Myths and Realities:

The Performance Impact

of Garbage Collection-

Stephen M Blackburn Perry Cheng Kathryn S McKinley
Department of Computer Science IBM T.J. Watson Research Center Department of Computer Sciences
Australian National University P.O. Box 704 University of Texas at Austin

Canberra, ACT, 0200, Australia
Steve.Blackburn@cs.anu.edu.au

ABSTRACT

This paper explores and quantifies garbage collection lehfor
three whole heap collectors and generational counterpeoisy-
ing semi-spacanark-sweepandreference countinghe canonical
algorithms from which essentially all other collection @fighms
are derived. Efficient implementations in MMTK, a Java memor
management toolkit, in IBM’s Jikes RVM share all common mech
anisms to provide a clean experimental platform. Instrumatéom
separates collector and program behavior, and performzmae
ters measure timing and memory behavior on three archieetu
Our experimental design reveals key algorithmic features a
how they match program characteristics to explain the timed
indirect costs of garbage collection as a function of hea@ ah the
SPEC JVM benchmarks. For example, we find that the contiguous
allocation of copying collectors attains significant lagabenefits
over free-list allocators. The reduced collection costthefgener-
ational algorithms together with the locality benefit of ignous
allocation motivates a copyingurseryfor newly allocated objects.
These benefits dominate the overheads of generationattwhe
compared with non-generational and no collection, disguthe
myth that “no garbage collection is good garbage collectiBer-
formance is less sensitive to the mature space collectgorithm
in our benchmarks. However the locality and pointer mutatio
characteristics for a given program occasionally prefgyiw or
mark-sweep. This study is unique in its breadth of garbafjeco
tion algorithms and its depth of analysis.

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms

Keywords
Java, Mark-Sweep, Semi-Space, Reference Counting, Gemeta

*This work is supported by the following grants: ARC DP045201
NSF ITR CCR-0085792, NSF CCR-0311829, NSF EIA-0303609,
DARPA F33615-03-C-4106, and IBM. Any opinions, findings and
conclusions expressed herein are the authors and do nasagite
reflect those of the sponsors.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMETRICS/Performance’0dune 12-16, 2004, New York, NY, USA.

Copyright 2004 ACM 1-58113-664-1/04/0006$5.00.

Yorktown Heights, NY, 10598, USA
perryche@us.ibm.com

Austin, TX, 78712, USA
mckinley@cs.utexas.edu

1. Introduction

Programmers are increasingly choosing object-orienteguages
such as Java with automatic memory managemgatb@ge col-
lection) because of their software engineering benefits. Although
researchers have studied garbage collection for a long[82l,

23, 29, 34, 41], few detailed performance studies exist. oip
ous study compares the effects of garbage collection &hgosi on
instruction throughput and locality in the light of moderropes-

sor technology trends to explain how garbage collectioarétyms
and programs can combine to yield good performance.

This work studies in detail the three canonical garbagecttin
algorithms: semi-spacemark-sweepandreference countingand
three generational counterparts. These collectors erassnine
key mechanisms and policies from which essentially all ggeb
collectors are composed. Our findings therefore have agifit
beyond these algorithms. We conduct our study in the Javaamyem
management toolkit (MMTK) [12] in IBM's Jikes RVM [2, 1]. The
collectors are efficient, share all common mechanisms alitigm
and provide a clean and meaningful experimental platforzh [1

The results use a wide range of heap sizes on SPEC JVM Bench-
marks to reveal the inherent space-time trade-offs of cllealgo-
rithms. For fair comparisons, each experiment fixes the keap
and triggers collection when the program exhausts availatd@m-
ory. We use three architectures (Athlon, Pentium 4, PowgeP@
find the same trends on all three. Each experiment dividabkpo-
gram performance intoutator (application code) and collection
phases. The mutator phase includes some memory management
activity, such as the allocation sequence and for the géoreh
collectors, awrite barrier. Hardware performance counters mea-
sure the L1, L2, and TLB misses for collector and mutator phas
The experiments reveal the direct cost of garbage collectial its
indirect effects on mutator performance and locality.

Ouir first set of experiments confirm the widely held, but umexa
ined hypothesis, that the locality benefits of contiguolscation
improves the locality of the mutator. For the whole heapeaitirs
in small heaps, the more space efficiénee-list mark-sweep col-
lector performs best because collection frequency dorgrtae lo-
cality benefit of contiguous allocation. As heap size insesathe
mutator locality advantage of contiguous allocation witipying
collection outweighs the space efficiency of mark-sweemtiga-
ous allocation provides fewer misses at all levels of théedter-
archy (L1, L2 and TLB). These results are counter to the myaih t
collection frequency is always the first order effect thaedaines
total program performance. Further experiments revealrtiwst
of these locality benefits are for the young objects whichivatts
a contiguous allocation for them in generational collextor

The generational collectors divide newly allocatadseryob-
jects from mature objects that survive one or more collestiand



collect the nursery independently and more frequently thama-
ture space [34, 41]. They work well when the rate of death @mon
the young objects is high. In order to collect the nurserypeh-
dently, the generational collectors userdte barrier which records
any pointer into the nursery from the mature objects. Duaingrs-

ery collection, the collector assumes the referents oftipemters
are live to avoid scanning the entire mature generation.nfuea-
ment the write barrier, the compiler generates a sequenceds

for everypointer store that at runtime records only those pointers
from the mature space into the nursery. The write barries thu
duces direct mutator overhead between programs that uske who
heap versus generational collection.

Our experiments show that the generational collectorsigeov
better performance than the whole heap collectors in iyt
circumstances. They significantly reduce collection titeelf, and
their contiguous nursery allocation has a positive impaciogal-
ity. We carefully measure the impact of the write barrier ba t
mutator and find that their mutator cost is usually very loftgio
2% or less), and even when high (14%), the cost is outweigkied b
the improvements in collection time.

Comparing the generational collectors against each oplegr,
formance differences are typically small. Two factors cibate
to this result. First, allocation order provides good sgdtical-
ity for young objects even if the program briefly uses andatids
them. Second, the majority of reads are actually to the raaibr
jects, but caching usually achieves good temporal loctlityhese
objects regardless of mature space policy. Some objectglepio-
ics do however have a preference. For instance, generhtioha
lection with a copying mature space works best when the matur
space references are dispersed and frequent. The mark-sweee
ture space performs best, sometimes significantly, in sheps
when its space efficiency reduces collector invocations.

The next section compares our study to previous collector pe
formance analysis studies, none of which consider thistaof
collectors in an apples-to-apples setting, nor do any dekisimi-
lar depth of analysis or vary the architecture. We then dearthe
collectors, a number of key implementation details, ancettpeeri-
mental setting. The results section studies the three gsdthms
separating allocation and collection costs (as much asiipess
compares whole heap algorithms and their generationaltesun
parts, and examines the cost of the generational writedvani/e
examine the impact of nursery size on performance and debenk
myth that the nursery size should be tied to the L2 cache Wize.
also examine mature space behaviors using a fixed-sizerpuecse
hold the mature space work load constant. We perform every ex
periment on the nine benchmarks and three architectureselact
representative results for brevity and clarity.

2. Related Work

To our knowledge, few studies quantitatively compare wupssor
garbage collection algorithms [5, 13, 26, 27, 39], and tistsdies
evaluate various copying and generational collectors. r@sults
on copying collectors are similar to theirs, but they do rehpare
with free-list mark-sweep or reference counting collestoor ex-
plore memory system consequences.

Attanasio et al. [5] evaluate parallel collectors on SPBCfb-
cusing on the effect of parallelism on throughput and heap si
when running on 8 processors. They concluded that markgswee
and generational mark-sweep with a fixed-size nursery (160¥B
64 MB) are equal and the best among all the collectors. Owr dat
shows that the generational are superior to whole heapctotie
especially with a variable-size nursery.

Afew recent studies explore heap size effects on performfrg;

17, 31, 39], and as we show here, garbage collectors are @Bsys
tive to heap size, and in particular to tight heaps. Diwarl.g24,
40], Hicks et al. [27], and others [14, 28] measure detaitgm-
cific mechanism costs, and architecture influences [24]dbutot
consider a variety of collection algorithms. Many researsthave
evaluated a range of memory allocators for C/C++ programsJ9
11, 16, 20, 42], but this work does not include copying cabdex
since C/C++ programs may store pointers arbitrarily.

Java performance analysis work either disabled garbadgceol
tion [22, 36] which introduces unnecessary memory fragatent,
or hold it constant [31]. Kim and Hsu measure similar detaslsve
do, with simulation of IBM JDK 1.1.6, a Java JIT, using whoksp
mark-sweep algorithm with occasional compaction. Our wbus
stands out as the first thorough evaluation of a variety déaiiht
garbage collection algorithms, how they compare and affedor-
mance using execution measurements and performance unte
The comprehensiveness of our approach reveals new insituts
as the most space efficient collection algorithms and thendido-
cality patterns of young and old objects, suggests mecmenier
matching algorithms to object demographics, and reveaf®mpe
mance trade-offs each strategy makes.

