
A denotational semantic theory of concurrent

systems

Jayadev Misra

August 27, 2014

Contents

1 Introduction 2

2 Basic Concepts 4
2.1 Event and Trace . 4

2.1.1 Event . 4
2.1.2 Trace . 4
2.1.3 Example . 5

2.2 Prefix order over traces . 5
2.3 Prefix Closure . 6
2.4 Specification . 7

2.4.1 Properties of Specs . 8
2.4.2 Chains and their limits 8
2.4.3 Complete lattice of specs 8

3 Transformer 8
3.1 Trace-wise transformer . 9

3.1.1 Properties of trace-wise transformers 9
3.2 Smooth Transformer . 10

3.2.1 Properties of smooth transformers 10
3.2.2 Domain of a transformer 10

3.3 Some Elementary Smooth Transformers 10
3.3.1 Status map . 11
3.3.2 Choice . 11
3.3.3 hide . 11
3.3.4 drop . 11
3.3.5 cons . 11
3.3.6 Filter . 12
3.3.7 Restrict by inclusion of events 13
3.3.8 Restrict by exclusion of events 13
3.3.9 Restrict by precedence relation 14
3.3.10 atom . 14

1

3.3.11 Unfair merge . 14
3.3.12 Fair merge . 15
3.3.13 replace . 16
3.3.14 Rendezvous . 17
3.3.15 Sequential Composition 17

3.4 Fairness . 18
3.5 Shared Resource . 18

4 Treatment of Recursion 20
4.1 Classical Treatment of Recursion 20

4.1.1 Revisiting the coin toss example 21
4.1.2 The need for upward-closure of specs 21

4.2 Upward-Closure . 22
4.2.1 Definitions . 22
4.2.2 Properties of upward-closure 22

4.3 Bismooth transformer . 24
4.3.1 Example of a Bismooth Transformer 24
4.3.2 Chain continuity 6= Bismoothness 24
4.3.3 Properties of Bismooth Transformers 25
4.3.4 Bismoothness of Transformers from Section 3.3 26

4.4 Least Upward-Closed Fixed Points of Bismooth Transformers . . 26
4.5 Min-Max Fixed Points of Smooth Transformers 27
4.6 Fixed Point under Fairness . 28

5 Concluding Remarks 28

A Appendix: Deatailed Proofs 31

1 Introduction

This paper proposes a general denotational semantic theory suitable for most
concurrent systems. It is based on well-known concepts of events, traces and
specifications of systems as sets of traces.

A concurrent system consists of a number of components that are combined
using the combinators of a specific programming language. A specification of a
component is a set of traces. A transformer combines the specifications of the
components to yield the specification of a system; thus, each combinator of a
programming language is modeled by a transformer. The two most significant
ideas in this paper are smooth and bismooth transformers that correspond to
monotonic and continuous functions in denotational theory [11]. These trans-
formers can model various features of concurrent systems such as, concurrent
interactions with memory and objects, independent as well as causally depen-
dent threads, unbounded non-determinism, shared resource, deadlock, fairness,
divergence and recursion.

2

Treatment of Recursion, Section 4, requires us to introduce bismooth trans-
former, the counterpart of a continuous function that preserves the limits of
chains (upward-closure) as well as the prefixes of traces (downward-closure).
We develop a version of the well-known fixed point theorem [7, 11] that shows
that first computing a simple fixed point and then taking its limit is appropriate
for bismooth transformers, see Section 4.4 (page 26). Transformers that encode
fairness are smooth (monotonic) but not bismooth (continuous); so this theo-
rem does not apply . We generalize the least fixed point theorem, to min-max

fixed point theorem, for smooth transformers; see Section 4.5 (page 27) and
Section 4.6 (page 28).

Monotonic and continuous functions in denotational semantics operate on
elements of any complete partial order without any pre-assumed structure. Even
though smooth and bismooth transformers are the counterparts of monotonic
and continuous functions, they operate on specifications which have structure
as sets of traces. We exploit this structural information to obtain strong results
about various classes of transformers and fixed points.

We do not to develop the semantics of a specific programming language but
of transformers that are of general applicability in all conceivable concurrent sys-
tems. Features of specific programming languages can be treated by combining
a few elementary transformers, as we demonstrate in the example below.

A motivating example Let ⊕ be a 3-way combinator so that in ⊕(A, B, C)
synchronization of the executions A and B initiates the execution of C. Opera-
tionally, A and B are parent threads that execute concurrently at start. Child
thread C starts executing only when the parents synchronize, by A enagaging
in event e and B in e. In case both events occur, they have completed a “ren-
dezvous”, C is started and A and B resume execution. Neither e nor e is shown
explicitly as occurring in the execution in case of a rendezvous.

It is possible that a synchronization may never be completed even though
one of A and B, say A, has engaged in its synchronization event e. In that
case, A remains waiting to synchronize and C is never started, though B may
continue to execute forever or halt without synchronization.

We define a transformer ⊕′, corresponding to the combinator ⊕, that trans-
forms the specifications of A, B and C to yield the specification of ⊕(A, B, C).
The definition of ⊕′ uses a few transformers described in this paper.

Let the specifications of A, B and C be p, q and r, respectively. Introduce
C′ that behaves as C but indicates the start of its execution by a specific event
a; event a does not occur in p, q or r. The specification of C′ is cons(a, r) that
appends a as the first event to every trace in r; see the definition of cons in
Section 3.3.5 (page 11). The execution of ⊕(A, B, C′) interleaves their individual
executions arbitrarily, subject to the constraint that the events e, e and a be
synchronized. The interleaved executions of A, B and C′ is given by their
unfair merge, written as p | q | cons(a, r); see Section 3.3.11 (page 14). The
synchronization of e, e and a is written using a transformer, called rendezvous,
that introduces a new event τ to indicate the simultaneous occurrences of e,

3

e and a; see Section 3.3.14 (page 17). Finally, event τ is removed from the
specification, using transformer drop; see Section 3.3.4 (page 11). Thus,

⊕′(p, q, r) = drop({τ}, rendezvous({e, e, a}, τ, (p | q | cons(a, r))))

We can now assert certain properties of ⊕′. For example, that it is bismooth,
because all the transformers in its definition are bismooth and composition of
bismooth transformers is bismooth.

2 Basic Concepts

A trace represents one possible execution of a component. The specification of a
component is a set of prefix-closed traces. We define these concepts and explore
their properties in this section.

2.1 Event and Trace

2.1.1 Event

Events are uninterpreted symbols drawn from an event alphabet. The choice
of events for a component constitutes a design decision about the granularity
at which we may wish to examine the component. For the systems that we
consider in this paper, events could be of many different types including, for
instance: input and output, binding of a parameter to a value, calling a shared
resource for read/write access, receiving a response from a resource, locking
and unlocking of a resource, allocation and disposal of storage, or publishing a
value as a result of a computation. Each event denotes a single occurrence of
some event type in an execution so all events in an execution are distinct. The
semantic theory makes no assumption about the meanings of events.

2.1.2 Trace

A trace is the formal counterpart of partial or complete execution of a program.
A trace includes a sequence of events, the events occurring in the execution,
and the state at the end of the execution if it is finite; the state is called status

in this paper1. An execution that has halted, i.e., one that can engage in no
further event, has status H . A finite execution that is waiting for an event
to happen or waiting to halt has status W . An infinite execution has status
D, representing divergence. A finite execution may also have status D; this
represents an infinite execution that has only a finite prefix of visible events; see
Section 2.4 (page 7).

A trace is written in the form y[m] where y is the status from {H, W, D},
and m is a finite or infinite sequence of distinct events. If y is H or W then m

is finite.

1We use the term status to distinguish the state of execution from the states of other

mutable objects in the system.

4

2.1.3 Example

Consider a component that has the following behavior. It tosses a coin repeat-
edly until the coin lands heads. Then it halts. Let hd and tl denote the events
of coin landing heads and tails, respectively, and tli a sequence of length i of tl

events. Then any finite execution is represented by, for some i ≥ 0, either (1)
W [tli], (2) W [tli hd], or (3) H [tli hd]. If the coin is fair we expect it to land
heads eventually; so, these are the only traces of the component. If the coin is
unfair, it is possible to have an infinite sequence of tails, and the corresponding
trace is D[tlω]. If the coin toss events are invisible, then the only traces in an
external spec for fair coin are W [] and H [], and for unfair coin are W [], H []
and D[]. Thus, with an unfair coin an external observer can assert only that
this component may eventually halt or may compute forever.

The component described in this example does not interact with any other
component. To see interaction, suppose the component does not actually toss
the coin but requests another component to do so and communicate the result
to it. Let toss be a request for a toss, and rcvhd and rcvtl are the events corre-
sponding to the responses received when the toss lands heads and tails, respec-
tively; assume that a response is guaranteed. A trace of the component with a
fair coin is, for some i ≥ 0, either (1) W [(toss rcvtl)i], (2) W [(toss rcvtl)i toss],
(3) W [(toss rcvtl)i toss rcvhd], or (4) H [(toss rcvtl)i toss rcvhd]. An external
observer can assert eventual termination, because there is no external event for
which the program may wait forever. With an unfair coin there is an additional
trace D[(toss rcvtl)ω], and termination can not be asserted.

Tuples of traces In dealing with programs that contain several components,
a transformer maps each tuple of traces, with one trace from each component,
to a set of possible traces of the program. In most contexts the distinction
between a trace and a tuple of traces is immaterial, so we use the term “trace”
to denote a single trace or a finite tuple of traces, the tuple size depending on
the context. A tuple of traces is finite if each component trace is finite.

Traceset A traceset is a non-empty set of traces. A finitary traceset is one in
which each trace is finite. Tracesets are partially ordered by subset order.

