirectly (the
transitive closure of reachability fromo).

6.2.3 Finding Potential Last Reachable Times.We propagate time stamps after an ob-
ject is dead, instead of when it loses a reference. This section presents the Merlin pseudo-
code used to compute these last reachable times.

Instrumented Pointer Stores.Most pointer stores can be instrumented by a write barrier.
The Merlin write barrier timestamps objects losing an incoming reference (the old target
of the pointer) with the current time. Since time increases monotonically, each object
will ultimately be stamped with the final time it loses an incoming reference. If the last
incoming reference is removed by an instrumented pointer store, the Merlin code shown in
Figure 6 stamps the object with the last time it was reachable.

Uninstrumented Pointer Stores.Because root pointers (especially ones in registers or
thread stacks) are updated very frequently, instrumentingroot pointer stores is prohibitively
expensive and is rarely done. An object that is reachable until a root pointer update may not
have the time it transitions from reachable to unreachable detected by any instrumentation.
Just as a normal GC begins with a root scan, the Merlin algorithm performs a modified root
scan at each allocation. This modified root scan enumerates the root pointers, but merely
stamps the target objects with the current time. While root-referenced, objects are always
stamped with the current time; if an object was reachable until a root pointer update, the
timestamp will be the last time the object was reachable. Figure 7 shows Merlin’s pseudo-
code executed whenever the root scan enumerates a pointer.

Referring Objects Become Unreachable.We also compute the time an object was last
reachable for objects unreachable only because the object(s) pointing to them are unreach-
able (Scenario 3 of Table V). To handle pointer chains, updating the last reachable time for

2For many collectors, time need only advance at object allocations. To simulate collectors that can reclaim objects
more frequently, e.g., reference counting collectors, time would advance at each location where the collector could
scan the program roots and begin a collection.
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one object requires recomputing the last reachable times ofthe objects to which it points.
We simplify this process by noting that each of these object’s last reachable time is the
latest last reachable time of an object containing the former in its transitive closure set.

6.2.4 Computing When Objects Become Unreachable.Because the Merlin algorithm
is concerned withwhenan object was last reachable and cannot always determinehowthe
object became unreachable, the issue is to find a single method that computes every object’s
last reachable time. The methods in Figures 6 and 7 timestampthe correct last reachable
time for those objects that are last reachable as described in Scenarios 1 and 2 of Table V.
By combining the two timestamping methods with computing death times by membership
in transitive closure sets of reachability, Merlin can determine the last reachable time of
every object.

To demonstrate that this combined method works, we considereach scenario from Ta-
ble V. Since an object last reachable as described by Scenario 1 is not the target of a
pointer after it is last reachable, it is only a member of its transitive closure set, and the last
reachable time Merlin computes will be the object’s own timestamp. For Scenario 2 the
last reachable time Merlin computes will also be the time with which the object is stamped:
since the source of any pointers to the object must already beunreachable when the ob-
ject is last timestamped, the source objects’ last reachable times must be earlier. We show
above that this combined method computes last reachable times for objects in Scenario 3,
so Merlin can compute last reachable times by combining timestamping and computing
the transitive closures, and need not know how each object transitioned from reachable to
unreachable.