We evaluate the reuse, modularity, portability, and pentoice
of MMTK in a separate publication [12]. In that work we do ngt e
plore generational collectors, nor measure and explaiopeance
differences between collectors. However, we do demoresthett
MMTk combines modularity and reuse with high performance] a
we rely on that finding here. For example, collectors thatesha
functionality, such as root processing, copying, tracaipcation,
or collection mechanisms, use the exact same implementatio
MMTK. In addition, the allocation and collector mechanispes-
form as well as hand tuned monolithic counterparts writtediava
or C. The experiments in this paper thus offer true policy pam
isons in an efficient setting.

3. Background

This section presents the garbage collection terminolatyori-
thms, and features that this paper compares and exploréisst It
presents the algorithms, and then enumerates a few keyrimple
tation details. For a thorough treatment of algorithms, Jmees
and Lins [29], and Blackburn et al. for additional implenaitn
details [12].

In MMTk, a policy pairs one allocation mechanism with one col-
lection mechanismWhole heagollectors use a single policgen-
erationalcollectors divide the heap into age cohorts, and use one or
more policies [3, 41]. For generational and incrementabiatgms,
such as reference countingyate barrier remembers pointers. For
every pointer store, the compiler inserts write-barrietecAt exe-
cution time, this code conditionally records pointers aelieg on
the collector policy. Following the literature, the exdounttime
consists of thenutator (the program itself) and periodigarbage
collection Some memory management activities, such as object
allocation and the write barrier, mix in with the mutator.li€otion
can run concurrently with mutation, but this work uses a spa
collection phase. MMTk implements the following standalid-a
cation and collection mechanisms.

A Contiguous Allocator appends new objects to the end of a con-
tiguous space by incrementingpamp pointeiby the size of
the new object.

A Free-List Allocator organizes memory int& size-segregated
free-lists Each free list is unique to a size class and is com-
posed of blocks of contiguous memory. It allocates an object
into a free cell in the smallest size class that accommodates
the object.



A Tracing Collector identifies live objects by computing a transi-
tive closure from theoots (stacks, registers, and class vari-
ables/statics) and from any remembered pointers. It raclai
space by copying live data out of the space, or by freeing
untraced objects.

A Reference Counting Collector counts the number of incoming
references for each object, and reclaims objects with ro ref
erences.

3.1 Collectors

All modern collectors build on these mechanisms. This pager
amines the following whole heap collectors, and a generatio
counterpart for each. The generational collectors use girgp
nurseryfor newly allocated objects.

SemiSpaceThe semi-space algorithm uses two equal sized copy
spaces. It contiguously allocates into one, and resenesttier
space for copying into since in the worst case all objectédcsuwr-
vive. When full, it traces and copies live objects into thaest
space, and then swaps them. Collection time is proportimntde
number of survivors. Its throughput performance suffersabee
it reserves half of the space for copying and it repeatedpieso
objects that survive for a long time, and its responsiveseffers
because it collects the entire heap every time.

Implementation DetailsCopying tracing implements the transi-
tive closure as follows. It enqueues the locations of alt reter-
ences, and repeatedly takes a reference from the locatienseq
If the referent object is uncopied, it copies the objectyédsaa for-
warding address in the old object, enqueues the copiedtatnes
gray object queue, and adjusts the reference to point toapied
object. If it previously copied the referent object, it isatl ad-
justs the reference with the forwarding address. When tba-lo
tions queue is empty, the collector scans each object onrthe g
object queue. Scanning places the locations of the poirtelisfof
these objects on the locations queue. When the gray objeciequ
is empty, it processes the locations queue again, and sd ter- |

minates when both queues are empty. These experiments use %

depth-first order, because our experiments show it perfaetter
than the more standard breadth-first order [18]. MMTKk sufgpor
other orderings. SemiSpace has no write barrier.

MarkSweep: Mark-sweep uses a free-list allocator and a tracing
collector. When the heap is full, it triggers a collectiorh€eTcol-
lection traces and marks the live objects using bit mapsaaity
finds free slots during allocation. Tracing is thus propmréil to the
number of live objects, and reclamation is incremental aogqr-
tional to allocation. The tracing for MarkSweep is exacllg same
as SemiSpace, except that instead of copying the objecgrisma
bit in a live object bit map. Since MarkSweep is a whole hedp co
lector, its maximum pause time is poor and its performanéfersu
from repeatedly tracing objects that survive many colteti

Implementation DetailsThe free-list uses segregated-fits with
a range of size classes similar to the Lea allocator [32]. MMT
uses 51 size classes that attain a worst case internal fragtios
of 1/8 for objects less than 255 bytes. The size classes ayted b
apart from 8 to 63, 8 bytes apart from 64 to 127, 16 bytes apart
from 128 to 255, 32 bytes apart from 256 to 511, 256 bytes apart
from 512 to 2047, and 1024 bytes apart from 2048 to 8192. Small
word-aligned objects get an exact fit—in practice, thesé¢rergast
majority of all objects. All objects 8KB or larger get theiwn
block (see Section 3.2.3). MarkSweep has no write barriére T
collector keeps the blocks of a size class in a circular lidered
by allocation time. It allocates the first free element in finst
block. Finding the right fit is about 10% slower [12] than bump
pointer allocation. The free-list stores the bit vectordach block
together with the block. Since block sizes vary from 256 byte

to 8K bytes, this organization may be a source of some conflict
misses, but we leave that investigation for future work.

RefCount: The deferred reference-counting collector uses a free-
list allocator. During mutation, the write barrier ignorgteres to
roots and logs mutated objects. It then periodically upsiagé-
erence counts for root referents and generates reference ico
crements and decrements using the logged objects. It tHetesle
objects with a zero reference count and recursively appiese-
ments. It uses trial deletion to detect cycles [7]. Collectiime is
proportional to the number of dead objects, but the mutaiad is
significantly higher than other collectors since it logsrgvautated
heap object.

Implementation DetailsRefCount usesbject loggingwith co-
alescing[33]. RefCount thus records objects only the first time
the program modifies it, and buffers decrements for all iferre
ent objects. At collection time, it (1) generates increradot all
root and modified object referents, thegalescingntermediate up-
dates, (2) introducemporary{7] increments for deferred objects
(e.g., roots), and (3) deletes objects with a zero count. NV \éhef-
erence count goes to zero, it puts the object back on thditday
setting a bit and it decrements all its referents. On the oetkéc-
tion, itincludes a decrement for all temporary incremerasithe
previous collection.

GenCopy: The classic copying generational collector [3] allo-
cates into a youngnfursery space. The write barrier records point-
ers from mature to nursery objects. It collects when theewris
full, and promotes survivors into a mature semi-space. When
mature space is exhausted, it collects the entire heap. \Wigen
program follows the weak generational hypothesis [34, 4&],
many young objects die quickly and old objects survive aghdi
rate than young, GenCopy attains better performance thanSSe
pace. GenCopy improves over SemiSpace in this case bedause i
repeatedly collects the nursery which yields a lot of freacsp it
compacts the survivors which can improve mutator locadity] in-
urs the collection cost of the mature objects infrequenithalso
as better average pause times than SemiSpace, since segynur
is typically smaller than the entire heap.

GenMS: This hybrid generational collector uses a copying nurs-
ery and the MarkSweep policy for the mature generation. Idt al
cates using a bump pointer and when the nursery fills up,ergyg
a nursery collection. The write barrier, nursery colleatioursery
allocation policies, and mechanisms are identical to tfos&en-
Copy. The test for an exhausted heap must accommodate space
for copying an entire nursery full of survivors into the M8wkeep
space. GenMS should be better than MarkSweep for prograans th
follow the weak generational hypothesis. In comparisoi@&en-
Copy, GenMS can use memory more efficiently, since GenCopy
reserves half the heap for copying space. However, both Mark
Sweep and GenMS can fragment the free space when objects are
distributed among size classes.

Infrequent collections can contribute to spreading conbesly
allocated (or promoted) objects out in memory. Both sounfes
fragmentation can reduce locality. Mark-compact collectcan
reduce this fragmentation, but need one or two additionas¢s
over the live and dead objects [19].

GenRC This hybrid generational collector uses a copying nurs-
ery and RefCount for the mature generation [15]. It ignoresam
tions to nursery objects by marking them as logged, and logs t
addresses of all mutated mature objects. When the nursksy fil
it promotes nursery survivors into the reference countipgcs.