2.2 Prefix order over traces

Informally, trace s is a prefix of t when the execution corresponding to s can
possibly be extended to that for t. For sequences m and n, let m ⊑ n denote
that m is a prefix of n. Impose a partial order ≤ over the status values as
follows: W ≤ H and W ≤ D.

Trace y[m] is a prefix of z[n] (z[n] an extension of y[m]) if y ≤ z and m ⊑ n.
And, y[m] is a proper prefix of z[n], if y[m] ≤ z[n] and y[m] 6= z[n]. So, a trace
with status H or D has no extension. An infinite trace is a prefix only of itself.
And W [] ≤ y[m] for every trace y[m]. Observe that W [m] < H [m] even though

5

the event sequences of both traces are identical; this denotes that W [m] has to
causally precede H [m] in any execution.

For tuples of traces define one tuple as a prefix of another if each entry
in the former tuple is a prefix of the corresponding entry in the latter. And
(s0, s1, · · · , sk) < (t0, t1, · · · , tk) if si ≤ ti for each i and sj < tj for some j.

Properties of prefix order The following properties are easy to prove.

1. Prefix order, ≤, is a partial order over traces.

2. The inverse of proper prefix order, >, is a well-founded order over traces.

3. The set of prefixes of a trace are totally ordered.

An Induction Principle over traces The inverse of proper prefix order, >,
is a well-founded order even in the presence of infinite traces. This allows us to
formulate the following induction principle. Let P be a predicate over traces,
both finite and infinite.

If for all t, (∀s : s < t : P (s)) ⇒ P (t),
then P (t) holds for all traces t.

2.3 Prefix Closure

The prefix-closure, also called downward-closure, of trace t is denoted by t∗; it
is the set of all its prefixes of t. For a traceset p, p∗ is the set of prefixes of all
traces of p. That is,

t∗ = {s s ≤ t} and p∗ = ∪{t∗ t ∈ p}.

It follows that for traces s and t, (s, t)∗ = s∗ × t∗.

Finite Prefix-Closure Denote the set of finite prefixes of trace t by t∗′ .
Define p∗′ for traceset p analogously. Note that an infinite trace t is not in t∗′ ,
though t ∈ t∗.

Notational Conventions

1. Prefix-closure and finite prefix-closure operators have the highest binding
power among all operators.

2. Prefix closure and finite prefix-closure apply to event sequences, not just
traces and tracesets.

3. Write C∗(p) for (C(p))∗ for any p in any context C.

6

4. (singletons and sets) A singleton trace may appear wherever a traceset is
expected to appear. That is, if C(p) is a valid expression for any traceset
p, so is C(t) for a trace t, and it denotes C({t}).

Conversely, if C(t) is a valid expression for any trace t, so is C(p) for any
traceset p, and it denotes ∪t∈pC(t).

Thus, W [m∗] is a shorthand for {W [k] k ∈ m∗}. And, W∗[m] = (W [m])∗ =
{s s ≤ W [m]}.

Elementary Properties of Prefix-Closure Below p and q are tracesets,
and t any trace. The following properties are easy to show. Closure expansion,
item (6), is used extensively in subsequent proofs.

1. Prefix-closure is algebraic closure, i.e., for tracesets p and q,

(a) (extensive) p ⊆ p∗

(b) (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗

(c) (idempotent) (p∗)∗ = p∗.

2. Finite prefix-closure of tracesets is monotonic and idempotent. Extensive
property does not hold for the traceset {t} where t is an infinite trace.

3. (t∗)∗′ = (t∗′)∗ = t∗′ .

4. (Closure expansion) For any trace z[m], z∗[m] = {z[m]} ∪ W [m∗′].

5. (closure distributes over set union) For a family F of tracesets, F possibly
infinite, (∪p∈F (p))∗ = (∪p∈F (p∗)).

6. (closure distributes over Cartesian product) (p × q)∗ = p∗ × q∗.

2.4 Specification

Informally, a specification of a component, henceforth abbreviated as spec, is a
set of traces, where each trace corresponds to an execution of the component in
some environment. Different traces may correspond to executions in different
environments. Properties of a component may be deduced from its spec, such as
that its publications are monotonic in value (a safety property), every execution
eventually halts (a progress property), or that the component’s execution may
deadlock (the spec includes a trace W [m] that has no extension).

Spec A spec is a prefix-closed traceset. A finitary spec is a spec consisting of
finite traces.

Note that a spec of n-tuples includes the bottom trace, (W [], W [], · · · , W []),
consisting of n individual empty traces.

7

2.4.1 Properties of Specs

The proofs of the following properties are elementary.

1. For any traceset p, p∗ and p∗′ are both specs.

2. Union of a finite or infinite family of specs is a spec.

3. Intersection of a finite or infinite family of specs is a spec.

4. Cartesian product of a pair of specs is a spec.

Consider the coin toss example of Section 2.1.3 (page 5). With a fair coin we
expect the spec to be H∗[tl

i hd], and for an unfair coin to be H∗[tl
i hd]∪{D[tlω]}.

2.4.2 Chains and their limits

A chain is a finitary spec whose elements are totally ordered under ≤. A chain
may be finite or infinite. For any trace t the set of its finite prefixes, t∗′ , is a
chain.

The limit of chain c, written as lim(c), is the least upper bound of the traces
in c with respect to the ≤ ordering. For a finite chain c, lim(c) is the longest
trace in c. For an infinite chain c, lim(c) is the unique infinite trace such that
every trace in c is its prefix. Note that lim(c) does not belong to c for infinite c

because c consists of finite traces only. Notationally, use lim(c) as a trace and
also as a singleton traceset.

Define the limit of a finite tuple of chains as the tuple of limits of the corre-
sponding chains. That is,

lim(c0, c1, · · · cn) = (lim(c0), lim(c1), · · · lim(cn))

2.4.3 Complete lattice of specs

The least upper bound of a set of specs is their union, and the greatest lower
bound is the intersection. Thus, specs form a complete lattice under subset
order, where ⊥ = W [] and ⊤ is the union of all specs.

3 Transformer

Any component of a system is either a primitive component or a structured com-
ponent. A primitive component is defined by its spec. A structured component
consists of one or more subcomponents that are combined using the combinators

of the language. A spec transformer, or simply a transformer, corresponding
to each combinator is a function mapping the Cartesian product of the specs
of the subcomponents to the spec of the structured component. The number
of subcomponents, therefore the length of the tuples in the argument of the
transformer, is the arity of the transformer. A language semantic thus consists
of the specs of the primitive components and the transformers corresponding to

8

each combinator. For the moment assume that the domain of a transformer is
the set of all traces. We show how to restrict the domain of a transformer in
Section 3.2.2 (page 10).

Convention We develop the theory for transformers of arity 1, a transformer
that maps a spec to a spec. Generalizations for other arities are straightforward.
Examples of transformers of higher arity appear in Section 3.3.2 (page 11),
Section 3.3.11 (page 14), Section 3.3.12 (page 15) and Section 3.3.15 (page 17).
For a transformer of arity 2 we adopt infix notation, as in p ⊕ q.

We restrict ourselves to a class of transformers, called smooth. Smooth
transformers correspond to monotonic functions in denotational semantic the-
ory. A subset of smooth transformers, called bismooth, correspond to continuous
functions. We develop the theory of smooth transformers in this section and
bismooth transformers in Section 4.3 (page 24).

3.1 Trace-wise transformer

A trace-wise transformer is a total function from traces to tracesets. Following
the notational convention from page 6, a trace-wise transformer f applied to a
traceset p is defined to be: f(p) = ∪{f(t) t ∈ p}. For trace-wise combinator
⊕ over a pair of specs, p ⊕ q = ∪{s ⊕ t s ∈ p, t ∈ q}.

Any transformer maps a spec to a spec. We restrict ourselves to trace-wise
transformers in this paper because a language combinator can combine only
individual executions of its components. Non-determinism issues represented
by mapping a trace to a traceset, every trace of the latter corresponds to a
possible execution. The size of the traceset is arbitrary thus allowing unbounded
non-determinism.

3.1.1 Properties of trace-wise transformers

The following properties follow from the definition of trace-wise transformers.

1. A trace-wise transformer distributes over union (possibly infinite union)
of tracesets. That is, given a family F of tracesets,

(∪p∈F f(p)) = f(∪p∈F (p))

2. Composition of trace-wise transformers is a trace-wise transformer.

3. (Monotonicity) For trace-wise f and tracesets p and q,
p ⊆ q ⇒ f(p) ⊆ f(q).

A trace-wise transformer may not transform a spec to a spec, i.e., the result-
ing traceset may not be prefix-closed (consider a transformer that maps every
trace to W [a] where a is some event; the resulting traceset does not include W [],
hence, is not a spec). The smoothness condition, described below, guarantees
this property.

9

3.2 Smooth Transformer

A transformer f is smooth if and only if for any traceset p

f∗(p) = f(p∗), where f∗(p) stands for (f(p))∗.

A transformer f is finitely smooth if and only if for any finitary traceset p,
f∗(p) = f(p∗).

3.2.1 Properties of smooth transformers

1. A transformer f is smooth if and only if it preserves prefix-closure over
individual traces, i.e., f∗(t) = f(t∗), for every trace t.

Proof: See Proposition 1 (page 31) in the Appendix.

2. A transformer is smooth if and only if it maps specs to specs.

Proof: See Proposition 2 (page 31) in the Appendix.

3. Composition of smooth transformers is smooth.

Proof: See Proposition 3 (page 32) in the Appendix.

Terminology and Notation Henceforth, “transformer” stands for “trace-
wise transformer” in this paper. For a binary smooth transformer ⊕ written in
infix style, (p ⊕ q)∗ = p∗ ⊕ q∗, for tracesets p and q.