6.2.5 Computing Death Times Efficiently.Computing the full transitive closure sets is
a time consuming process, requiringO(n2) time. But Merlin needs to find only thelatest
object containing the former object in its transitive closure set. Merlin performs a depth-
first search from each object, propagating the last reachable time forward to the objects
visited in the search. To save time, our implementation of Merlin first orders the unreach-
able objects from the earliest timestamp to the latest and then pushes them onto the search
stack so that the latest object will be popped first. Figure 5(a) shows this initialization.
Upon removing a new source object from the stack, the Merlin algorithm analyzes it for
pointers to other (target) objects. If any target objects are stamped with an earlier time, the
algorithm updates their timestamp with that of the source object. If the target object is defi-
nitely unreachable (e.g., will be reclaimed when the collection completes), it is pushed onto
the stack also. Figures 5(b) and 5(c) show examples of this analysis. If the target object’s
timestamp is equal to that of the source object, then we do notneed to push it on the stack,
since we either have found a cycle (e.g., Figure 5(c)) or the target object is already on the
stack. We also do not push the target object onto the stack if its timestamp is later than the
source object’s timestamp, since the target object must have remained reachable after the
time currently being propagating. Pushing objects onto thestack from the earliest stamped
time to the latest means each object is processed only once. The search proceeds from
the latest stamped time to the earliest; after a first examination, any repeated examinations
of an object must be computing earlier last reachable times.Hertz et al. [2002b] proved
this asymptotically optimal method of finding last reachable times requires onlyΘ(nlogn)
time, limited only by the sorting of the objects, wheren is restricted to dead objects for this
collection. Figure 8 shows the Merlin pseudo-code for this modified depth-first search.
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Fig. 5. Computing object death times, whereti < ti+1. Since Object D has no incoming references, Merlin’s
computation cannot change its timestamp. Although Object Awas last reachable at its timestamp, care is needed
so that the last reachable time does not change via processing its incoming reference. In (a), Object A is processed
finding the pointer to Object B. Object B’s timestamp is earlier, so Object B is added to the stack and last reachable
time set. We process Object B and find the pointer to Object C in(b). Object C has an earlier timestamp, so it
is added to the stack and timestamp updated. In (c), we process Object C. Object A is pointed to, but it does
not have an earlier timestamp and is not added to the stack. In(d), the cycle has finished being processed. The
remaining objects in the stack will be examined, but no further processing is needed.

void PointerStoreInstrumentation(ADDRESS source, ADDRESS newTarget)
ADDRESS oldTarget = getMemoryWord(source);
if (oldTarget 6= null)

oldTarget.timeStamp = currentTime;
addToTrace(pointerUpdate, source, newTarget);

Fig. 6. Code for Merlin’s pointer store instrumentation

void ProcessRootPointer(ADDRESS rootAddr)
ADDRESS rootTarget = getMemoryWord(rootAddr);
if (rootTarget 6= null)

rootTarget.timeStamp = currentTime;

Fig. 7. Code for Merlin’s root pointer processing
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void ComputeObjectDeathTimes()
Time lastTime = ∞
sort unreachable objects from the earliest timestamp to the latest;
push each unreachable object onto a stack from the earliest

timestamp to the latest;
while (!stack.empty())

Object obj = stack.pop(); // pop obj with next earlier timestamp
Time objTime = obj.timeStamp;
if (objTime <= lastTime) // don’t reprocess relabeled objects

lastTime = objTime;
for each (field in obj)

if (isPointer(field) && obj.field 6= null)
Object target = getMemoryWord(obj.field);
Time targetTime = target.timeStamp;
if (isUnreachable(target) && targetTime < lastTime)

target.timeStamp = lastTime;
stack.push(target);

Fig. 8. Code of Merlin trace generation last reachable time computation

6.3 The Merlin Algorithm

As described so far, Merlin is able to reconstructwhenobjects were last reachable. How-
ever, it is still unable to determinewhich objects are no longer reachable. The Merlin
algorithm uses two simple solutions to overcome this problem. Whenever possible, it de-
lays computation until immediately after a collection, butbefore any memory is cleared.
At this time, the object lifetime computation algorithm hasaccess to all of the objects
within the heapand the garbage collector’s reachability analysis. By piggybacking upon
this work, Merlin saves a lot of duplicative analysis. At other times (e.g., just before a pro-
gram terminates), GC may not occur but the algorithm still needs a reachability analysis.
In this case, Merlin first stamps the root-referenced objects with the current time and then
computes the last reachable times of every object in the heapas usual. Objects with a last
reachable time equal to the current time are still reachableand do not need object death
records. All other objects must be unreachable and death records for them are added to the
trace as usual. This method of finding unreachable objects enables the Merlin algorithm
to work with any garbage collector. Even if the garbage collector cannot guarantee that it
will collect all unreachable objects, Merlin performs the combined object reachability/last
reachable time analysis just before the program terminatesto find all of the last reachable
times.