As part of the promotion of nursery objects, it generatesrezfce
counts for them and their referents. At the end of the nurseligc-
tion, GenRC computes reference counts and deletes deactxbje



as in RefCount. Since GenRC ignores the frequent mutatitthe o
nursery objects, it performs much better than RefCountleCtibn
time is proportional to the nursery size and the number ofl dba
jects in the RefCount space. With a small nursery and otHéazo
tion triggers, pause times are very low [15]. RefCount andr3e
are subject to the same free-list fragmentation issues as3vaeep

tional collectors allocate large objects directly intcstpace. The
LOS uses the treadmill algorithm [8]. It records a pointeeszh
object in a list. During whole heap collections, all of thélectors
but RefCount and GenRC trace the live large objects, platieg
on another list. They then reclaim any objects left on thgipail
list. RefCount and GenRC reference count the large obj¢e@ch

and GenMS. However, since GenRC collects the mature space oncollection. MMTk does not a priori reserve space for the LOS,

every collection, it is likely to maintain a smaller memoopfprint.

3.2 Implementation Details

This section adds a few more implementation details abaaresh
mechanisms including the nursery size policies, inliningenbar-
riers and allocation, reference counting header, the latgect
space, and the boot image.

3.2.1 Nursery size policies

By default, the generational collectors implementagiable nurs-
ery [3] whose initial size is half of the heap, the other halfé-
served for copying. Each nursery collection reduces thsamyrby
the size of the survivors. When the available space for theamyis
too small (256KB by default), it triggers a mature spaceeatibn.

MMTk also provides éboundednursery which takes a command

line parameter as the initial nursery size, collects aftemursery is
full, and resizes the nursery below the bound only when theirea
space cannot accommodate a nursery of survivors. It shuisikg
the above variable nursery policy with the same lower bour:

fixed nursery never reduces the size of the nursery, and thus trig-
gers a whole heap collection sooner than the bounded nuo$ery

the same size. The bounded nursery triggers more collectiam
the variable nursery which uses space more efficiently, hanwv
the variable nursery is large, pause time suffers.

3.2.2 Write-barrier and allocation inlining

For the generational collectors, MMTk inlines the writerier fast
path which filters stores to nursery objects and thus doesenotd
most pointer updates, i.e., ignores between 93.7% to 99f pirt-

er stores. The slow path makes the appropriate entries irethe

allocates it on demand.

The boot image contains various objects and precompilegeta
necessary for booting Jikes RVM, including the compilegsst
loader, the garbage collector, and other essential elentdrthe
virtual machine as part of the Java-in-Java design. MMTls put
these objects in ammortal space, and none of the collectad-

lectthem. All except RefCount and GenRC trace through the boot

image objects whenever they perform a while heap collecte

fCount and GenRC assume all pointers out of the boot image are

live to avoid a priori assigning reference counts at booetim

4. Methodology

This section describes Jikes RVM, our experimental platfand
key benchmark characteristics.

4.1 IBM Jikes RVM

We use MMTk in Jikes RVM version 2.3.1+C\4‘S{2, 1], with
patches to support performance countersps®lido-adaptiveom-
pilation. Jikes RVM is a high-performance VM written in Javith
an aggressive optimizing compiler [1, 2]. We use configoreti
that precompile as much as possible, including key libsagied
the optimizing compiler and turn off assertion checkinge (Hast
build-time configuration). The adaptive compiler uses darggo
select methods to optimize, leading to high performance 4t
a lack of determinism. Eechout et al. use statistical tephes to
show that including the adaptive compiler for short runnprg-
grams skews the results to measure the virtual machine lj2aH-
dition, adaptive compiler variations result in changesliocation
behavior and running time of the same run or runs with difiere

membered set. Since the write barrier for RefCount is unieond heap sizes. For example, sampling triggers compilatiorifierent

tional, it is fully inlined but forces the slow path objectrmem-
bering mechanism out-of-line to minimize code bloat and [iben

overhead [14]. SemiSpace and MarkSweep have no write barrie
MMTK inlines the fast path for the allocation sequence. For

the copying and generational allocators, the inlined secgieon-
sists of incrementing a bump pointer and testing it agairishia
pointer. If the test fails (failure rate is typically 0.1%Me alloca-
tion sequence calls an out-of-line routine to acquire agokiock
of memory, which may trigger a collection.

For the MarkSweep and RefCount free-list allocators, tfiaén
allocation sequence consists of establishing the size étasthe
allocation (for non-array types, the compiler staticailgleiates the
size), and removing a free cell from the appropriate freg-fisuch
a cell is available. If there is no available free cell, thie@dtion
path calls out-of-line to move to another block, or if there ao
more blocks of that size class, to acquire a new block.

3.2.3 Header, large objects, and boot image

methods, and the compilation of different write barriers éach
collector is part of the runtime system as well as the progaach
induces both different mutator behavior and collector Igz4.
Since our goal is to focus on application and garbage cadlect
interactions, oupseudo adaptivapproach deterministically mim-
ics adaptive compilatioA. First we profile each benchmark five
times and select the best, collecting a log of the methodsttiea
adaptive compiler chooses to optimize. This log is then w®ed
deterministic compilation advice for the performance rufs our
performanceuns, we run two iterations of each benchmark. In the
first iteration, the compiler optimizes the methods in theeelfile
on demand, and base compiles the others. Before the seeoad it
tion, we perform a whole heap garbage collection to flush gaph
of compiler objects. We themeasurethe second iteration which
uses optimized code for hot methods and whose heap incluties o
application objects. We perform this experiment five timed ee-
port the fastest time. Our methodology thus avoids vamatidue

MMTk has a two word (8 byte) header for each object, which con- to adaptive compilation.

tains a pointer to the TIB (type information block locatedtfie
immortal space, see below), hash bits, lock bits, and GC Bits
one word header for MarkSweep collectors is possible, buyeb

implemented. Bacon et al. found that a one word header yaids

average of 2-3% improvement in overall execution [6]. Reff@o

and the mature space in GenRC have an additional word (4)bytes

in the object headers to accommodate the reference count.
MMTk allocates all objects 8KB or larger separately into@éa
object space (LOS) using an integral number of pages. Thergen

4.2 Experimental Platform
We perform our experiments on three architectures: AthiRen-

tium 4, and Power PC. We present the Athlon results because it

performs the best and it has a relatively simpler memoryahagry
that is easier to analyze.

1A 2.3.2 pre-release, cvs timestanzmpda/ 03/ 25 05: 11: 47 UTC.

2Xjanglong Huang and Narendran Sachindran jointly impleteen
the pseudo adaptive compilation mechanism.



Source Field[) Target ObjectQ = * )

alloc | alloc: | % GC | % Nur % Read % Focus % Read % Focus
MB min [ srv || Nur | Mat | Tmm Nur | Mat || Nur [ Mat | Tmm || Nur | Mat
_202_jess 261 | 1711 63 1 29 44 27 0.4 69 18 62 20 0.2 97
_228_jack 231 | 171 53 3 25 39 36 0.1 6 21 50 28 0.1 7
_205_raytrace 135 8:1 46 2 19 75 6 0.3 48 18 78 4 0.3 49
_227_mtrt 142 71 51 5 20 75 6 0.3 21 19 77 5 0.3 21
_213_javac 185 71 29 23 30 46 24 0.4 2 25 55 21 0.3 3
_201_compress 99 6:1 8 0 97 0 3| 11.0 3 61 39 0 6.9 | 712
pseudojbb 216 | 51 21 32 16 59 25 0.2 2 14 72 15 0.1 2
_209_db 82 4:1 11 9 5 69 26 0.3 49 1 89 9 0.1 63
_222_mpegaudio 3 1:1 0 - - - - - - - - - - -

Table 1: Benchmark
We use a 1.9GHz AMD Athlon XP 2600+. It has a 64 byte L1

Characteristics

SemiSpace spends performing GC work. The srv quantifies

and L2 cache line size. The data and instruction L1 caches aregenerational behavior for a 4MB fixed size nursery using e p

64KB 2-way set associative. It has a unifiedclusive512KB 16-
way set associative L2 cache, and an 8 entry victim buffet [30
between the two caches. The L2 holds only replacement \sctim
from the L1, and does not contain copies of data cached inihe L
When the L1 data cache evicts a line, it goes to the victimdopuff
which in turn evicts the LRU line in the victim buffer into the?.

The Athlon has 1GB of dual channel 333MHz DDR RAM config-
ured as 2x 512MB DIMMs with an nForce2 K7N2G motherboard
and 333MHz front side bus. This machine is marketed by AMD as
being comparable to a 2.6GHz Pentium 4.

centage of allocated data that the collector copies ougafitinsery.

The remaining columns indicate access patterns for object a
cesses. We instrument every pointer remad= * p’ and count the
dereferenced fieldp (columns 6-11), and the referent objeat,
(last five columns). Table 1 includes the percentage of réads
nursery (Nur), mature (Mat) and immortal (Imm) spaces. e
cuspresents the accesses in the nursery and mature spaceddivide
by the number of bytes allocated in the nursery and matureespa
respectively. For example, i202_jess, 29% of the timep is the
nursery, and 18% of the time, the dereferenced olgestin the

The 2.6GHz Pentium 4 uses hyperthreading. It has a 64 byte L1 nursery. The focus of accessesptan the mature space (69) was

and L2 cache line size, an 8KB 4-way set associative L1 dataesa
a 12Kuops L1 instruction trace cache, and a 512KB unified 8-way

more than 100 times greater than accessesitiche nursery (0.4).
A higher number reflects higher temporal localit202_jess pro-

set associative L2 on-chip cache. The machine has 1GB of dual motes only around 1% of data into the mature space, and yet 44%

channel 400MHz DDR RAM configured as:2 512MB DIMMs
with an Intel i865 motherboard and 800MHz front side bus.