3.2.2 Domain of a transformer

We have so far assumed that every transformer is defined for all traces. In
many cases a transformer f can meaningfully be defined only over some domain
dom(f); we assume that dom(f) is a spec. We show how to extend the domain
of a transformer while retaining its essential properties. Specifically, we define
transformer g over all traces that induces the same mapping over dom(f) as f

and retains smoothness and bismoothness.
For any t in dom(f) let g(t) = f(t). For t 6∈ dom(f) and finite t, let

g(t) = ∪{f(s) s ≤ t and s ∈ dom(f)}. For t 6∈ dom(f) and infinite t, let
g(t) = lim(g(t∗′)), where lim is defined in Section 2.4.2 (page 8). It can be
shown that if f is smooth over the traces in dom(f) then so is g over all traces,
and if f is bismooth over any spec in dom(f) then so is g over all specs.

Note: For t 6∈ dom(f) and finite t, alternately let g(t) = f(s) where s is the
longest prefix of t in dom(f).

3.3 Some Elementary Smooth Transformers

In this section, we show a number of smooth transformers that are of general
utility. Transformer g with arguments is written as g(args, t) where args is a
set of parameters and t a trace. Here, g represents a family of transformers, one

10

transformer for each value of args. For a specific value of args we abbreviate
g(args, t) to f(t), and then prove the smoothness of f . We note that the identity
transformer, id(t) = t for all traces t, is smooth.

3.3.1 Status map

This is a family of transformers each member of which may change the status
of a trace but not its event sequence. Applying statusmap(y[m]), a generic
member of the family, yields y′[m] where y′ may differ from y only if y = H , or
y = D and m is finite; thus, statusmap(y[m]) = y[m], if y = W or m is infinite.
We show that every transformer in statusmap is smooth. See Proposition 4
(page 32) in the Appendix.

3.3.2 Choice

The choice transformer, or, corresponds to a non-deterministic choice between
two components to execute. For components f and g with specs p and q, f or g

has the spec p ∪ q. As a trace-wise transformer:

s or t = {s, t}

We show that or is smooth in Proposition 5 (page 33) in the Appendix.

3.3.3 hide

Transformer hide is parameterized by a set of events E, which may be finite or
infinite; hide(E, t) is the trace obtained after removing all events from t that
also occur in E. Application of hide may remove an unbounded, and possibly
infinite, number of events from a trace. For example, hide({a}, D[aω]) results
in D[].

We show that hide is smooth for any E in Proposition 6 (page 33) in the
Appendix.

3.3.4 drop

Transformer drop is same as hide except that in drop(E, t) (1) the event set E

is finite, and (2) only the first occurrence, if any, of an event from E is removed
from t, but subsequent occurrences are retained. The proof that drop is smooth
is similar to the proof for hide. The reason we treat drop separately is that drop

is bismooth —see Section 4.3.4 (page 26)— whereas hide is not. This property
permits drop, but not hide, to be freely used in recursive equations.

3.3.5 cons

Append a specific event a as the first event of every trace. To ensure that a
spec is transformed to a spec, cons(a, W []) includes W [].

11

cons(a, W []) = {W [], W [a]}
cons(a, y[m]) = {y[am]}

We show that cons is smooth in Proposition 7 (page 33) in the Appendix.

3.3.6 Filter

A class of transformers, called filter, is essential for most applications of this
theory. A filter can be used to model interactions among components by re-
jecting the traces that do not implement acceptable interactions, as in accesses
to shared resources. A filter can also model rendezvous-style interactions and
fairness constraints.

Associated with each filter is a predicate b over traces such that:

F1. b(W []) holds, and

F2. If b(t) holds then b(s) holds for all proper prefixes s of t, i.e., writing b(t∗′)
for the conjunction of b(s) over all finite prefixes s of t: b(t) ⇒ b(t∗′).

Filter f corresponding to predicate b accepts t iff b(t) holds and rejects it
otherwise. Thus, if a filter accepts a trace it accepts all prefixes of that trace;
equivalently, if it rejects a trace, it rejects all extensions of that trace. Since
b(W []) holds, not all traces are rejected. A filter applied to a spec retains only
its acceptable traces. In a proof theory (which we do not develop here) we
would use a predicate to describe the traces in a spec. Applying a filter to a
spec amounts to conjoining the filter predicate to eliminate the unacceptable
traces.

The natural definition of transformer f corresponding to filter predicate b

is f(t) = {t} if b(t) and {} otherwise. This definition violates the requirement
that f(t) be a traceset, a non-empty set of traces, for all t. So, we propose:

f(t) = {s s ≤ t and b(s)}

Transformer f is smooth; see Proposition 15 (page 38) in the Appendix.
Observe that for filter predicates b and b′, b ∧ b′ and b ∨ b′ are also filter

predicates. If transformers g and g′ implement b and b′ respectively, then g ◦ g′

implements b∧ b′ and g(t)∪ g′(t), for any trace t, implements the disjunction of
the filters. Any filter transformer is idempotent, and it distributes over union
and intersection of specs. The following identity is used in the min-max fixed
point theorem, Section 4.5 (page 27). For filter g and specs p and q,

g(p ∩ q) = g(p) ∩ g(q) = g(p) ∩ q

Continuous vs. Discontinuous Filter We distinguish between two kinds
of filters, continuous and discontinuous, depending on the value of b(t) for infi-
nite t. A discontinuous filter models fairness wherein an infinite trace may be

12

rejected even though all its finite prefixes are accepted. A continuous filter re-
jects an infinite trace only if some finite prefix of it is also rejected. Conversely,
a continuous filter accepts an infinite trace if all its finite prefixes are accepted.

Both types of filter predicates obey the conditions (F1) and (F2) given ear-
lier. Additionally, a continuous filter predicate b satisfies the stronger condition
(F2’) below in place of (F2):

F2’. b(t) ≡ b(t∗′), for every trace t.

Note that (F2) and (F2’) are equivalent for finite t. It is only for infinite t that
(F2’) imposes the additional constraint: b(t∗′) ⇒ b(t).

For a continuous filter f , we can let f(t) be the the longest prefix of t for
which b holds. This is defined for finite t because b(W []) holds, and for infinite
t because the longest prefix is t if b(t) holds and some finite prefix of t if ¬b(t)
holds.

Continuous filters are always bismooth, discontinuous filters are not; see
Section 4.3.4 (page 26).

Filters are some of the most useful transformers. The following sections list
special cases of filters that arise in concurrent programming.

Partitioning a filter Any filter can be written as a composition of two filters
one of which is continuous and the other rejects only infinite traces. That is,
a filter f can be written as finf ◦ ffin where (1) finf rejects trace t only if t is
infinite, and f rejects t though it accepts all finite prefixes of t, and (2) ffin

rejects all other traces, finite and infinite, that f rejects. It is possible that
neither finf nor ffin rejects any trace. Clearly, f = finf ◦ ffin. Further, ffin

is a continuous filter because whenever it rejects an infinite trace it also rejects
a finite prefix of it. And, if finf rejects any trace, it is a discontinuous filter.

3.3.7 Restrict by inclusion of events

Reject a trace if it contains a specific event a, or, more generally, an event from
a specified set E. This is a filter because (1) it accepts W [], and (2) if it accepts
a trace, it accepts all its prefixes. The filter is continuous.

The converse of this rejection criterion is not smooth: accept a trace only if
it is W [] or contains a specific event a. Then any trace that has a as its last
event is accepted but all its prefixes except W [] are rejected. Therefore, it may
transform a spec to a traceset that is not prefix-closed.

3.3.8 Restrict by exclusion of events

Accept a trace only if it is W [] or its first event is drawn from a specified set
of events. This condition defines a filter predicate b because: (1) b(W []) holds,
and (2) if b(t) holds, it holds for all prefixes of t. The filter is continuous. The
requirement that the specified event be the first one in the event sequence is
crucial; without this requirement the transformer is not smooth.

13

The acceptance criterion here is stronger than a typical filter: whenever a
trace is accepted, all its extensions are also accepted.

3.3.9 Restrict by precedence relation

Let R be a binary relation over events. Define a transformer that accepts trace
t iff for every (e, e′) in R, if e′ is in t then e is also in t and e precedes e′. Thus,
an acceptable trace is one that either includes (1) none of e and e′, (2) just e,
or (3) both e and e′ with e preceding e′. It is easy to see that W [] is accepted
and the prefix of an acceptable trace is acceptable. Further, this transformer is
a continuous filter.

3.3.10 atom

Atomicity is a fundamental notion in concurrent programming, particularly in
the theory of transactions. Roughly, trace t is atomic with respect to a specified
set of events if all the specified events occur contiguously in some order in t. We
propose a more general definition that is useful in defining other transformers.

A pattern alphabet is a finite subset of the event alphabet. A pattern is a
finite string over the pattern alphabet. Let P be a finite set of patterns. Trace
t is atomic with respect to P if the event sequence in t can be written uniquely
as a sequence of patterns from P interspersed with events outside the pattern
alphabet, optionally followed by a prefix of some pattern if t is finite. Predicate
atom(P, t), where P is a finite set of patterns and t a trace, holds iff t is atomic
with respect to P .

It is easy to see that atom is a filter predicate, because W [] is accepted and if
t is accepted then so are all its prefixes. Additionally, atom defines a continuous
filter because if an infinite trace t is rejected then some finite prefix of it is not
atomic with respect to P .

3.3.11 Unfair merge

One of the most important transformers, that models concurrent executions of
components, is merge. It interleaves the events of two traces arbitrarily yielding
a traceset from a pair of traces. Besides interleaving the events, merge also
computes the status of the interleaved trace based on those of the given traces.
Assume that the events in the traces to be merged are distinct.