As stated in Section 2.1, we rely upon a couple of assumptionsabout the host garbage
collector. First, we assume that any object the collector istreating as live will have the ob-
jects it points to also treated as live, as is required among GC algorithms without additional
information. The collector thus removes an object only whenall other objects pointing to it
are provably unreachable. Second, the Merlin algorithm assumes that there are no pointer
stores involving an unreachable object. Therefore, we assume that once an object becomes
unreachable, its incoming and outgoing references are constant. Both of these precondi-
tions are important for our transitive closure computation, and languages such as Java, C#,
and Smalltalk satisfy them. Last, the Merlin algorithm addsan additional requirement, the
reasons for which are explained in Section 6.2.3, that the instrumented pointer stores has
access to the old value of the pointer. As the trace generatormust already include a write
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barrier to output pointer updates, and many write barriers already include these values (e.g.,
a reference counting write barrier), this additional requirement is not a hardship.

The order in which a trace generator using the Merlin algorithm adds object death
records to the trace is an issue. As discussed in Section 6.2.1, the Merlin algorithm re-
quires that the trace generator use the concept of time to determine where in the trace to
place each object death record. The object death records either are added to the trace in
chronological order before writing the trace to disk, or areincluded in the trace as they
occur and a post-processing step places the records into proper order. Holding all the
trace records in memory until Merlin computes all the objectdeaths is a difficult chal-
lenge; with larger traces, holding these records requires significant amounts of memory.
Our trace generation implementation using Merlin for object lifetime computation uses an
external post-processing step that sorts and integrates the object death records. Either way
of handling this issue has advantages and disadvantages, but adds very little time to trace
generation.

6.4 Using Merlin Off-line

Merlin does not need to perform its object lifetime analysison-line: researchers have suc-
cessfully used Merlin to compute object lifetime information from an otherwise complete
garbage collection trace [Hertz and Berger 2004; Hirzel et al. 2003]. As described, the
Merlin algorithm only needs to track pointer updates and to enumerate root pointers. This
information can be obtained through instrumenting pointerstore operations and perform-
ing a periodic modified root scan, but can also be acquired from a file that faithfully records
all pointer stores and enumerates all root pointers. With this file, a simulator can generate
the state of the program heap over the course of the program execution and use Merlin to
compute the object lifetime information missing from the trace. Computing object life-
times off-line can save substantial time when the lifetimesfor only a subset of the objects
are desired (e.g., only objects allocated during a particular phase of program execution).

6.5 Using Merlin for Granulated Traces

Our discussion of the Merlin algorithm has, until now, focused on the perfect traces re-
quired for GC simulation. GC traces are used not only for simulations, however, but
have also been used to gain a deeper understanding of the issues affecting object life-
times [Hirzel et al. 2002a; Hirzel et al. 2002b; Shaham et al.2000] and to measure the
effects of GC optimizations [Shaham et al. 2002]. Because ofthe speedup in trace gen-
eration achieved by the Merlin algorithm, it is now feasibleto consider generating traces
at granularities finer than each allocation. For instance, using Merlin, the trace generator
could create a dynamic “escape-analysis” trace that is accurate at each method exit.

As described in Section 6.2.3, Merlin advances the trace time and enumerates and pro-
cesses the root pointers at each allocation to help generatea perfect trace. However, these
actions should occur whenever the trace must be accurate (which is every allocation in a
perfect trace, but would be every method exit for a dynamic escape-analysis trace).3 The
Merlin algorithm is identical for any trace generation, theonly change being how often the
time is updated and the modified root scan is performed; the algorithm otherwise acts the
same after each collection and at every instrumented pointer update.

3These arguments could also be used to generate coarser-grained traces.
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7. EVALUATION OF MERLIN

We implemented a trace generator in the Jikes RVM that can useeither the brute-force
method or the Merlin algorithm to compute object lifetimes.We then performed timing
runs on a Macintosh Power Mac G4, with two 533 MHz processors,32KB on-chip L1
data and instruction caches, 256KB unified L2 cache, 1MB L3 off-chip cache and 384MB
of memory, running PPC Linux 2.4.3. We used only one processor for our experiments,
which were run in single-user mode with the network card disabled. We built two versions
of the VM with trace generation, one using Merlin for object lifetime computation and one
using the brute-force method. Whenever possible we used identical code in the two VMs.
For these experiments, the trace generator employed the semi-space collector needed by
the brute-force method so as to keep the two systems as similar as possible.