We also use a Apple Power Mac G5 with a 1.6HGz IBM Pow-
erPC 970. It has a 128 byte L1 and L2 cache line size, a 64KB
direct mapped L1 instruction cache and a 32KB 2-way set &soc
tive L1 data cache, and a 512KB unified 8-way set associatdve L
on-chip cache. The machine has 768MB of 333MHz DDR RAM
with an Apple motherboard and 800MHz front side bus.

All three platforms run the same configuration of Debian kinu
with a 2.6.0 kernel. We run all experiments in a standalondemo
with all non essential daemons and services (including ¢twark
interface) shut down. We instrument MMTk and Jikes RVM to use
the AMD and Intel performance counters to measure cyclésede
instructions, L1 cache misses, L2 cache misses, and TLBemiss
of both the mutator and collector as the collector algoritheap
size, and other features vary. Because of hardware limiitateach
performance counter requires a separate execution. Westsiew
2.6.5 of theperfctr Intel/x86 hardware performance counters for
Linux with the associated kernel patch and libraries [35}.th#e
time of writing, perfctr was unavailable for the PowerPC 970

4.3 Benchmarks

Table 1 shows key characteristics of each of our benchmales.
use the eight SPEC JVM benchmarks, gsg¢udojbb, a variant

of SPEC JBB2000 [37, 38] that executes a fixed number of trans-
actions to perform comparisons under a fixed garbage cialfect
load. Thealloc column in Table 1 indicates the total number of
megabytes allocated. Our prior work reports on the adaptive-
piler activity [12] and thus shows more allocation and higre
tios of live data to allocation. However, Eeckhout et al. v8ho
that the adaptive compiler swamps program behaviors, arstiie
methodology we use here exposes variations due to the pnogra
instead of the VM. Thalloc:min column quantifies the garbage
collection load with the ratio of total allocation to the rimmum
heap size in which GenMS executes. For a heap sizeoftRe
minimum, the% GC SemiSpaceshows the percentage of time

of _202_jess’s field reads are to this 1%, while 29% are to the 99%
of objects that never survive the nursery.

We group programs according to Table 202 _jess, _228_jack,
_205_raytrace, and _227_mtrt exhibit low nursery survival and
high ratios of total allocation to minimum live size213_javac,
pseudojbb, and_209_db have higher nursery survival, but a rel-
atively high heap turnover. Two programs have high nursary s
vival and do not exercise collection much201_compress and
_222_mpegaudio. _201_compress allocates large objects, and
requires little garbage collection222_mpegaudio allocates less
than 4MB, and thus the generational collectors never datieEhe
first two groups of programs are thus better tests of memory ma
agement influences and policies and we focus on them. Thiésesu
section presents representative benchmarks which wesdigtde-
tail. Other benchmarks follow the same trends, except wiotedh
Complete results included in a technical rep@it [

5. Results

This section examines collector performance and its inflaeim
mutator and total performance using the Athlon. We first aixpl
how occasionally small changes in heap sizes cause vasaitio
collection time. We then compare the whole heap and gepesdti
collectors, validating the uniform performance benefitthefweak
generational hypothesis [34, 41]. We then tease apart the in
ences of allocation and collection mechanisms. Contigudios
cation yields better mutator locality than free-list alition, but
the space-efficient free-list reduces total collector lokdr most
programs, cache measurements reveal that the spatiaityootl
objects allocated close together in time is key for nursérjeas,
but not as important for mature objects. A fixed nursery tesl¢he
influence of the mature space collection policy, showing tinata-
tor performance is usually agnostic to mature space psligith a
few notable exceptions that need copying to achieve Igcadiow-
ever, when the mature space benefits from less frequenttiotie
in GenMS, total time improves. Varying the nursery size adse
that frequent GC’s in the small nursery degrade collectofope



mance, and nursery sizes well above the L2 cache size performmutator time is however strongly correlated with the GC atgm,

best. We then show that the same trends hold across the Athlon
P4, and PPC architectures.

Figure 1 and subsequent figures plot total time, garbage col-
lection (GC) time, mutator time, and cache statistics féfiedint
benchmarks as a function of heap size. The right y-axis ezspse
time in seconds and the left normalizes to the fastest timeapH
size is shown as a multiple of the smallest heap size in whieh t
particular application executes using GenMS on the bottaris,
and in mega-bytes (MB) on top.

5.1 Collector Sensitivity to Heap Size

Figure 1 shows the general trend that up to some point ineseas
in heap size tend to decrease the frequency of garbage tomflec
and thus total time (see Figure 1). Each heap size is an indepe
trial. In all our experiments, the variation between runsrensame
heap size is less than 1%. However, small changes in heapaize
produce what seem like chaotic behavior, such as the diffexein
total and GC time between heap sizes 1 and 1.3 the minimum for
GenMS on_213_javac. The reason is that a small change in heap
size triggers collections at different points which changéhich
objects a collector promotes. For instance, consider aanoghat
builds a large but relatively short lived pointer data stuoe. In a
small heap, the generational collection point happensgtist to
when the program builds the data structure, and in a slidgdatger
heap it happens in the middle. In the second case, the anlle-
motes the data structure, which dies shortly thereaftdrit loloes
not detect the death until a whole heap collection. In thentiee,
the increased heap occupancy triggers the next nursemctoth
sooner, and so on. The exact timing of a collection can thus ha
cascading positive as well as negative effects, and explana-
tions between nearby heap sizes.

5.2 Evaluating Generational Behavior
This section compares whole heap collectors to their génasd
counterparts and explores the generational write-bacast. Fig-
ure 1 shows that for202_jess, -209_db, and_213_javac the gen-
erational collectors perform much better than their whelagvari-
ants. This result holds on all the benchmarks, althoughdhe |
mortality, low GC load programs such a801_compress only
benefit in small heaps. Generational collectors reduce G ti
for _202_jess by an order of magnitude, and even @13 _javac,
where 23% of nursery objects survive, GenCopy improves @€ ti
over SemiSpace by a factor of two, and GenMS improves over
MarkSweep. The generational collectors reduce GC time dyae
ing the cost of each collection through only examining thesary.
Counting the number of collections (unshown) shows the aedu
tions come from dramatically fewer collections as well. 8ese
collection costs are heap-size dependent, the impact ofrfGan
total time is greatest in small to modestly sized heaps.
Examining mutator performance reveals that heap size dates n
systematically influence mutator time. Although the aplin it-
self is unchanged by heap size, larger heap sizes will tegpreead
objects out more which makes this result counter intuitiiégne

% Overhead %
_202_jess 13.6
_228_jack 17
_205_raytrace 0.9
_227_mtrt 2.9
_213_javac 4.6
_201_compress 0
pseudojbb 3.1
-209.db 24
_222_mpegaudio 0
Geometric mean| 3.2

Table 2: Write Barrier Mutator Overhead For 4MB Nursery

where SemiSpace usually performs best. SemiSpace benefits f
no write barrier and faster allocation than MarkSweep. Téreega-
tional collectors benefit from contiguous allocation. GepgZand
SemiSpace perform about the same f2t3_javac and_209_db,
whereas mutator performance in GenCopy is around 20% slower
than SemiSpace a202_jess. We now show that this difference is
mostly due to the write barrier.

5.2.1 The Write Barrier: Friend or Foe?

To examine the cost of the write barrier, we use a new coltecto
which has the same heap organization, write barrier, anagtiion
policies as GenCopy, butaces(but does not collect) the whole
heap at each collection. tbllectsthe whole heap only when the
mature space is full. Because it always traces the entirp, hita
establishes liveness of nursery objects by reachabitityhe write
barrier is not required for correctness. The garbage dalleover-
head of this collector is substantial, so we do not recomnignd
but it yields an experimental platform in which we can induat
exclude the write barrier while holding all other factorsstant,
such as the heap organization and promotion policy.