There are two forms of interleavings, unfair and fair, of event sequences m

and n. The distinction is significant only when one or both of m and n are
infinite. If each interleaving includes all elements of m and n then it is fair ; we
treat fair merge in Section 3.3.12 (page 15). An unfair interleaving may include
only a finite prefix of n for infinite m, and analogously for infinite n.

Properties of unfair interleaving Define unfair interleaving of m and n,
m ⊗ n, by the following program (written in a functional programming style):

14

[] ⊗ n = n

m ⊗ [] = m

(a : m) ⊗ (b : n) = (a : (m ⊗ (b : n))) ∪ (b : ((a : m) ⊗ n))

Using fixed point induction it can be shown that ⊗ is symmetric. It can
also be shown that it is monotonic in both arguments, so m ⊗ n ⊆ m′ ⊗ n and
m ⊗ n ⊆ m ⊗ n′, where m ⊆ m′ and n ⊆ n′. Further,

(m ⊗ n)∗ = m∗ ⊗ n∗ (⊗ distributes over prefixes)

Transformer for unfair merge Unfair merge of two traces applies unfair
interleaving to their event sequences. Also, it applies a symmetric binary oper-
ation ∩ over their status values: H ∩ y = y and W ∩ W = W . Define unfair
merge transformer, | , as follows, where both y and z are from {H, W}.

y[m] | z[n] = (y ∩ z)(m ⊗ n)
D[m] | z[n] = D[m ⊗ n∗]
D[m] | D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

Observe that m and n may be finite or infinite in D[m] and D[n] above. Note
that z[n] | D[m] = D[m] | z[n], and it is not shown explicitly below.

The intuition behind this definition is as follows. Expression y[m] | z[n]
denotes the concurrent execution of two executions, one corresponding to y[m]
and the other to z[n]. Both executions are finite and if either fails to halt then
the concurrent execution does not halt either, as given by the status (y ∩ z).
The event sequence in y[m] | z[n] is an interleaving of m and n, which justifies
the result expression (y ∩ z)(m ⊗ n).

Next, consider infinite executions defined by the next two cases. In D[m] | z[n],
D[m] denotes an infinite execution D[m′] where m is the sequence of visible
events in m′; thus, m may be finite. The resulting concurrent execution is infi-
nite, so its status is D. Any concurrent execution executes a prefix of z[n] with
all of D[m′]; so the event sequences in all such executions are given by m′ ⊗ n.
Since only the events of m are retained from m′, the resulting expression is
D[m⊗ n∗]. Similar remarks apply for D[m] | D[n], because any execution may
use a prefix of the event sequence of one of D[m] or D[n] and all events of the
other.

It can be shown from the above definition that unfair merge is commuta-
tive, associative and H [] is its zero. We show that unfair merge is smooth in
Proposition 8 (page 34) in the Appendix.

3.3.12 Fair merge

Fair merge is based on fair interleaving, which we denote by ⊗′:

m ⊗′ n = {x x ∈ m ⊗ n, x contains m and n as subsequences}

15

Note that if m is infinite and n non-empty, then m ∈ m ⊗ n and m 6∈ m ⊗′ n.
Extend the definition of ∩ to apply to all status values {H, W, D} as follows.

Recall that ∩ is symmetric. For any status value y

H ∩ y = y, W ∩ W = W and D ∩ y = D

Define fair merge transformer, |′ , of two argument traces y[m] and z[n] for
y and z from {H, W, D}, and finite or infinite m and n.

y[m] |′ z[n] = (y ∩ z)(m ⊗′ n)

The proof of smoothness of fair merge can be developed in a manner similar
to unfair merge. There is a much simpler alternative proof. Observe that fair
merge of y[m] and z[n] is same as their unfair merge followed by application of
a filter that removes every infinite trace D[k] from y[m] | z[n] where k 6∈ m⊗′ n.
Both unfair merge and filter are smooth; so, their composition, fair merge, is
also smooth.

3.3.13 replace

We consider a general version of substitution of a sequence of events by a single
event. A source alphabet and a target alphabet are disjoint finite subsets of the
event alphabet. A replacement pair is of the form (σ, τ) where σ, called the
source, is a finite string over the source alphabet, and τ , called the target, is a
single symbol from the target alphabet.

Let R be a finite set of replacement pairs. A source may occur multiple
times in R with different targets, and similarly, a target may have multiple
occurrences in R with different sources. Transformer replace substitutes oc-
currences of a source by all corresponding targets in an event sequence. The
effect of replace(R, t) is to (1) accept t if t is atomic with respect to the sources,
see Section 3.3.10 (page 14) and t contain no symbol from the target alphabet,
and (2) if t is accepted, replace occurrence of every source by all corresponding
targets to obtain a set of traces, and (3) then replace occurrence of any proper
prefix of a source by the empty string. The situation in (3) arises because the
prefix of an atomic trace may contain a prefix of a source as its suffix. The do-
main of this transformer can be extended to all traces using domain extension
described in Section 3.2.2 (page 10).

Henceforth, let f(t) denote replace(R, t) for a specific R. The definition of
f for finite t is given in clausal form in a functional style, where the clauses are
attempted in the given order from top to bottom.

f(y[σ′]) = y[], where σ′ is a proper prefix of a source
f(y[σm]) = ∪{cons(τ, f(y[m])) (σ, τ) ∈ R}
f(y[am]) = cons(a, f(y[m])), a 6∈ source alphabet

Note that the source σ is replaced by every target associated with it in
f(y[σm]).

16

For infinite t, it is easier to specify the transformer using limits from Sec-
tion 2.4.2 (page 8). Such a definition permits simpler proofs of smoothness and
bismoothness: f(t) = lim(f(t∗′)).

We prove that replace is smooth in Proposition 9 (page 35) in the Appendix.
It can be shown that the “substitution” transformer, that replaces each event e

in a trace by event h(e) where h is a function over the event alphabet, is smooth.

3.3.14 Rendezvous

The unfair and fair merge transformers of Section 3.3.11 (page 14) and Sec-
tion 3.3.12 (page 15) implement independent concurrent processes whose ex-
ecutions can be arbitrarily interleaved. We consider more refined versions of
concurrent executions in Section 3.5 (page 18) in which the processes call upon
shared resources, and hence, their executions can not be arbitrarily interleaved.
Here, we introduce a form of synchronization, called rendezvous in CSP [5] and
CCS [10], that ensures that a pair of complementary events {e, e} from the two
processes occur simultaneously. Their simultaneous occurrence is shown by an
event τ in the combined trace that belongs to neither process.

We define rendezvous by composing the transformers atom and replace.
First, perform an appropriate merge, fair or unfair, of the specs of the two
processes. Then apply transformer atom of Section 3.3.10 (page 14) to eliminate
the traces in which {e, e} do not occur contiguously. Next, using transformer
replace of Section 3.3.13 (page 16), replace all (contiguous) occurrences of {e, e}
by τ , and remove any e or e event that occurs by itself. We generalize this scheme
slightly by allowing rendezvous to occur with any finite set of events E instead
of just two events {e, e}, as follows.

Let E′ be the set of strings obtained by permuting the events of E in all pos-
sible order. Henceforth, write rendezvous(E, τ, t), τ 6∈ E, for the transformer
that (1) accepts t provided t is atomic with respect to E′, (2) replaces every
pattern of E′ in trace t by event τ , and then (3) removes any non-empty proper
prefix of a pattern of E′. Here, t would likely be a trace arising out of the
concurrent executions of processes. If required, τ can be eliminated by applying
transformer drop of Section 3.3.4 (page 11). Define

rendezvous(E, τ, t) = replace({(σ, τ) σ ∈ E′}, atom(E′, t))

Since atom and replace are smooth, so is rendezvous.

3.3.15 Sequential Composition

Consider a simple form of sequential composition of f and g in which g starts
executing only when f halts. The corresponding transformer ; is:

H [m] ; z[n] = z[mn],
s ; z[n] = s, otherwise

It can be shown that sequential composition is associative. We show that
sequential composition is smooth in Proposition 10 (page 36) in the Appendix.

17

3.4 Fairness

Fairness is a filter that eliminates only certain infinite traces from a spec. For
example, a fairness constraint for the coin toss example of Section 2.1.3 (page 5)
may specify that the coin is fair so that an infinite sequence of tails is impos-
sible; then, trace D[tlω] is inadmissible. A fairness constraint about a strong
semaphore may specify that any execution in which a P event on the semaphore
remains waiting forever while V events happen infinitely often is inadmissible.
In a real-time computation a fairness constraint may specify that an infinite
number of events may not occur within a bounded time interval.

Every fairness constraint can be defined by a filter predicate b, where b holds
for all finite traces and, possibly, some infinite traces. As for any filter predicate,
b(W []) holds and if b holds for any trace it holds for all its prefixes. For the coin
toss example, the filter predicate b holds for every finite trace and every infinite
trace that does not have an infinite suffix of either heads or tails (for the example
shown, it does not matter if the coin lands heads infinitely often, because the
game is terminated after the first landing of a head). Being a filter, fairness is
a smooth transformer. We show in Section 4.3.4 (page 26) that fairness is not
bismooth.

Fairness can be composed with other transformers. In particular, different
forms of fairness may apply to different parts of a program; a fair and an unfair
version of the coin toss program may run concurrently, for example, and our
theory would yield their combined spec.

3.5 Shared Resource

Merge transformers, Section 3.3.11 (page 14) and Section 3.3.12 (page 15), model
independent concurrent executions of processes by interleaving the traces of
the individual processes. Concurrent executions are rarely independent. For
example, trace s of one process includes the event read(3) that reads value 3
from a read/write shared store, trace t of another process includes write(3) for
the same store, and the store is local to these two processes. Then write(3)
precedes read(3) in the traces for their concurrent execution; any trace in which
the events occur in a different order has to be rejected. Further, if t includes
write(5) instead of write(3), no trace for the concurrent execution can include
read(3).