Merlin’s running time is spent largely in performing the modified root scan required af-
ter every allocation. We further improved Merlin’s runningtime by including a number of
optimizations to minimize the number of root pointers that must be enumerated at each of
these locations. Our first optimization was to instrument pointer store operations involving
static pointers. With this instrumentation, Merlin need not enumerate these pointers during
its root scan. Instead, it can treat them as it does heap pointers, since any stores to these
pointers will be processed by the same instrumentation. Because Java allows functions to
access only their own stack frame, repeated scanning withinthe same method always enu-
merates the same objects from the pointers below this method’s frame. We implemented a
stack barrierthat is called when frames are popped off the stack, enablingMerlin to scan
less of the stack [Cheng et al. 1998]. We do not include the stack barrier in the brute-force
generator because it introduces overhead on each method invocation, and it was beyond
the scope of this work to evaluate it.

We generated traces at different granularities across a range of programs. Because of
the time required for brute-force trace generation, we limited some traces to only the ini-
tial 4 or 8 megabytes of data allocation (which still required over 34 hours in one case).
Working with common benchmarks and identical granularity,trace generation using Mer-
lin achieved speedup factors of up to 816. In the time needed by the system using the
brute-force method to generate traces with granularities of 16K to 1024K bytes, trace gen-
eration with Merlin completed perfect traces. Figure 9 shows the speedup to the trace gen-
erator when using Merlin, generating perfect traces, versus using the brute-force method at
different levels of granularity. Clearly, Merlin can greatly reduce the time needed to gen-
erate a trace. However, as seen in Figure 9, the speedup is less when granularity increases.
The time required largely depends on the time needed to generate object death records—
the trace granularity. Brute force limits object death timeprocessing to only those points
where the trace is accurate; as the granularity increases itperforms fewer GCs and the time
needed greatly diminishes. Even though Merlin performs fewer actual collections than
brute force with a large granularity, the cost of enumerating the roots at every allocation
and updating timestamps can become greater than the collection cost at large granularities.

These results are typical. For programs with larger averagemaximum live size and total
allocation volume, Merlin should provide further speedupsdue to the differences between
its death time propagation algorithm and root scanning costs compared to the larger cost
of repeatedly tracing the heap.
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7.1 Granulated Trace Generation

When generating escape-analysis traces (i.e., small granularities), it is clear from the above
results that Merlin will be much quicker than brute force. Anopen question, however, is the
fastest way to generate traces withlarge granularities. These traces could not, of course,
be used for GC simulations, but could still be used to tune profile-driven feedback opti-
mizations [Ungar and Jackson 1992; Cheng et al. 1998; Blackburn et al. 2001] or to gain
a deeper understanding of the issues affecting object lifetimes [Hirzel et al. 2002a; Hirzel
et al. 2002b; Shaham et al. 2000]. While we show in Section 5 how the compounding
of these lifetime errors results in statistically significant distortions for simulation results,
when analyses consider each object’s lifetime independently the error is bounded by at
most one trace granule, and snowballing cannot occur. Previously, Hirzel et al. [2002b]
showed that their analysis was not altered by the use of granulated traces.

Even with the improvement Merlin provides to trace generation, the time required to
generate a trace is 70–300 times slower than running the program without tracing. As
shown by Figure 10, granulated traces require much less timeto generate, and they are
thus attractive when granulation does not distort results.Given a heap that actually has a
maximum live size of 10MB, for example, a trace with a 10KB granularity will overesti-
mate the maximum live size by at most 0.1%.

Figure 10 shows that while introducing some trace granularity allows Merlin tracing
to run faster, there is little gain in generating traces witha granularity above 4096 bytes.
Since Figure 9 shows that the time needed for trace generation using brute force continues
to improve even when the trace granularity is increased from512KB to 1MB, it still is not
clear what is the best way to generate a granulated trace. Figure 11 examines the speedup
that generating a granulated Merlin trace offers versus generating a granulated brute-force
trace.