Table 2 shows the overhead of the standard MMTk generational
write barrier on mutator performance with a 4MB nursery and a
moderate heap (& minimum) on the Athlon platform. We show
the percentage slowdown in the mutator when using the waite b
rier relative to mutator performance without the barrieheTover-
head is low, 3.2% on average (3.1% for the P4 and 1.9% for the
PPC)._202 _jess suffers a substantial mutator slowdown. Table 1
indicates the high mortality rate and concentration of aseg to
the few objects that do survive as the cause of the heavy baite
rier traffic for _202_jess. However, the previous section shows that
the massive reduction in collection costs swamps the mubatr-
head in such a setting. Other benchmarks show very low osdshe
For example in222_mpegaudio, it never collects, thus no objects
are ever in the large space, and the write barrier test nelkr @
the remembered sets. The multi-issue architecture thupletety
hides its cost in unused issue slots. So while the write &rahas
the potential to be expensive, its overhead is usually v@sy and
the advantages seen at collection time far outweigh the cost

The combination of good mutator performance and outstand-
ing GC performance is clear in the total time results. Even in
_213_javac which has low infant mortality and il209_db which
has low GC work load, the generational collectors perfora be
ter than the whole heap collectors. 1202_jess, the advantage
for the generational collectors is dramatic. This data sugphe
weak generational hypothesis, and indicates even whenlésss
true, generational collectors offer benefits.

5.3 Allocation: Free List versus Contiguous
The essential allocator choice is free-list or contiguauiich in
turn dictates the choice of collection algorithm. Fre¢ditocation
is more expensive than contiguous allocation, but permitser
mental freeing and obviates the need for a copy reserve.igent
ous allocations provide spatial locality for objects adltad close
together in time, whereas free-list allocation may sprasidizese
objects. To reveal the allocation time trade-offs, we exantheir
impact on the mutator. Since both RefCount and MarkSweep use
the same free-list allocator, our analysis focuses on Madc®
and GenMS, which are simpler than RefCount and GenRC.

5.3.1 Mutator costs in whole heap collectors

The contiguous and free-list allocators directly impactatar per-
formance as a consequence of the mutator allocation costhand
collection policies they impose. They also impact on theatart
through their locality effects.



Heap size (MB) Heap size (MB) Heap size (MB)

20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 20 40 60 80 100 120 140 160
3 T T T T — T T 15 T T La—— T 3 T T T T Py m— ™3 12
o i v ] A e ——
RefCount —— | ¢ RefCount —— RefCount —— -+ 11
GenCopy - 14 | GenCopy ---&-- GenCopy ---&--
25 GenMS o | ¢ GenMS o~ o 18 25 |- GenMS o o 19
@ GenrC ---&-- i o 135 enRC -4+ @ A GenRC ---4--
£ £ p £ 3
= 15 T F 13 4 17 § F 419 o
= 3 o 8 3 ' 2
51 2 9 l \ 2 o e
% 2 & 45 g % 1.25 T k 1 g % 2 ‘ 4 g g
3 | 1, F E 12 : FE E A, . F
2 : 2 U g
135 1.15 S 15 Y "
15 oy ~<a - Ll M 15 ; 5 46
N 1 . R - LI s
Lo 3 _B.sx;fmﬂa.e.e b S 114 E gy NS 1s
o Ca 4 25 105 ge-g B OB g g -
1 LioBe TR e - 0 Vit - VOIS - Vit LA : 1L 1 L I I SgeeBeeg L] —
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) 202_jess Total Time (b) 209_db Total Time (c) 213_javac Total Time
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 20 40 60 80 100 120 140 160
50 50 200
l‘ ' ' ' \ ‘Senr'\%“‘ ace - ' \ ' ' ' Semwépace —a 09 | ‘\ \_‘- ' ' A Se‘miSpacé '
45 : Mar P 414 45 -4 —— 180 : i~ MarkSweep —e—
: RefCount 5@7 - \ \ RefCount —— 7 8 : \ RefCount —— | 25
40 nCopy -~ & -~ 40 GenCopy ---8--- 160 GenCopy ---&--
o ! erMS o 4 12 ° || GenMS o 4 7 ° Poba L GenMS o
£ 35 ; GenRCyg- 25 £ 35 \ \ GenRC -4 £ 140 ) \\ ©  GenRC --a- o 2
£ : | (= 16 5 F ‘ e o
g 3 : 1 8 g 3 \ \ 3 g 120 : : 3
- 1s : ; ]
8 Blo 08 ¢ g T\\ \ 2 g 2000 g : 15 2
N FoN [ N ® =
T 2 Q g 20 140 & =80 o . Q
£ 106 o E \x * o E R 3 41 ©
S 15 S 15 13 2 60 -8 i
10 : 1° 10 NN 42 40 Soea :
: T ; G “n 1 o5
s L%, 2, 4 02 52 Z\g\'}\'\_.* RN . 2 o8
Bgn Al O gt &= op.o 3 |
T S e o O3 TS W Ceomg . oo h T ’ . . . . a -
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(d) -202_jess GC Time (e)-209_db GC Time (f) -213_javac GC Time
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 20 40 60 80 100 120 140 160
s ' ' ' ' ' éem'sbace TaT]29 L5 ' ' ' Sem §pace e s ' ! ' : Sel ace Tl 5.6
i 42 i 4 5
145 MarkSweep —e— 1.45 —e— 4 18 1.45 MarkSweep —e—
RefCount —— 1 2.8 RefCount —— RefCount —— 1 54
o L4F GenCopy -2+ o L4 GenCopy -8 o L4F GenCopy -2
£ GenMS ---o--- 7 2.7 £ GenMS ---o--- 4 17 £ GenMS ---o--- | 52
£ 135 GenrC ---a--- T F 18 GenRC -4 g F 13 GenrC -4~ =)
5 1 120 & 3 EI {s &
g 13 \*“,._._.__ . ¢ E 13 1165 E§ 13 Y
3 125 E 3 e e e . E 3 J £
2 125 e T S e, £ 2 125 £ 2 125 48 £
B el 124 5 3 4 5 © oy 146 &
S 12 Ftweegeaa & g 8 12p A/ 53 8 12 e g gy o 8
3 2 Capea At aiaalaals 1,3 €05 A g 3 . g
E 115 [ %858pga BgGrge g g Bea S E 115 e - S E 115 g q 44 =
<] g'8766.6-87F Boe 122 S aana e g S PN
zZ 4 g 2 | Seete = 2 11le®%e i 42
] 15, R = : L8 otererbe e g
1.05 : 1.05 o B e & o 13 1.05 "Ba [T 4
N : ‘ T 12 . L ‘ : ‘ ‘ N il
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(g) 202_jess Mutator Time (h) -209_db Mutator Time (i) _213_javac Mutator Time

Figure 1: Total, Mutator and GC Performance of All Six Collectors

We first measure an upper bound on the time the program spendsator performance, where SemiSpace always improves ovat-Ma
in contiguous allocation by pushing the allocation seqaeng-of- Sweep. Contiguous allocation in SemiSpace thus offerditpca
line. This cost typically ranges from 1% to at most 10% of to- from two sources: allocation order and copying compactknee-
tal time. We then use a micro benchmark to establish theivelat  list allocation in MarkSweep degrades program localitye Tiuta-
costs of the two mechanisms. The benchmark allocates skijpéct  tor benefit of SemiSpace over MarkSweep is relatively insigas
the same size in a tight loop. Contiguous allocation is 118tefa to heap size, thus suggesting that this benefit is from almtéo-

than the free-list allocation, allocating at 726 MB/s and 68B/s cality rather than mature object compaction. An exceptothe
respectively. (We recently reported slower times on anroéde TLB performance on202_jess, where the four copying collectors
chitecture [12].) Since allocation time is less than 10%s #mall show a sharp reduction in TLB misses at smaller heap sizes, pr
difference between the mechanisms reduces to less than 184 of sumably due to collection-induced locality. However, Llsg@s
tal time, and excludes the allocation sequence as a majoresofl appear to dominate, so the reduction in TLB misses doesanut-tr
variation. late to a reduction in mutator time.

Figure 2 examines mutator time and memory hierarchy perfor- 5§ 3 2  Mutator costs in generational collectors
mance for.202.jess, -209.db, andpseudojbb which have repre-  \we perform the following experiment to examine more closefe-
sentative behaviors, plotting mutator time, L1 misses, li8s#8,  ther SemiSpace locality is mostly due to the allocation ocdéhe

and TLB misses as a function of heap size on a log scale. First copying compaction of mature objects. We hold the work load o
consider SemiSpace and MarkSweep. SemiSpace mutator-perfo the mature space constant with a fixed-size nursery varfathieo
mance improvements range from 7 to 15% over MarkSweep (only generational collectors. The young objects thus are allasation

on _201_compress and _222_mpegaudio is free-list allocation  orger, Since young objects are collected at the same freguen

within 5%). The limit analysis above indicates that the ciref- only the mature space collection policies differ. Figurédves the
fect of the allocator is typically 1% or less of this diffecen Since  geometric mean of mutator performance across all benctenark
the application code is otherwise identical, second ordfects When the nursery size is fixed, GenCopy and GenMS have very

must dominate.202 jess, -209.db, andpseudojbb each show a  similar mutator performance. The locality of mature spageats
strong and consistent correlation between cache memorynand is thus not a dominant effect on mutator performance. As Sec-