Shared resource is a filter Each resource instance is a filter over an
alphabet that denotes the available operations on the resource. Alphabets of
different instances of the same resource and of different resources are disjoint.
Applied to the merge of traces of individual processes, the filter rejects the traces
that violate the semantics of the shared store. For example, for a read/write
store that is local to a pair of concurrently executing processes, first the appro-
priate merge of their traces is constructed, and then a filter applied to ensure
that: (1) a value is written to the store before any value is read, and (2) any
value that is read is equal to the value last written. Any trace that violates

18

these constraints is rejected. Independent resources are independent filters that
may be applied in arbitrary order on a trace.

Local vs. global resource Consider concurrently executing processes A

and B that include traces s and t in their specs, respectively. Suppose s includes
read(3) and t includes write(5), as the only events on a shared read/write
store. As we have seen earlier, if the store is local to A and B, no trace for
the concurrent execution of A and B can include read(3). However, if the store
is global, so that other processes may access it, another process may perform
write(3). So, a trace for the concurrent execution of A and B may include
read(3) for a global store.

It follows from this discussion that each resource has two filters correspond-
ing to its local and global behaviors. Suppose processes A, B and C, whose
specs are p, q and r, respectively, have a local resource. Let fl be the local
filter and fg the global filter for the resource. Then the spec for the concurrent
execution of A, B and C (assuming unfair merge for their concurrent execution)
is fl(fg(p | q) | r). It is easy to see that the global filter for a read/write store
accepts all traces, because for any given trace there is a sequence of accesses to
the store that validates that trace.

It is possible to develop a more elaborate set of filters for a resource based
on access rights that allows different processes to perform different operations
on the resource.

Blocking operations on shared resource Both filters, local and global,
for a read/write store are continuous. In fact, a resource for which all operations
are non-blocking induces continuous filters. (Note, however, that for processes
that share a read/write store, their concurrent execution is modeled by the fair
merge of their specs. A fair merge introduces discontinuity; see Proposition 29
(page 44) in the Appendix.

For a resource with blocking operations, the filter may be continuous or
discontinuous. Consider a semaphore that has operations P and V on it, where
P is blocking and V non-blocking. It is customary to consider P as consisting
of two events, a request event, which we denote by 〈P and a response event P 〉,
where P 〉 is always preceded by the corresponding 〈P , though a 〈P may never
be followed by a corresponding P 〉.

First, consider a weak semaphore that merely ensures that a request is
granted (response sent), whenever the semaphore is available, to some waiting
process (i.e., any that has an outstanding request for it), though any specific
waiting process may never be granted the semaphore. A weak semaphore filter,
both local and global, has to reject an infinite trace in which the semaphore is
continuously available in an infinite suffix, the suffix contains 〈P , but contains
no subsequent P 〉. The weak semaphore filter is continuous.

Next, consider a strong semaphore that ensures that each process that re-
quests the semaphore is eventually granted it, provided the semaphore is avail-
able infinitely often in an infinite execution. The specification of each process

19

identifies the request and response events by the process identity. The cor-
responding filter rejects an infinite trace that contains an infinite number of
occurrences of V , some occurrence of 〈P1 for a specific process numbered 1, but
no subsequent P1〉. This is a discontinuous filter.

4 Treatment of Recursion

The theory developed so far is adequate for programs that include no recursive
definition; now, we enhance the theory to treat recursive definitions. Guarded
recursion is usually easier to handle. We treat the general case of unguarded
recursion, as in solving an equation of the form x = f(x) in spec x, for a given
transformer f . Thus, we will compute the spec of a definition such as

def loop() = loop()

where loop(), with no arguments, is defined recursively. As we will see, the
spec of this program will not be the bottom spec {W []} but {D[]}∗ denoting a
divergent computation. This is because we expect each recursive call to engage
in an internal event in making the call, so the call entails an infinite computation
in which the internal events are invisible.

4.1 Classical Treatment of Recursion

We start with the least fixed-point theorem due to Kleene [7], and also in
Scott [11], that applies for any continuous function f on a complete partial
order (cpo).

Theorem 1 (Least Fixed-point Theorem)
Let f be a continuous function on a cpo whose bottom element is ⊥. The least
fixed-point of f , lfp(f), is lub{f i(⊥) i ≥ 0} where
f0(x) = x, f i+1(x) = f(f i(x)) and lub is the least upper bound of a chain. ✷

In applying this theorem in our context, the set of specs form a complete
lattice, hence a cpo. Any trace-wise transformer is continuous over specs because
given a chain of specs pi, 0 ≤ i, where the least upper bound is union:

f(∪{pi i ≥ 0}) = ∪{f(pi) i ≥ 0)}.

Corollary 1 The least fixed point of a smooth transformer is a spec.

Proof: It is easily shown by induction on i that for any i, i ≥ 0, f i(W []) is a
spec. The union of specs is a spec. So, lfp(f) is a spec, from Theorem 1.

20

4.1.1 Revisiting the coin toss example

As an example of the application of the least fixed-point theorem consider the
coin toss example of Section 2.1.3 (page 5). Call the toss program stutter. A
step of stutter either halts the computation, or engages in event tl and then
calls stutter, the choice being non-deterministic and unfair in that an infinite
number of calls may be made to stutter.

There are two component computations, halt and the recursive call on
stutter, that are combined through non-deterministic choice. As we have shown
in Section 3.3.2, the transformer corresponding to choice is set union. The spec
of halt is {H []}∗. Let x stand for the spec of stutter. The recursive call pre-
ceded by event tl is cons(tl, x); see Section 3.3.5 (page 11) for a definition of
cons. Thus, we have:

x = {H []}∗ ∪ cons(tl, x)

Observe that each of the transformers, ∪ and cons are smooth. So, their com-
position given above is smooth.

The steps in the application of the least fixed-point theorem successively
yield, {W []}, {W [], H [], W [tl]}, {W [], H [], W [tl], H [tl], W [tl2]}, · · · , and for
any i, {H [tlj] 0 ≤ j ≤ i}∗ ∪ {W [tli+1]}. Then lfp(stutter), the lub of this
sequence, is {H [tli] 0 ≤ i}∗.

4.1.2 The need for upward-closure of specs

From lfp(stutter) we may deduce that every execution of stutter is finite, though
unbounded, in length. But this is not what happens in reality. It is possible for
an unfair coin to land tails forever, so the trace D[tlω] ought to be included in
the spec. And, {H [tli] 0 ≤ i}∗ is actually the spec of stutter where a fair coin
is used in the toss so that there is no infinite computation.

The present difficulty arises because subset ordering over specs implies that
the lub of a chain of specs is simply their union. We overcome this difficulty
by introducing the notion of upward-closed specs that include the limits of
countable chains of traces in the spec. The lub of a chain of upward-closed
specs is not simply their union, but the upward-closure of their union. Thus,
the lub of the specs {H [tlj] 0 ≤ j ≤ i}∗ ∪ {W [tli+1]}, for all i, 0 ≤ i, is
{H [tli] 0 ≤ i}∗ ∪ {D[tlω]}.

This discussion suggests that in solving x = f(x), the transformer f needs
to transform an upward-closed spec to an upward-closed spec. Not all smooth
transformers have this property. So, we introduce bismooth transformers, a
subclass of smooth transformers, that have this property. We develop the ap-
propriate concepts of upward-closure, and revisit the least fixed-point theorem.

21

4.2 Upward-Closure

4.2.1 Definitions

The following definitions make use of chains and their limits from Section 2.4.2
(page 8).

Upward-closure The upward-closure of spec p is:

p∗ = {lim(c) c a chain in p}.

It follows that c∗, the upward-closure of chain c, is c∪ lim(c). In particular,
for finite c, c∗ = c. A spec is upward-closed if p∗ = p, i.e., if chain c is in p, then
so is lim(c).

Trace s in p is maximal if there is no t in p such that s < t. An arbitrary
spec may not have a maximal trace, for example the spec {W [ai] i ≥ 0}. But
p∗ always has a maximal trace. Limit of a spec is given by:

lim(p) = {s s a maximal trace in p∗}

Chain Continuity Transformer f is chain continuous if f(c∗) = f∗(c) for
any chain c (f∗(c) is (f(c))∗). Each of the following conditions imply chain
continuity: (1) f(lim(c)) = lim(f(c)), for any chain c, (2) f(t) = lim(f(t∗′))
for any infinite trace t.

4.2.2 Properties of upward-closure

1. Upward-closure is algebraic closure, i.e, for specs p and q,

(a) (extensive) p ⊆ p∗.
From the definition.

(b) (monotonic) p ⊆ q ⇒ p∗ ⊆ q∗.
From the definition.

(c) (idempotent) (p∗)∗ = p∗.
Apply definition of upward-closure noting that p and p∗ have the
same set of chains.

2. Alternate characterizations of upward-closure: For spec p,

(a) p∗ = p ∪ {lim(c) c an infinite chain in p}.
The limit of every finite chain of p is in p.

(b) p∗ = p ∪ lim(p).
Proof in Proposition 11 (page 37) in the Appendix.

(c) p∗ = lim∗(p).
Proof in Proposition 12 (page 37) in the Appendix. It follows that
given spec p, p∗ is a spec because p∗ = lim∗(p), and lim∗(p) is prefix-
closed.

22

3. (Galois Adjoints) Finite prefix closure and upward-closure are Galois Ad-
joints, i.e., for traceset p and spec q:

p∗′ ⊆ q ≡ p ⊆ q∗

The following identities are then easily derived for specs p and q.