As seen in Figure 11, Merlin outperforms brute force at all tested granularities and over
all of the benchmarks examined. While all the work required by brute force (performing
a GC) is directly related to the granularity of the trace generated, some of Merlin’s work-
load (enumerating and scanning the root pointers) is related to the trace granularity and
some work is constant (timestamping objects losing incoming references via instrumented
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pointer stores). Because of this constant work overhead forMerlin, the improvement in
generating a trace of SPEC228 jack slowly drops from a speedup factor of 817 for per-
fect traces to a factor of 5 at a granularity of 64K and finally to a factor of 1.14 at 1MB
granularity. Even at this very high granularity, however, the speedup of not needing to
perform the repeated garbage collections makes Merlin the winner. When these results are
combined with those from Figure 10, they provide a persuasive argument for using Merlin
to compute object lifetimes even for granulated traces.
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8. PROGRAM HEAP VISUALIZATION

Whether creating new GC optimizations, explaining the performance of an existing algo-
rithm, or developing a set of benchmarks to test GC, researchers need to understand the
lifetimes of objects in the heap and how they interact. Researchers have used program
heap graphs, visualizations showing the composition of theheap, identifying the locations
of unreachable object over the entire program run, to develop and share this knowledge
(e.g., [Runciman and Wakeling 1992; Runciman and Röjemo 1995; Sansom 1994; Sansom
and Jones 1994; Rojemo and Runciman 1996; Stefanović 1999;Shaham et al. 2000]).The
resolution of a visualization is dependent on the granularity of the trace used; granulated
traces can generate the powerfully simple graphs (such as those in [Shaham et al. 2000]),
while precise graphs capable of zooming in to show very fine details (such as the graphs
in [Stefanović 1999] and the figures in this section) require perfect traces.

This section presents several program heap visualizationsfrom Jikes RVM produced
with Merlin, which reveal object lifetimes and lifetime patterns. Section 8.1 analyzes a
few of these graphs to show how they provide insight into potential GC optimizations and
Section 8.2 illustrates how these visualizations can help evaluate benchmark programs.

8.1 Program Heap Behavior Insights

The simplestheap profilevisualizations show the composition of the heap over a program
run, providing a means of seeing where, in an age-ordered heap, the reachable objects ex-
ist. Figure 12(a) shows a heap profile of SPEC202 jess when run with the Jikes RVM
Opt (optimizing) compiler. The Y-axis of this graph represents the position of reachable
objects in an age-ordered heap, while the X-axis representstime (measured as the total
number of bytes allocated into the heap so far). At the start of each program “segment”
(some set number of bytes of allocation), we introduce a new line along the X-axis. Lasting
until program termination, the line shows, at each moment, the position in the heap of the
boundary between the objects allocated before and after this point. In this graph, we can
see the program run through three distinct phases: startup,stable running, and finishing.
The startup phase, lasting the first 50000000 words of allocation, shows the variable live
sizes and object lifetimes arising from compilation. The second phase of this profile shows
a regular pattern of very short lived objects — the actual running of the jess benchmark
and the last phase shows a brief return of compilation as the program reaches the SpecAp-
plication termination code. Given this complex behavior, agarbage collector could benefit
from using phase detection to moderate any dynamic optimizations. During the long stable
(middle) phase of the run, optimizations may yield little orno benefit as most collectors
would already perform well. Rather then spend time working for little benefit, a system
would be better served saving that time and using the defaultbehavior.

Figure 12(b) also shows a heap profile of SPEC202 jess run with the Jikes RVM opti-
mizing compiler. This heap profile differs from Figure 12(a), by showing theoldestobjects
of the age-ordered heap along the Y-axis and adding newly allocated objects to thetop of
the graph. Long-lived objects appear as a horizontal line ofconstant live amounts in these
figures. When some objects die at some point, the line segments get closer together. Fig-
ure 12(b) shows many immortal objects that are created during the first (compilation) phase
of the program. As shown in [Blackburn et al. 2001], these immortal objects present invit-
ing targets for optimizations such as pretenuring. The second phase of the trace (when
most compilation is complete and the benchmark is actually running) shows new program
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(a) Heap profile of SPEC202 jess. In this graph, the oldest objects are shown at 0 on the Y-axis. The
graph shows that the program goes through three phases: it begins by compiling the program, then solves
the fifteen puzzles that comprise the benchmark, and finally outputs the result.
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(b) Inverted heap profile for202 jess. In this graph, the youngest objects are shown at 0 on theY-axis.
It is easy to see the compiler’s initial immortal allocations, the short-lived allocations of the benchmark,
and the medium-lived allocations from when the program terminates.