4 T T T T T 16 — T T 8
M G o 0 o 00 o o o o o "o
s 5 5 G900 é-’—-@:zgﬂé::g HE OB gk
= e =4 =4 Bt BB D DB T
R e e g 3 . =
g 2 rmwe g g
c o c
é SemiSpace —=— é SemiSpace —=— é
MarkSweep —e— MarkSweep —e— SemiSpace —a—
RefCount —— RefCount —— MarkSweep —e—
GenCopy -~ &-- GenCopy -8~ GenCopy -~ &--
GenMS ---e--- GenMS ---6--- GenMS ---e---
1L I I I GenRC & gL \ ) ) GenRC -4~ 4 L ) ) ‘ GenRC -
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) _202_jess Mutator Time (b) -209_db Mutator Time (c) pseudojbb Mutator Time
64 T T 256 T T 64 T T
SemiSpace —#— SemiSpace —#— SemiSpace —#—
MarkSweep —e— MarkSweep —e— MarkSweep —e—
— RefCount —=— — RefCount —=— — GenCopy ---&--
g GenCopy ---&--- g GenCopy ---&--- g GenMS ---o---
= GenMS ---6--- = GenMS ---6--- = GenRC ---»-
’%T GenRC ---&--- @ GenRC ---4 ’%T
g 32 3 128 4
16 Lo ‘ ‘ ‘ ‘ ‘ 6a L ‘ ‘ ‘ ‘ ‘ a2 L ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(d) -202_jess Mutator L1 (e) -209_db Mutator L1 (f) pseudojbb Mutator L1
8 T T T T T 128 T T T 32 T T
SemiSpace —#— SemiSpace —#&— SemiSpace —#&—
w MarkSweep —e— MarkSweep —e—
—_ efCount —=— — RefCount —— — GenCopy ---&--
g GenCopy ---&--- g GenCopy ---3--- g GenMS ---e---
= 4 GenMS ---e--- | = GenMS ---©--- = GenRC ---&---
’%T GenRC ---&--- @ GenRC ---4--- ’%T
g 2 g 1
© 0 0.0-0- 0. @@ BB B g O
05 L ‘ ‘ ‘ ‘ ‘ o s L ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(9) 202_jess Mutator L2 (h) 209_db Mutator L2 (i) pseudojbb Mutator L2
16 — T T T T T 128 T T T 32 T T
MMW SemiSpace —#— SemiSpace —#—
W"HW MarkSweep —e— MarkSweep —e—
R Goncopy = | B Sncopy o | B T
< Genhis o < Gens o < GonRG e
2 4 2 GenRC ---2--- 2
=) 4 2 64 2 16 oo g
g , g 0000 8848 B Bt g 8
.@ 1 é 32 .@ 8
g g e g g
3 os E g g E
025 L ‘ ‘ ‘ ‘ ‘ 16 L ‘ ‘ ‘ ‘ ‘ N ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
() -202_jess Mutator TLB (k) -209_db Mutator TLB () pseudojbb Mutator TLB
Figure 2: Mutator time and L1, L2 and TLB misses for all six collectors collectors (log scale).
tion 5.4.1 discusses in more detail, the variable-sizeamyrattains pace, due to the write barrier (see Table 2). Section 4.3 sliost
a space advantage when combined with GenMS which reduces the209_db is dominated by mature space accesses, and thus nursery
number of nursery collections, a direct benefit. The indibemefit locality is immaterial for.209_db.
is slightly improved locality for nursery objects since ytatay in In pseudojbb, the copying nursery benefits GenMS compared
allocation order in the nursery for longer. Figure 3 suggdisat to MarkSweep, but GenCopy still performs significantly bethan
mature object compaction in the free-list will be of littlseufor both. This suggests thaseudojbb has mature space access pat-
these programs. However, Figure 2 reveals the two excepton  terns which are locality sensitive. The access patterisstat in
this rule: 209_db andpseudojbb. Section 4.3 confirm this result. Mature space is accesse@ mor
The most striking counterpoint i209_db, where the genera-  heavily bypseudojbb, but the accesses are relatively unfocused.
tional collectors make little impact on mutator time. Eviea topy- Together the whole heap and generational results inditate t

ing nursery in GenMS provides no advantage over MarkSweep. free-list allocation significantly degrades locality, wias contigu-
GenCopy slightly degrades mutator locality compared wéms- ous allocation achieves locality on young objects fromgatmn



T T
SemiSpace —#—
MarkSweep —e—

GenCopy Fixed 4MB ---&---

GenMS Fixed 4MB ---&---

S e e o o o oo o o o o o o o
©8.88:088 89 BTE B EBUB TR

I —a

Mutator Time (sec) (log)

g L L L L L L
1 2 3 4 5 6

Heap size relative to minimum heap size

Figure 3: Mutator time for whole heap and fixed-size nursery
collectors, geometric mean across all benchmarks

order. Furthermore, a copying nursery ameliorates theitpqeen-
alty of the mature space free-list in all h@09_db andpseudojbb,
where mature-space reads play a large role.

5.4 Collection: How, when, and whether?

The choice of allocation mechanism also governs the chdicelo
lection mechanisms. We now examine the time and space over-
heads of the collection algorithms, and their influence onatoun
locality. We consider how frequently to collect. We alsowsttbat

our results are consistent across architectures, and thensd if

we should choose garbage collection at all.

5.4.1 Garbage collection costs
Contiguous allocation dictates copying collection whielguires

a copy reserve. The SemiSpace, GenCopy, and GenMS collec-

tor performance graphs reflect this copying space overhéddachw
leads to many more collections than pure MarkSweep—Serépa
typically collects between 1.5 and 2 times as often as Madejw
for a given heap size. For example, GC time in Figure 2 for Semi
pace is typically at least 50% worse than MarkSweep. We mea-

sured the tracing rates for SemiSpace and MarkSweep on a mi-

cro benchmark: they are very close (59.5MB/sec and 59.288/s
which means that the frequency of collection is the sourcthef
overhead. In addition, GenMS with a variable nursery redibe
number of nursery collections over GenCopy because it issmor
space efficient. The first order effect of fewer collectioage-
duced collection time. A second order effect could be feveehe
line displacements to collector invocations. The stabdftthe mu-
tator cache performance as a function of heap size in thedhce
dramatic differences in numbers of collections dissuadesf this
hypothesis.

5.4.2 Trading off collection cost and mutator locality
Total performance is of course a function of the mutator aold ¢
lector performance. While contiguous allocation offersgmiéi-
cant mutator advantage, its copy reserve requirementtseisub
substantial overhead. In small heap sizes, collection typieally
swamps total performance and overwhelms mutator locaifitgrel
ences; MarkSweep outperforms SemiSpace. In large heapa; mu
tor time dominates and SemiSpace outperforms MarkSweep. Fi
ure 1 illustrates the crossovers in total performance fork@eveep
and SemiSpace ar213_javac and_202_jess.

As Sections 5.3.1 and 5.3.2 establish, the locality adgentd
contiguous allocation is greatest among the young obj&disse
results indicate that the copying nursery combined with @&csp
efficient MarkSweep mature space offers a good combinatfon o
locality benefits and reduced collection costs. Howevegmima-
ture space locality dominates, such as209_db, GenCopy can
perform best.

5.4.3 Tracing or Reference Counting?
With a free-list, the collector can either trace the liveemit$ from
the roots or count references. Continuously tracking thaber

MarkSweep mutator SemiSpace mutator

1.5x min ratio 1.5x min ratio
GCs | time (s) | /1.5x GCs [ time (s) | %/1.5x
_202_jess 27 2.48 0.97 50 1.97 1.18
_228_jack 25 2.39 0.97 49 211 1.08
_205_raytrace 10 2.35 0.98 25 2.04 1.06
_227_mtrt 9 2.38 1.04 26 21 1.07
_213_javac 12 4.57 0.99 28 3.8 1.03
_201_compress 7 5.47 1.00 7 5.41 0.99
pseudojbb 9 7.21 1.00 32 6.04 1.07
-209.db 5 13.78 1.01 22 12.81 0.86
_222_mpegaudio 0 10.57 0.93 0 9.77 1.00
Geometric mean| 8 4.57 0.99 18 4.02 1.03

Table 3: Impact of very large heap size on mutator time

of references to each object is expensive, even with aggeess-
timizations [21, 33], which the MMTk implementation alsocess
This result is evident in Figure 1, where RefCount performes d
matically worse than MarkSweep fo202_jess and_213_javac.
RefCount performs well or201_compress, but this application is
atypical. As discussed in Sections 5.2 and 5.3, there is ebimg
evidence for a generational policy with a copying nursergl an
free-list in the mature space. The distinctly different dgmaphics

of young and old objects further motivate a hybrid generatioef-
erence counting policy [15]. Figure 1 shows that GenRC per$o
similar to the other generational collectors, exceptZh3_javac,
which has an unusually large amount of cyclic data strust{ife

The performance of GenRC is sensitive to the frequency decyc
detection, which we did not tune in these experiments. GenRC
holds a potential locality and space advantage over GenMS be
cause ipromptlyreclaims dead mature space objects, and thus can
more tightly pack the free-list. GenRC performs referermenting

at every nursery collection whereas GenMS infrequentlyopers
whole heap collections. This promise is not borne out in fédy

but may be a reflection of the immaturity of the GenRC implemen
tation rather than on the fundamentals of the algorithm.