(a) p∗′ = (p∗)∗′

(b) (p∗′)∗ = p∗

(c) p∗′ ⊆ q∗′ ≡ p∗ ⊆ q∗

(d) p∗′ = q∗′ ≡ p∗ = q∗

4. (Distribution over union and intersection)

(a) (Union) Let F be a family of upward-closed specs and P = ∪p∈F (p).
Then P ∗ = ∪p∈F (p∗) iff every chain in P belongs to some spec in F .
For finite F , P ∗ = ∪p∈F (p∗).

(b) (Intersection) Let F be a family of specs and P = ∩p∈F (p). Then
P ∗ = ∩p∈F (p∗).

(c) For any spec q, q∗ = ∪{c∗ c a chain in q}.

Proof: See Proposition 13 (page 37) in the Appendix for the proof of
item (4a). The result is of interest only if the chain is infinite and F is
infinite, because any finite chain in P belongs to some spec in F , and
for finite F the result holds unconditionally. To see that P ∗ = ∪p∈F (p∗)
does not hold unconditionally for infinite families, let pi = W∗[a

i], for
every natural number i. Each pi is a spec, and p∗i = W∗[a

i]. There-
fore, (∪i(p

∗

i)) = {W [ai] 0 ≤ i}. But, (∪ipi)
∗ = {W [ai] 0 ≤ i}∗ =

{W [ai] 0 ≤ i} ∪ D[aω].

See Proposition 14 (page 37) for the proof of item (4b). The proof of
item (4c) follows from item (4a), where the family consists of all the chains
of q; note that q = ∪{c c a chain in q}, so P = q.

5. (upward-closure of tuples)
For specs p and q, (p × q)∗ = p∗ × q∗.

6. Let f be a finitely smooth transformer, and f(t) = lim(f(t∗′)) for every
infinite trace t. Then, f is smooth.

Proof: See Proposition 15 (page 38) in the Appendix.

7. Let f be chain continuous. If a finite trace s is in f(t), for some trace t,
then s ∈ f(t∗′). Equivalently, f∗′(p) = f∗′(p∗) = f∗′(p∗′), for any spec p.

Proof: See Proposition 16 (page 38) in the Appendix.

8. For spec p and filter g, g(p∗) ⊆ g∗(p).

Proof: See Proposition 17 (page 39).

23

4.3 Bismooth transformer

A smooth transformer does not necessarily preserve upward-closure. To see this,
consider transformer f where f(t) = t∗′ , for all traces t. It is easy to see that
f is smooth. For an infinite chain of traces c, f(c) = c, so f∗(c) = c∗ whereas
f(c∗) = f(c ∪ {lim(c)) = f(c) ∪ f(lim(c)) = c.

Call a transformer bismooth if it preserves both upward and downward-
closures. That is, for bismooth f :

(smooth; preserves downward-closure) f(p∗) = f∗(p), for any traceset p, and
(preserves upward-closure) f(p∗) = f∗(p), for any spec p.

A finitely bismooth transformer is smooth and it preserves upward-closure
over finitary specs.

4.3.1 Example of a Bismooth Transformer

Consider transformer or from Section 3.3.2 (page 11) where or maps a tuple of
specs (p, q) to p∪ q. We have shown in that section that or is smooth. To prove
that or is bismooth show that or∗(p, q) = or((p, q)∗).

or((p, q)∗)
= {upward-closure of tuples; item (5) (page 23)}

or(p∗ × q∗)
= {rewriting}

or{(x, y) x ∈ p∗, y ∈ q∗}
= {definition of or}

{x x ∈ p∗} ∪ {y y ∈ q∗}
= {set theory}

p∗ ∪ q∗

= {upward-closure distributes over finite union, item (4) (page 23)}
(p ∪ q)∗

= {definition of or}
or∗(p, q)

4.3.2 Chain continuity 6= Bismoothness

From its definition every bismooth transformer, even a finitely bismooth trans-
former, is chain continuous. In analogy with the definition of smooth transform-
ers based on traces it may seem that we can give a similar characterization of
bismooth transformers based on chains, namely, that every smooth and chain
continuous transformer is bismooth. The following counterexample is due to
Ernie Cohen.

Consider transformer hide from Section 3.3.3 (page 11) that was shown to
be smooth. Let hidea be its instance that removes every a event from a trace.
It is not hard to see that hidea(c∗) = hidea∗(c) for any chain c. Yet hidea is
not bismooth, as shown below.

24

Let spec p be {W [aibi] i ≥ 0}∗, where a and b are different symbols from
the event alphabet. Now hidea∗(p) 6= hidea(p∗):

p∗ = {W [aibi] i ≥ 0}∗ ∪ D[aω] hidea(p∗) = {W [bi] i ≥ 0}
hidea(p) = {W [bi] i ≥ 0} hidea∗(p) = {W [bi] i ≥ 0} ∪ D[bω]

4.3.3 Properties of Bismooth Transformers

As the counterexample in the previous subsection shows, chain continuity is
insufficient for bismoothness. Typically, proving that a transformer is bismooth
is considerably more difficult than proving that it is smooth. The properties
given below simplify such proofs.

Properties of Bismooth Transformers

1. The identity transformer, id(p) = p, is bismooth.

2. (Bismooth composition) Composition of bismooth transformers is bis-
mooth.

Proof: Let f and g be bismooth and p any spec. Then f and g are both
smooth and their composition is smooth. The proof that (f ◦g)(p∗) = (f ◦
g)∗(p) is analogous to the corresponding result for smooth transformers,
replacing all occurrences of downward-closure by upward-closure.

3. A transformer is bismooth if and only if it finitely bismooth.

Proof: See Proposition 18 (page 39) in the Appendix.

4. Smooth transformer f is bismooth if and only if (1) f is chain continuous,
and (2) corresponding to any chain d in f(p), where p is a spec, there is a
chain c in p such that d ⊆ f(c).

Proof: The proof of the “if” part is in Proposition 19 (page 39) in the
Appendix. The proof of “only if” is in Proposition 20 (page 40) in the
Appendix.

5. (Sufficient condition for bismoothness) Define a transformer to be co-finite

if it maps only a finite number of finite traces to any finite trace. A
transformer that is smooth, co-finite and chain continuous is bismooth.

Proof: See Proposition 22 (page 41) in the Appendix.

Property (1) is easy to prove. Property (2), bismooth composition, permits
definition of new bismooth transformers using the existing ones. Property (3)
simplifies many proofs regarding bismooth transformers by eliminating consid-
erations of infinite traces in a spec. Even though chain continuity by itself is
insufficient to guarantee bismoothness, Property (4) shows that an additional
condition on chains in p and f(p) is both necessary and sufficient for bismooth-
ness. Property (5), a sufficient condition for bismoothness, is immensely helpful
in proofs when a transformer is defined without using any known bismooth

25

transformer. Almost all proofs in Section 4.3.4 (page 26) about the elementary
transformers use this sufficient condition. Its proof uses a variation of Koenig’s
lemma which is given in Proposition (21) (page 40). The co-finiteness condition
in property (5) is not necessary for bismoothness; for example if f(t) = {W []}
for all t then f is bismooth though not co-finite.

4.3.4 Bismoothness of Transformers from Section 3.3

We showed a number of useful transformers in Section 3.3 (page 10). All trans-
formers of that section except hide of Section 3.3.3 (page 11), discontinuous
filter of Section 3.3.6 (page 12) and fair merge of Section 3.3.12 (page 15) are
bismooth; see Table 1 (page 26).

Transformer Bismooth? Proof
status map Yes Proposition 23 (page 42)

choice Yes Section 4.3.1 (page 24)
hide No Section 4.3.2 (page 24)
drop Yes Proposition 24 (page 42)
cons Yes Proposition 25 (page 43)

discontinuous filter No Proposition 26 (page 43)
continuous filter Yes Proposition 27 (page 43)

restrict by inclusion Yes special case of continuous filter
restrict by exclusion Yes special case of continuous filter

restrict by precedence Yes special case of continuous filter
atom Yes special case of continuous filter

unfair merge Yes Proposition 28 (page 44)
fair merge No Proposition 29 (page 44)

replace Yes Proposition 30 (page 44)
rendezvous Yes composition of bismooth transformers

Sequential Composition Yes Proposition 31 (page 45)

Table 1: Summary of Bismoothness of Elementary Transformers

4.4 Least Upward-Closed Fixed Points of Bismooth Trans-

formers

As shown in Section 4.1 (page 20), the least fixed point of any smooth f , lfp(f),
under subset ordering over specs is ∪i(f

i(W [])). Now, apply the fixed point
theorem taking subset ordering over upward-closed specs. The theorem can be
applied only if transformer f is bismooth, so that it creates a chain of upward-
closed specs f i(W []), i ≥ 0. The lub of this chain is not ∪i{f

i(W [])}, but
(∪i{f

i(W [])})∗.
Formally, p is an upward-closed fixed point if p is both a fixed-point and

upward-closed. The least upward-closed fixed-point (lufp) of f , written as
lufp(f), is lfp∗(f). Note that lufp(f) is a spec.

26

Theorem 2 [Least Upward-Closed Fixed Point Theorem]
For bismooth f , lufp(f) = lfp∗(f)

Proof: See Proposition 32 (page 46) in the Appendix, for a direct proof.
Note that lfp(f) is a spec; therefore lufp(f) is also a spec.
Consider the coin toss example of Section 4.1.1 (page 21) whose least fixed

point is {H [tli] 0 ≤ i}∗. The least upward-closed fixed point corresponding
to this fixed point is {H [tli] 0 ≤ i}∗ ∪ {D[tlω]}, which faithfully describes the
finite and infinite behaviors with an unfair coin.