(c) Demise graph for202 jess. In the demise map, the youngest objects appear at 0 on the Y-axis.
This graph shows that the program has different phases of object lifetime behavior with the benchmark
allocating only short-lived objects. The black vertical lines in the demise map show large numbers of
objects becoming unreachable at once, suggesting death of large linked structures such as trees or lists.

Fig. 12. Three different heap visualizations for SPEC202 jess using the optimizing compiler at run time. While
each of these graphs summarizes the composition of the heap over the run, the different ways of expressing this
composition can highlight different information. Using all three graphs in combination is an easy way to gain a
good understanding of the object lifetime behavior of the program.

segments barely rising from the graph and then rapidly disappearing, i.e., allocation of
many very short-lived objects. The last phase of the programshows the system compiles
the methods corresponding to the final code for the program. The optimizing compiler uses
short-lived objects and outputs the long-lived blocks of machine code causing the behavior
seen during this final phase. The very different lifetime behaviors at different points of
the program suggests that a garbage collector that could detect these phases and change its
behavior accordingly could perform well on this benchmark.

Another type of heap visualization is thedemise map, an example of which can be seen
in Figure 12(c). Like the previous visualizations, a demisemap’s X-axis is the number
of bytes allocated and its Y-axis is the heap position in the age-ordered heap. However,
points on the demise map indicate an object’s becoming unreachable. We represent the
density of objects becoming unreachable at the same location (in an age-ordered heap) by
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the darkness of the point on the map. The demise map in Figure 12(c) is also for the runs of
202 jess using the Jikes RVM optimizing compiler. The graph again shows the program

running through several phases of object lifetime behaviorover the run. Examining the
demise map provides some useful information. At several places in the trace, we can see
a number of objects become unreachable at the same time (as dark vertical bands in the
demise map). By grouping these objects together and delaying their collection until they
all become unreachable, a collector could greatly improve its performance.

8.2 Evaluation

Heap visualizations help reveal how demanding a benchmark is with respect to its memory
management needs. We present heap profiles for the SPECjvm98benchmarks and pseu-
doJBB, a version of SPECjbb modified to run for a specified number of transactions rather
then a specified length of time. Figure 13 shows heap profiles with the youngest objects at
the bottom of the y-axis; and Figure 14 shows heap profiles with the youngest objects at
the top of the y-axis.

The figures indicate a range of challenges for garbage collection. For instance,201 compress
and 222 mpegaudio do not stress garbage collectors much, whereas209 db, pseudoJBB,
and 213 javac demonstrate richer memory management behavior. We analyze each of
these programs below.

Consider Figure 13(a) which presents a run of201 compress. While the irregular al-
location peaks in Figure 13(a) suggest that it could be useful for analyzing phase change
optimizations or comparing algorithms that dynamically select heap sizes, this benchmark
would not be useful for comparing statically sized heaps. While a statically chosen heap
size must be sufficient to hold the initial peak (approximately 2MB), this space is larger
than the rest of the program needs.201 compress thus exercises the garbage collector
only at the smallest heap sizes.

The heap profile of222 mpegaudio, Figure 13(f), shows that it has a low ratio of bytes
allocated to maximum live size (a ratio of only 2.1:1). The heap profile also shows that
objects allocated by this program are either immortal or immediately become unreachable.
However, it shows two phases. The program allocates so little that it can steadily increase
its live size for the entire duration of the program.

While 209 db, shown in Figure 13(d), maintains a constant live size, the heap profile
indicates that it allocates ten times as much data as this live size, which limits how much
stress it places on the garbage collector. After209 db populates its database with “im-
mortal” objects (roughly the first 3MB of allocation), the program allocates objects which
immediately become unreachable. Combining these two behaviors, the heap profile in Fig-
ure 13(d) shows that with a large enough nursery, a generational garbage collector should
perform well on 209 db and whole heap collections are a waste of time. However, this
behavior is not the whole story for209 db, because its choice of allocator and collector
radically affect its performance through the locality behavior they induce [Blackburn et al.
2004a; Huang et al. 2004; Hertz and Berger 2004].