5.4.4 How often?
We now examine the limits of not collecting, and then exarhioe
often to collect the nursery.

If the heap is never collected and memory is monotonically- co
sumed, the spatial locality of older objects should gragiudé-
grade as neighboring objects die. Assuming an approxisnatet
form death rate over time, fragmentation will be an expoia¢nt
function of age—older objects being the most fragmented,the
very most recently allocated objects suffering no fragrmagon. To
examine this effect, Table 3 compares the mutator time foh ea
benchmark using contiguous and free-list allocation withadest
heap (1.5 minimum), and an uncollected heap, large enough to
avoid triggering any collection. For these benchmarks MBGs
adequate. Only202_jess follows the hypothesis that never col-
lecting degrades performance. Sin@®2_jess has a high heap
turn over and some accesses to mature space, it does suffer so
fragmentation that degrades mutator performance wheneide is
never collected.

Most of the other benchmarks have about the same mutator per-
formance in the uncollected heap)(as in the modest heap. At first
this result seems a little surprising in light of the inebidegra-
dation in locality among the older objects. However, asisa&.3
showed, the spatial locality of the mature objects is notraidant
factor for these benchmarks209_db actually achieves better per-
formance without collection because it attains good logdiom
contiguous allocation and it has low GC work load. Blackbetn
al. found for a more memory constrained machine, neverciig
caused severe degradations209_db due to paging [13]. Table 1
together with mutator locality results indicate that alltbé other
programs have a slight majority of accesses to a few matyeetsb



Mutator L1 Misses (millions) (log) Mutator Time (sec) (log)

GC L1 Misses (millions) (log)

with good temporal locality, and accesses to a very largebaum
of young objects with poor temporal locality (typically aseriefly
then discarded). Thus, compression of mature space oligauts
an important source of locality in these programs. We extredt
server applications, and others with large memory usageaotd
prints will follow _202_jess more than these results.

T
GenCopy ---&---
GenMS -+

o}

L L L
1024 4096 16384

Nursery Size (KB) (log)

(a) Mutator Time

L
256

65536

T
GenCopy -~
GenMS -+

[olin}

16

®

IS

N

-

0.5

L L L
1024 4096 16384

Nursery Size (KB) (log)

(d) L1 Mutator Misses

L
256

65536

GenC(;py -
GenMS --

[o}in}

256 1024 4096 16384
Nursery Size (KB) (log)

(g) L1 GC Misses

65536

Mutator L2 Misses (millions) (log) GC Time (sec) (log)

GC L2 Misses (millions) (log)

T T
9 GenCopy ---&-- GenCopy -~
\, GenMS ---o--- g GenMS ---e---
1 5 Y
= B:&
8 BN
& 3 B
\ 2 g
05 & Biie
g Geifng @
1§ =
0.25 .
B
“e.,
e .
gy @
0.125 1 1 1 1 4 1 1 1 1
64 256 1024 4096 16384 65536 64 256 1024 4096 16384
Nursery Size (KB) (log) Nursery Size (KB) (log)
(b) GC Time (c) Total Time
T 16 T
GenCopy ---&-- GenCopy ---@-
GenMS ---o--- GenMS ---e---
=)
k)
B
5
o B .
o.. -
S— g . S
Oog 2 S S
- S o
o ) P )
=N a o
TBeemegl g . 5 e
g RS
£ -
s a.
=N
1 1 1 1 4 1 1 B @
64 256 1024 4096 16384 65536 64 256 1024 4096 16384

65536

Nursery Size (KB) (log)

(e) L2 Mutator Misses

Gencdpy -
e GenMS -

oo

0.5

“‘::\8'—-‘.‘“ =

0.25 L L L L

256 1024 4096

Nursery Size (KB) (log)

(h) L2 GC Misses

16384

65536

GC TLB Misses (millions) (log)

Nursery Size (KB) (log)

(f) TLB Mutator Misses

65536

0.5

GenCoﬁy -
GenMS -+

[o}in}

0.125

0.0625

0.03125
64

256 1024 4096

Nursery Size (KB) (log)

(i) TLB GC Misses

Figure 4: Performance Effect of Nursery Size, 128KB to 32MBIpg scale)

5.4.5 Sizing the nursery

Given the performance advantages of generational cailectie

5.5 Architecture influences
Figure 5 compares the geometric mean of the benchmarksifor al
6 collectors on the P4, Athlon, and PPC. The x-axis is heam siz
and the y-axis is time. The P4 has the fastest clock spedolvid

by the Athlon, and then the PPC. Intel would like us to believe
that this ordering means the P4 will perform the best. Iktdze

16384

65536

Athlon performs about 20% better. For the generationakctiirs,

even the PPC is close to the P4. The Athlon’s advantage comes

now examine the influence of the nursery size. Figure 4 shows from substantially fewer cache misses than the P4 (compgre F
the performance of GenMS and GenCopy over a wide range of ures 2 and 6). Due to the Athlon’s exclusive cache architectu

bounded nursery sizes (128KB to 32MB), running in a verydarg
heap (900MB). Note the x-axis in this figure is nursery sia¢her
than heap size as in all the other figures in this paper. Fig(ak
shows a small improvement with larger nurseries in mutadoigp-
mance due to fewer L2 (Figure 4(e)) and TLB misses (Figurg.4(f
However, the difference in GC time dominates: smaller migse
demand more frequent collection and thus a substantiadjiiei
load. We measured the fixed overhead of each collection andifo
that each invocation of a collection scanned around 64KB offs:

substantially larger L1 and higher associativity L2, it plynhas
more effective cache and this advantage dominates clo@dspe
The collectors follow the same trends discussed above @f all

the architectures. The generational collectors perforst be all
architectures due to reductions in collection time andligciom
contiguous nursery allocation. However the differencedsapro-
nounced on the PPC than the P4 or Athlon which suggests reduc-
tions in the influence of collection time on faster processdrhe
space advantage of MarkSweep over SemiSpace, and theyocali

These fixed costs become significant when the nursery is dé sma advantage of SemiSpace over MarkSweep show different-cross

as 128KB. The garbage collection cost tapers off between 4MB
8MB as the fixed collection costs become insignificant. These
sults debunk the myth that the nursery size should be matched
the L2 cache size (512KB on all three architectures).

over points on each architecture. The faster the clock speed
closer the cross-over point moves towards the minimum hizap s
i.e., the cross-over where SemiSpace improves over Mar&Svse
2.2 for the P4, 3.4 for the Athlon, and 4 for the PPC. This trend



Heap size (MB) Heap size (MB) Heap size (MB)
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
3 3 3
' ' ' éemlSpace J— j ' ' éem\Space J—— j ' ' éemlSpace J—
MarkSweep —e— 14 MarkSweep —e— 14 MarkSweep —e— 14
RefCount —— 7 RefCount —— | RefCount —— 7
1 GenCopy -+~ &+~ GenCopy ---&--- enCopy -~ G-
25 GenMS ---o--- 25 GenMS ---o--- 25 N ---0---
@ GenRC -4 | 15 @ GenrC -4~ | 45 " GenRC*--2--- | 15
E £ E
= El= g5 3
3 . I N &3 , b &8, &
S 410 2 & 410 ¢ £ 410 2
T E @ E S £
£ E E F E IS
<] S <]
= 8 = 8 = 4 8
15 A ——g 15 15 B
L ‘-\.\.\._H*.’—. . A
B aaa o a g Ay “a Booao., N
o8 B B R B R s 6 . B B R S 16
1 L 1 1 1 1 1 1Ly B ema Arg g AR A g 1 L 1 1 1 I I
1 2 3 4 5 6 1 2 3 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(@) P4 (b) Athlon (c) PPC

Figure 5: Total time on three architectures

64

128

256 T T
SemiSpace —#—
MarkSweep —e—
RefCount —=—
GenCopy ---3---
GenMS ---6---
GenRC ---2---

Sem‘iSpace ——
MarkSweep —e—
ef
GenCopy ---&---
GenMS ---6---

T T
SemiSpace —#—
MarkSweep —e—
RefCount —=—
GenCopy ---&---
GenMS ---6---
GenRC ---&---

128 g

{

64

=
@

Mutator L1 Misses (millions) (log)
Mutator L2 Misses (millions) (log)

P i ul i 8

Mutator TLB Misses (millions) (log)

32

Heap size relative to minimum heap size

(a) -202_jess Mutator L1

Heap size relative to minimum heap size

(b) -202_jess Mutator L2

Heap size relative to minimum heap size

(c) -202_jess Mutator TLB

Figure 6: P4 mutator L1, L2 and TLB misses for _202_jess (log scale). Compare with Figures 2(d), 2(g) and 2(j).

suggests that for future processors that the locality adgas of
contiguous allocation will become even more pronounced.