4.5 Min-Max Fixed Points of Smooth Transformers

A smooth transformer that includes some aspect of fairness, say, a discontinuous
filter, is not bismooth. We develop a theorem that gives a precise characteriza-
tion of the appropriate least fixed points of smooth transformers.

A smooth transformer is monotonic; hence, using the Knaster-Tarski the-
orem [12], it has a least fixed point. However, this fixed point may not be
upward-closed. Consider the coin toss example of Section 4.1.1 (page 21) that
uses a fair coin so that an infinite run of tails is inadmissible. The recursive
equation describing this component is

x = fc({H []}∗ ∪ cons(tl, x))

where transformer fc implements a fair coin and, hence, is a discontinuous filter.
There is no upward-closed fixed point of this equation. The desired fixed-point
is {H [tli] 0 ≤ i}∗, but it is not upward-closed. So, instead of upward-closed
fixed point, we look for a least fixed-point that includes as many limit traces as

possible under the fairness constraint.
For any smooth transformer f define p to be a maximal fixed point of f if p

is the greatest fixed point of f in p∗; i.e., p includes as many traces as possible
from p∗. Observe that the greatest fixed point in any traceset q is the union of
all fixed points in q, because union of fixed points is a fixed point for any trace-
wise transformer. The least maximal fixed point of f , mmfp(f), also called the
min-max fixed point, is: (1) a maximal fixed point of f , and (2) the least among
all maximal fixed points of f . Theorem 3 shows that min-max fixed point exists
for any smooth transformer.

The following equation E(X), for a given X and unknown r, is important
in the study of min-max fixed point:

r = X ∩ f(r). [E(X)]

Theorem 3 [Min-Max Fixed Point Theorem] Let f be a smooth transformer
and p = lfp(f). Then (1) mmfp(f) is the greatest fixed point of f in p∗. Further,
(2) if f(p∗) ⊆ p∗, mmfp(f) is the greatest solution of E(p∗).

Proof of (1) is in Proposition 33 (page 46) and of (2) in Proposition 34
(page 47).

27

The condition f(p∗) ⊆ p∗ in (2) holds if f is chain continuous, see Proposi-
tion 35 (page 47). We consider a class of “fair” transformers in the next section
for which the condition in (2) holds, and we give stronger characterizations of
min-max fixed points for such transformers.

This theorem shows that the min-max fixed point can be “computed” by first
computing a least fixed point and then a greatest fixed point, but there is no
need for nested fixed point computations. The computation of the least fixed
point of f is “semi-constructive” for all smooth transformers using the least
fixed point theorem. Unfortunately, a smooth transformer is not necessarily
continuous with respect to the greatest lower bound. So, the greatest solution
of E(p∗) can not be computed in the same manner. The greatest solution of
E(X), call it t, satisfies t ⊆ f i(X), for all i ≥ 0, by induction on i. Therefore,
t ⊆ ∩i(f

i(X)). But, ∩i(f
i(X)) itself may not be a fixed point.

The min-max fixed point theorem is a generalization of the least upward-
closed fixed point theorem 2 (page 27). To see this, let f be bismooth. Given
p = lfp(f), f(p∗) = f∗(p) = p∗. So, p∗ is a fixed point, therefore, the greatest
fixed point in p∗. Hence, mmfp(f) = p∗, from the min-max fixed point theorem.

4.6 Fixed Point under Fairness

A common form of a smooth transformer is g ◦ h where g is a discontinuous
filter, typically modeling fairness, and h a bismooth transformer. A stronger
version of Theorem 3 (page 27) applies in this case.

Theorem 4 [Min-Max Fixed Point Theorem under Fairness] Let f = g ◦ h

where g is a filter, h is bismooth and p = lfp(f). Then mmfp(f) is the greatest
solution of the equation E(p∗), as well as of E′(p∗), where E′(X) is the equation
r = g(X) ∩ h(r).

Proof: See Proposition 36 (page 47) in the Appendix. ✷

A special case of this theorem often arises in practice: for any infinite trace t,
t ∈ h(t). This holds for the coin-toss example shown previously in this section.
In this case a simpler characterization exists for the min-max fixed point.

Theorem 5 Let f = g◦h where g is a filter, h is bismooth, and for any infinite
trace t, t ∈ h(t). Then mmfp(f) = g(p∗), where p = lfp(f).

Proof: See Proposition 37 (page 48) in the Appendix.

5 Concluding Remarks

This paper grew out of an effort to develop a proof theory for Orc [4, 6, 13],
a concurrent programming language designed by the author and his collabora-
tors. The concepts developed during that work, such as smooth and bismooth
transformers, were found to be applicable for concurrent systems in general. We
have constructed the transformers for Orc constructs by combining some of the

28

elementary transformers described here. We have also extended the theory to
real time systems.

We are currently developing a proof theory for concurrent systems, based on
the theory developed here. A spec is a predicate over traces. Each elementary
transformer corresponds to some operation on one or more predicates; for exam-
ple, choice is simply disjunction over predicates and a filter is a conjunction of
the filter predicate to eliminate unacceptable traces. Other transformers, such
as merge and rendezvous, and have no simple counterpart in predicate calculus
though they can be specified using quantification.

Related Work Applying denotational semantics to a concurrency calculus
was pioneered by Hoare and his collaborators for CSP [1]. In a series of
papers, they have developed a number of models culminating in a failure-
divergence model [2]. They have defined all the relevant features of CSP, includ-
ing rendezvous-based synchronized communication as well as both internal and
external non-determinism. Fairness is not modeled because it is not relevant for
CSP.

The theory proposed in this paper is inherently asynchronous. Concurrent
execution is modeled via interleaving of actions. Yet, it is possible to simulate
rendezvous, as we show in Section 3.3.14 (page 17). There is no special treatment
for failure in our theory because it can be included as part of the spec of a
component.

The distinction between internal and external non-determinism is exempli-
fied by the expressions ab + ac and a(b + c), where a is an internal event of a
component X , b and c are events on which X synchronizes with another compo-
nent Y , and + denotes non-deterministic choice. In ab + ac the choice is made
internally by X to synchronize on either the b (if it has chosen the ab alterna-
tive) or the c event (with ac alternative). If X has chosen to synchronize on b

and Y offers c, there is a deadlock. This distinction is modeled in our theory by
X executing an internal decision event, say a coin toss, that decides between b

and c in ab + ac. The internal specification of X includes the decision event as
a visible event though it is invisible in the external spec. In a(b + c), the choice
of the synchronizing event is determined externally, by Y offering either b or c.

Broy and Nelson [3] includes a number of important results concerning the
existence and non-existence of fixed-points in the presence of fair choice. Their
paper develops the theory for the “dovetail” operator that combines fair choice
with angelic non-determinism, so that a terminating computation causes com-
peting non-terminating computations to be discarded and rolled-back.

Meseguer, in personal communication, has observed that the theory pre-
sented here is an instance of more general constructions in ω−posets [14, 8, 9].

Acknowledgment I am truly grateful to José Meseguer whose thorough read-
ing of an earlier draft, and substantive technical comments, especially about
connections to category theory and ω-cpo has given me a deeper understanding
of my own work. Tony Hoare has been a constant source of encouragement

29

and inspiration, particularly about the applicability of the work in concurrent
program verification. I am grateful to Ernie Cohen who has spent consider-
able time working with me and helping with several conceptual issues. Manfred
Broy pointed out some deficiencies in this theory, and pointed me to the rel-
evant literature about fixed points under fairness. This work was inspired by
an attempt to prove correctness of programs written in the Orc programming
language [4, 6, 13]; I am grateful to the current and former Orc team members,
in particular, William Cook, Adrian Quark, David Kitchin, John Thywissen
and Arthur Peters. Vladimir Lifschitz has been a sounding board and advisor
on many algebraic questions. Members of IFIP WG 2.3, as always, have given
many helpful suggestions.

30

A Appendix: Deatailed Proofs

Proposition 1 A transformer f is smooth if and only if it preserves prefix-
closure over individual traces, i.e., f∗(t) = f(t∗) for every trace t.

Proof: It is easy to see that if the given transformer is smooth then f∗(t) = f(t∗)
for every trace t, by replacing p by {t}. In the other direction, given that
f∗(t) = f(t∗) for every trace t:

f∗(p)
= {definition of f over a traceset}

(∪{f(t) t ∈ p})∗
= {prefix-closure distributes over set union}

∪{f∗(t) t ∈ p}
= {Assumption: f(t∗) = f∗(t)}

∪{f(t∗) t ∈ p}
= {rewrite}

∪{∪{f(s) s ∈ t∗} t ∈ p}
= {definition of p∗}

∪{f(s) s ∈ p∗}
= {definition of f over a set}

f(p∗)

Proposition 2 A transformer is smooth if and only if it maps specs to specs.

Proof: A smooth transformer maps specs to specs, by definition. Next, we show
that any transformer f that maps specs to specs is smooth. We apply the in-
duction principle from Section 2.2 (page 6) for this proof. Assume that for any
trace t, s < t implies f(s∗) = f∗(s), then show that f(t∗) = f∗(t). The proof
consists of two parts by mutual inclusion.

Proof of f(t∗) ⊆ f∗(t):

f(t∗)
= {t∗ = {t} ∪ {s∗ s < t}}

f({t} ∪ {s∗ s < t}
= {f is trace-wise}

f(t) ∪ {f(s∗) s < t}
= {induction hypothesis}

f(t) ∪ {f∗(s) s < t}
⊆ {monotonicity of f : for s < t, f∗(s) ⊆ f∗(t)}

f(t) ∪ f∗(t)
= {f(t) ⊆ f∗(t)}

f∗(t)

31

Proof of f∗(t) ⊆ f(t∗):

f∗(t)
⊆ {{t} ⊆ t∗ and f is trace-wise}

f∗(t∗)
= {t∗ is a spec and f maps specs to specs. So, f(t∗) is a spec.