PseudoJBB only allocates about ten times as many bytes as itsmaximum live size, as
does 209 db. The allocated objects, however, have more complex lifetime patterns. Af-
ter initially allocating and building a large structure (at1.4MB), the program makes the
majority of this unreachable. The program again allocates alarge amount of immortal
objects. It then allocates short-lived objects and periodically causes these to become un-
reachable. Unlike209 db, however, these short-lived objects do not immediately become
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(a) Heap Profile of201 compress
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(b) Heap Profile of202 jess
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(c) Heap Profile of205 raytrace
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(d) Heap Profile of209 db
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(e) Heap Profile of213 javac

unreachable but must remain in the heap for a time. Figure 14(i) shows pseudoJBB be-
gins allocating the next period of short-lived objects before it has made all objects from
the previous period unreachable. This behavior guaranteesthat some objects will survive
simple nursery collections in generational collectors, and need a more expensive collection
to reclaim them.

The heap profile of213 javac shows this program periodically building and then mak-
ing large structures unreachable; few generational algorithms would normally size their
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Fig. 13. Heap profile graphs for the SPECjvm 98 benchmarks andpseudoJBB. Newly allocated objects are added
at the bottom of these heap profiles. To limit the influence thehost JVM has on these graphs, they were generated
from runs using the Jikes RVM baseline JIT compiler.

nursery or Eden space large enough to hold these structures.This behavior ensures that
some objects will be promoted into the mature space and need full heap collections to be
reclaimed. Especially when combined with213 javac’s high ratio of allocation to max-
imum live size, it is clear this benchmark will highlight garbage collector performance
differences.

9. RELATED WORK

We now discuss the prior research on which this study builds.There are 3 areas of research
that are most relevant: reference counting, approximatingobject lifetimes, and generating
perfect (accurate) traces.
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(c) Inverted Heap Profile of205 raytrace
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Reference Counting.While the Merlin algorithm does not do reference counting (RC),
issues that arise from its time stamping are similar to thosefrom counting references. As a
result of these similar issues, RC collectors are often closely related to the Merlin algorithm
and we describe them here.

Reference counting associates a count of incoming references with each object; when the
count is 0, it frees the object [Collins 1960]. To improve efficiency, modern deferred refer-
ence counters do not count the numerous updates to stack variables and registers [Deutsch
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Fig. 14. Inverted heap profile graphs for the SPECjvm 98 benchmarks and pseudoJBB. Newly allocated objects
are drawn at the top of these heap profiles. To limit the influence the host JVM has on these graphs, they were
generated from runs using the Jikes RVM baseline JIT compiler.

and Bobrow 1976], but instead compute correct counts periodically. As with other al-
gorithms, RC must enumerate the stacks and registers when itcollects the heap. Since
reference counting cannot find dead cycles [Weizenbaum 1962], modern implementations
add periodic tracing collection or perform trial deletion [Vestal 1987; Bacon and Rajan
2001]. Trial deletion keeps objects that lost a pointer, butwhose count did not reach 0, in
a “candidate set”. It then recursively performs trial deletions on the objects in this set and
those objects reachable from them. When all the reference counts go to zero, the objects
form a dead cycle and can be reclaimed.

At first glance, adding time stamps to RC might seem faster than piggybacking on a
tracing collector, but cycles complicate this argument. Tocompute a perfect trace using
an RC (and ignoring cycles), we could extend the object headers to include a time stamp,
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update the time stamp with each decrement, update the reference counts at every allocation,
and record and propagate time stamps when the object’s reference count goes to zero.
Since cycles must be unreachable at program termination, wecould then propagate these
time stamps to accurately compute the remaining death times. However, never collecting
cycles might cause the program to fail by running out of memory. Adding RC tracing or
trial deletion reverts trace generation to the cost of the brute-force method plus additional
reference counting overheads. To add Merlin to an existing RC system is thus likely to
yield similar or worse performance than using Merlin with a tracing collector.

Unlike RC, the Merlin algorithm is not a garbage collector, but merely computes object
lifetimes. While there are similarities between Merlin andRC (deferred reference counting
is similar to Merlin’s time stamping), Merlin relies upon anunderlying collector to actually
reclaim objects whereas RC performs this reclamation. While RCcan use an additional
tracing collector to detect dead cycles, the Merlin algorithm needsa garbage collector to
compute which objects are unreachable.