5.6 Is garbage collection a good idea?

The software engineering benefits of garbage collectiom exe
plicit memory management are widely accepted, but the perfo
mance trade-off in languages designed for garbage calteigiun-
explored. Section 5.3 shows a clear mutator performancaaaye
for contiguous over free-list allocation, and the architesl com-
parison shows that architectural trends should make thvigradge
more pronounced. The traditional explicit memory manageme
use ofmal | oc() andfree() is tightly coupled to the use of a
free-list allocator—in fact the MMTk free-list allocatanplemen-
tation is based on Lea allocator [32], which is the defaudicator

in standard C libraries. Standard explicit memory managerise
thus unable to exploit the locality advantages of contiguallo-
cation. It is therefore possible that garbage collectiogspnts a
performanceadvantageover explicit memory management on cur-
rent or future architectures. A striking example of thiséis in
Figures 1(a) and 1(g), where thatal time for GenMS matches or
betters themutator time for MarkSweep. Further explortation of
this is unfortunately beyond our scope. Another altereativnot
reclaiming memory at all—is unsustainable.

6. Conclusion

This study examines the implications of the key policy cksiin
memory management on collection time, space, mutatoritgcal
mutator performance, and total performance. A few key olaser
tions emerge. First, even if programis notfollow the generational
hypothesis, the contiguous allocation of a copying nursdigrs
locality benefits that indicate the weak generational ctdies are
always the collectors of choice. As a corollary, althougmynac-
cesses go to mature objects, their performance relies oporain
locality, whereas in the nursery, allocation order prosigeod spa-

tial locality for young objects that die quickly. We also shthat
the cost of the generational write barrier is usually lowc@elly,
the choice of mature space collector should not only be tidthy
the space efficiency, which would always prefer MarkSweep, b
should also include the rate of death among the mature abjeatl
the access and mutation rate of the mature space. If theseanast
high, a copying mature space can attain better mutatoritp¢hht
in the end overcomes its higher collection time penalty. SEhee-
sults can guide users to the right collector for their progrand
offer insights to memory management designers for futuleco
tors that could tune themselves on long running application

7. REFERENCES

[1] B. Alpern et al. Implementing Jalapefio in JavaAGM
Conference on Object-Oriented Programming Systems,
Languages, and Applicationpages 314—-324, Denver, CO,
Nov. 1999.

[2] B. Alpern et al. The Jalapefio virtual machitBM Systems
Journal 39(1):211-238, February 2000.

[3] A. W. Appel. Simple generational garbage collection et
allocation.Software Practice and Experience
19(2):171-183, 1989.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapefio JVM.ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applicationpages 47—-65, Minneapolis,
MN, October 2000.

[5] C.R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A
comparative evaluation of parallel garbage collectors. In
Languages and Compilers for Parallel Computihgcture
Notes in Computer Science. Springer-Verlag, 2001.

[6] D. Bacon, S. Fink, and D. Grove. Space- and time-efficient
implementations of the Java object modelPlimceedings of
the European Conference on Object-Oriented Programming
(ECOOP) pages 111-132. ACM Press, June 2002.

[7] D. F. Bacon and V. T. Rajan. Concurrent cycle collection i



(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

reference counted systems. In J. L. Knudsen, eddars. of
the 15th ECOOPvolume 2072 of_ecture Notes in
Computer Sciencgages 207-235. Springer-Verlag, 2001.
H. G. Baker. The Treadmill: Real-time garbage collegtio
without motion sicknessACM SIGPLAN Notices
27(3):66-70, 1992.

E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. BWCM Conference on
Architectural Support for Programming Languages and
Operating System€&ambridge, MA, Nov. 2000.

E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing
high-performance memory allocators. ACM SIGPLAN
Conference on Programming Languages Design and
Implementationpages 114-124, Salt Lake City, UT, June
2001.

E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsideyi
custom memory allocation. lIACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 1-12, Seattle, WA, Nov. 2002.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
water? High performance garbage collection in Java with
JMTK. InICSE Scotland, UK, May 2004.

S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock
In Proc. of SIGPLAN 2002 Conference on PL.pages
153-164, Berlin, Germany, June 2002.

S. M. Blackburn and K. S. McKinley. In or out? Putting
write barriers in their place. IACM International
Symposium on Memory Managemerages 175-183,

Berlin, Germany, June 2002.

S. M. Blackburn and K. S. McKinley. Ulterior reference
counting: Fast garbage collection without a long wait. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applicationpages 244-358, Anaheim, CA,
Oct. 2003.

H.-J. Boehm. Space efficient conservative garbagectdin.
In ACM SIGPLAN Conference on Programming Languages
Design and Implementatippages 197-206, 1993.

T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling
garbage collection and heap growth to reduce the execution
time of Java applications. IACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 353—-366, Tampa, FL, 2001.

C. J. Cheney. A non-recursive list compacting algonith
Communications of the ACM3(11):677-8, Nov. 1970.

J. Cohen and A. Nicolau. Comparison of compacting
algorithms for garbage collectioACM Transactions on
Programming Languages and Systes(#):532-553, Oct.
1983.

D. L. Detlefs, A. Dosser, and B. Zorn. Memory allocation
costs in large C and C++ progran®oftware Practice &
Experience24(6):527-542, June 1994,

L. P. Deutsch and D. G. Bobrow. An efficient incremental
automatic garbage collect@@ommunications of the ACM
19(9):522-526, September 1976.

S. Dieckmann and U. Holzle. A study of the allocation
behavior of the SPECjvm98 Java benchmarks. In
Proceedings of the European Conference on Object-Oriented
Programming pages 92-115, June 1999.

E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and

E. Steffens. On-the-fly garbage collection: An exercise in
cooperationCommunications of the ACN1(11):966-975,
September 1978.

A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystem
performance of programs using copying garbage collection.
In Conference Record of the Twenty-First ACM Symposium
on Principles of Programming Languaggsages 1-14,
Portland, OR, Jan. 1994.

L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]
[38]

[39]

[40]

[41]

[42]

microarchitectural level. IACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 244—-358, Anaheim, CA, Oct. 2003.

R. Fitzgerald and D. Tarditi. The case for profile-diest
selection of garbage collectors. ACM International
Symposium on Memory Managemerages 111-120,
Minneapolis, MN, Oct. 2000.

M. W. Hicks, J. T. Moore, and S. Nettles. The measured cos
of copying garbage collection mechanismsA@QM
International Conference on Functional Programming
pages 292-305, 1997.

A. L. Hosking and R. L. Hudson. Remembered sets can also
play cards, Oct. 1993. Position paper for OOPSLA '93
Workshop on Memory Management and Garbage Collection.
R. E. Jones and R. D. Lin&arbage Collection: Algorithms
for Automatic Dynamic Memory Managemeitiley, July
1996.

N. P. Jouppi. Improving direct-mapped cache perforcean
by the addition of a small fully-associative cache and
prefetch buffers. IfProceedings of the 17th International
Symposium on Computer Architectupages 364—373,
Seattle, WA, June 1990.

J. Kim and Y. Hsu. Memory system behavior of Java
programs: Methodology and analysis. AGM SIGMETRICS
Conference on Measurement & Modeling Computer Systems
pages 264-274, Santa Clara, CA, June 2000.

D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

Y. Levanoni and E. Petrank. An on-the-fly reference ¢mgn
garbage collector for Java. BCM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 367-380, Tampa, FL, Oct. 2001.

H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objedBommunications
of the ACM 26(6):419-429, 1983.

M. Pettersson. Linux Intel/x86 performance count@@93.
http://user.it.uu.se/ mikpe/linux/perfctr/.

Y. Shuf, M. J. Serran, M. Gupta, and J. P. Singh.
Characterizing the memory behavior of Java workloads: A
structured view and opportunities for optimizationsAGM
SIGMETRICS Conference on Measurement & Modeling
Computer Systempages 194-205, Cambridge, MA, June
2001.

Standard Performance Evaluation Corporat®RECjvm98
Documentationrelease 1.03 edition, March 1999.
Standard Performance Evaluation Corporation.
SPEC]jbb2000 (Java Business Benchmark) Documentation
release 1.01 edition, 2001.

D. Stefanovic, M. Hertz, S. M. Blackburn, K. McKinlegnd
J. Moss. Older-first garbage collection in practice:
Evaluation in a Java virtual machine. Memory System
Performancepages 175-184, June 2002.

D. Tarditi and A. Diwan. Measuring the cost of storage
managementLisp and Symbolic Computatip(4), Dec.
1996.

D. M. Ungar. Generation scavenging: A non-disruptiighh
performance storage reclamation algorithmA@M
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environmemtages
157-167, April 1984.

B. G. Zorn. The measured cost of conservative garbage
collection.Software Practice & Experienc@3(7):733—756,
1993.