Lifetime Approximation.To cope with the cost of producing GC traces, there has been
previous research into approximating the lifetimes of objects. These approximations model
the object allocation and object death behavior of actual programs. One paper described
mathematical functions that model object lifetime characteristics based upon the actual
lifetime characteristics of 58 Smalltalk and Java programs[Stefanović et al. 2000]. Zorn
and Grunwald [1992] compare several different models one can use to approximate object
allocation and object death records of actual programs. Neither study attempted to generate
actual traces, nor does either study consider pointer updates; rather, these studies attempted
to find ways other than trace generation to produce input for memory management simu-
lations.

Perfect Tracing.Our previous work [Hertz et al. 2002a] presented the effectsof trace
granularity on GC simulator fidelity. Additionally, it described how Merlin can be used to
generate the perfect traces needed for GC simulation, and presented a preliminary com-
parison between generating perfect Merlin traces and perfect and granulated brute-force
traces. Because of this work, others have begun to re-examine their analyses to see if their
results were affected by trace granulation [Hirzel et al. 2002b]. We presented additional
work proving that the Merlin algorithm runs in asymptotically optimal time [Hertz et al.
2002b]. Our previous work did not demonstrate how to use Merlin to generate granulated
traces, nor did it include the more detailed timing results we present here. The current work
also discusses additional uses of Merlin and presents program heap visualizations that are
only possible due to Merlin’s reduced processing time.

10. APPLICABILITY TO OTHER COLLECTION ALGORITHMS

We built these and other copying algorithms in GCTk [Blackburn et al. 2002; Blackburn
et al. 2001; Stefanović et al. 2002], a freely available memory management toolkit, for
use with Jikes RVM. Although our results are for copying collectors, there is no reason
to believe they will not hold for mark-sweep (MS) collectorsand hybrid copying and MS
collectors, such as the popular copying nursery/Eden spaceand MS old space. Product
VMs often use this later variation due to its high performance.4 MS offers significant

4A more recent toolkit MMTk [Blackburn et al. 2004b; 2004a] contains MS, reference counting, and their gener-
ational variants. Experimental comparisons of copying versus MS collection of the mature space show neither is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Generating Object Lifetime Traces with Merlin � 35

space efficiency over copying [Hertz and Berger 2004] which is especially important in
the old space. MS collectors thus trigger collections less often than copying. However, if
collecting the same region as a copying collector, MS finds exactly the same objects as live
since it computes reachability the same way. Therefore, given sufficient collections, the
accuracy of MS collectors should be similarly distorted by poor choice of collection point
with respect to a granulated trace.

We can make no conclusions about the sensitivity to trace granulation of reference count-
ing collectors since their liveness test is different from copying. However, our traces con-
tain sufficient information to simulate these algorithms aswell.

11. SUMMARY

The use of granulated traces for GC simulation is problematic. We first develop a method
that can statistically test if a variable affects GC simulation. We then use this method
to show that, over a wide range of variables, granulated traces produce results that are
significantly different from those produced by perfect traces. While we show that there
are ways of simulating granulated traces that are better at minimizing these issues, we
find none of these methods can eliminate all the problems. With these results, we propose
standard trace formats should include additional information.

We then introduce and describe the Merlin Algorithm. We showhow trace generation
using the Merlin algorithm can produce perfect traces more than 800 times faster than the
common (brute force) method of trace generation. We also describe how, for new analyses,
Merlin makes it possible to generate traces at even finer granularities, and when it may be
permissible to use coarser traces. Finally, we show that given the Merlin algorithm there
is never a reason to generate traces coarser than a 4KB granularity. Thus, the Merlin algo-
rithm makes trace generation quick and easy, and eliminatesthe need for using granulated
traces in simulation.

Finally, we present several examples of program heap visualizations, powerful tools that,
with traces like those generated by Merlin, are easy to generate. With graphs of several
well-known, commonly used benchmark programs, we show how they provide insights
that can be used to design future GC optimizations and evaluate a program’s memory
management needs.
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STEFANOVIĆ, D. 1999. Properties of age-based automatic memory reclamation algorithms. Ph.D. thesis, Uni-
versity of Massachusetts, Amherst, MA.
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