Therefore, f∗(t∗) = f(t∗)}
f(t∗)

Proposition 3 Composition of smooth transformers is smooth.

Proof: Let f and g be smooth transformers and (f ◦ g) their composition. For
any traceset p we show that (f ◦ g)(p∗) = (f ◦ g)∗(p).

(f ◦ g)(p∗)
= {definition of composition}

f(g(p∗))
= {g is smooth. So, g(p∗) = g∗(p)}

f(g∗(p))
= {f is smooth; apply f to g∗(p)}

f∗(g(p))
= {f∗(g(p)) = (f(g(p)))∗ = ((f ◦ g)(p))∗ = (f ◦ g)∗(p)}

(f ◦ g)∗(p)

Proposition 4 Any statusmap transformer of Section 3.3.1 (page 11) is smooth.

Proof: Let f be a statusmap transformer and y[m] be any trace.

f∗(y[m])
= {f(y[m]) = {y′[m]}}

{y′[m]}∗
= {Closure expansion}

{y′[m]} ∪ W [m∗′]

And also,

f(y∗[m])
= {Closure expansion}

f({y[m]} ∪ W [m∗′])
= {f is trace-wise}

{f(y[m])} ∪ f(W [m∗′])
= {f(y[m]) = {y′[m]}, f(W [k]) = {W [k]}, for any k}

{y′[m]} ∪ W [m∗′]

32

Proposition 5 Transformer or of Section 3.3.2 (page 11) is smooth.

s∗ or t∗
= {trace-wise transformer on two arguments}

{u or v u ∈ s∗, v ∈ t∗}
= {definition of or}

∪{{u, v} u ∈ s∗, v ∈ t∗}
= {set theory}

s∗ ∪ t∗
= {prefix-closure distributes over traceset union}

({s, t})∗
= {s or t = {s, t}}

(s or t)∗

Proposition 6 Transformer hide of Section 3.3.3 (page 11) is smooth.

Proof: Let f(t) denote hide(E, t) for a specific E. The following fact is obvious:

x ≤ f(t) ≡ (∃s : s ≤ t : f(s) = x) (1)

x ∈ f∗(t)
≡ {definition of prefix-closure}

{x x ≤ f(t)}
≡ {from (1)}

(∃s : s ≤ t : f(s) = x)
≡ {definition of prefix-closure and f applied to a traceset}

x ∈ f(t∗)

Proposition 7 Transformer cons of Section 3.3.5 (page 11) is smooth.

Proof: Recall the definition of cons:

cons(a, W []) = {W [], W [a]}
cons(a, y[m]) = {y[am]}

Let f be an instance of cons for some event a. We prove f∗(y[m]) = f(y∗[m]).

f(y∗[m])
= {Closure expansion}

f({y[m]} ∪ W [m∗′])
= {f is trace-wise}

f(y[m]) ∪ f(W [m∗′])
= {definition of f . The term W [] below is from f(W [])}

{y[am]} ∪ {W []} ∪ W [am∗′]
= {rewriting}

{y[am]} ∪ W [(am)∗′]
= {Closure expansion}

y∗[am]
= {definition of f . Equality holds for m = [] as well.}

f∗(y[m])

33

Proposition 8 Unfair merge transformer of Section 3.3.11 (page 14) is smooth.

Proof:

• (y[m])∗ | (z[n])∗ = (y[m] | z[n])∗, where y and z are from {H, W}:
Then m and n are both finite and, hence, m∗′ = m∗ and n∗′ = n∗.

(y[m])∗ | (z[n])∗
= {Closure expansion; replace m∗′ by m∗ and n∗′ by n∗.}

({y[m]} ∪ W [m∗]) | ({z[n]} ∪ W [n∗])
= { | is trace-wise, so distributes over set union}

{y[m] | z[n]} ∪ {y[m] | W [n∗]} ∪ {W [m∗] | z[n]} ∪ {W [m∗] | W [n∗]}
= {definition of | }

(y ∩ z)(m ⊗ n) ∪ W [m ⊗ n∗] ∪ W [m∗ ⊗ n] ∪ W [m∗ ⊗ n∗]
= {(m ⊗ n∗) ⊆ (m∗ ⊗ n∗), (m∗ ⊗ n) ⊆ (m∗ ⊗ n∗)}

(y ∩ z)(m ⊗ n) ∪ W [m∗ ⊗ n∗]
= {⊗ distributes over prefixes; see Section 3.3.11, page 15}

(y ∩ z)(m ⊗ n) ∪ W [(m ⊗ n)∗]
= {For finite m and n, (m ⊗ n)∗ = (m ⊗ n)∗′}

(y ∩ z)(m ⊗ n) ∪ W [(m ⊗ n)∗′]
= {Closure expansion}

((y ∩ z)(m ⊗ n))∗
= {definition of | }

(y[m] | z[n])∗

• (D[m])∗ | (z[n])∗ = (D[m] | z[n])∗, where z is from {H, W}:

Then n is finite and n∗′ = n∗.

(D[m])∗ | (z[n])∗
= {Closure expansion; replace n∗′ by n∗.}

({D[m]} ∪ W [m∗′]) | ({z[n]} ∪ W [n∗])
= { | is trace-wise, so distributes over set union}

{D[m] | z[n]} ∪ {D[m] | W [n∗]} ∪ {W [m∗′] | z[n]} ∪ {W [m∗′] | W [n∗]}
= {definition of | }

D(m ⊗ n∗) ∪ D[m ⊗ n∗] ∪ W [m∗′ ⊗ n] ∪ W [m∗′ ⊗ n∗]
= {m∗′ ⊗ n ⊆ m∗′ ⊗ n∗}

D[m ⊗ n∗] ∪ W [m∗′ ⊗ n∗]

And,

(D[m]) | z[n])∗
= {definition of | }

D∗[m ⊗ n∗]
= {Closure expansion}

D[m ⊗ n∗] ∪ W [(m ⊗ n∗)∗′]
= {(m ⊗ n∗)∗′ = (m∗′ ⊗ n∗′); replace n∗′ by n∗}

D[m ⊗ n∗] ∪ W [m∗′ ⊗ n∗]

34

• D∗[m] | D∗[n] = (D[m] | D[n])∗:

D∗[m] | D∗[n]
= {Closure expansion}

({D[m]} ∪ {W [m∗′]}) | ({D[n]} ∪ {W [n∗′]})
= { | is trace-wise, so distributes over set union}

{D[m] | D[n]} ∪ {D[m] | W [n∗′]} ∪ {W [m∗′] | D[n]} ∪ {W [m∗′] | W [n∗′]}
= {definition of | }

D[m ⊗ n∗] ∪ D[m∗ ⊗ n] ∪ D[m ⊗ n∗′] ∪ D[m∗′ ⊗ n] ∪ W [m∗′ ⊗ n∗′]
= {m ⊗ n∗′ ⊆ m ⊗ n∗, m∗′ ⊗ n ⊆ m∗ ⊗ n}

D[m ⊗ n∗] ∪ D[m∗ ⊗ n] ∪ W [m∗′ ⊗ n∗′]

And,

(D[m] | D[n])∗
= {definition of | }

(D[m ⊗ n∗] ∪ D[m∗ ⊗ n])∗
= {prefix-closure distributes over set union}

D∗[m ⊗ n∗] ∪ D∗[m∗ ⊗ n]
= {Closure expansion}

D[m ⊗ n∗] ∪ W [(m ⊗ n∗)∗′] ∪ D[m∗ ⊗ n] ∪ W [(m∗ ⊗ n)∗′]
= {(m ⊗ n∗)∗′ = m∗′ ⊗ n∗′ , (m∗ ⊗ n)∗′ = m∗′ ⊗ n∗′}

D[m ⊗ n∗] ∪ D[m∗ ⊗ n] ∪ W [m∗′ ⊗ n∗′]

Proposition 9 Transformer replace of Section 3.3.13 (page 16) is smooth.

Proof: Recall the definition of replace. The transformer is denoted by f , σ is
a generic source and τ the corresponding target. Symbol a is a generic event.
The definition is given in clausal form in a functional style, where the clauses
are attempted in the given order from top to bottom.

f(y[σ′]) = y[], where σ′ is a proper prefix of a source
f(y[σm]) = {cons(τ, f(y[m])) (σ, τ) ∈ R}
f(y[am]) = cons(a, f(y[m])), a 6∈ source alphabet

First, we show that f(t∗) = f∗(t) for any finite trace t. The proof uses
induction on the length of t. Since the trace is finite, we use general prefix
instead of finite prefix operator in the proofs. Consider the different possible
forms of t.

1. t = y[σ′]: f(t) = y[]

f(t∗) = f(y∗[σ
′]) = f{y[σ′], W [σ′

∗
]} = f(y[σ′]) ∪ f(W [σ′

∗
]) = {y[], W []}

f∗(t) = y∗[] = {y[], W []}

2. t = y[σm]: f(t) = {cons(τ, f(y[m])) (σ, τ) ∈ R}

35

t∗ = y∗[σm] = y[σm] ∪ W [(σm)∗] = y[σm] ∪ W [σ∗ − {σ}] ∪ W [σm∗]
f(t∗) = {cons(τ, f(y[m])) (σ, τ) ∈ R} ∪ {W []} ∪ {cons(τ, f(W [m∗])) (σ, τ) ∈ R}, or
f(t∗) = {W []} ∪ {cons(τ, f({y[m]} ∪ W [m∗])) (σ, τ) ∈ R}

And,

f∗(t)
= {f(t) = {cons(τ, f(y[m])) (σ, τ) ∈ R}}

{cons(τ, f(y[m])) (σ, τ) ∈ R}∗
= {rewrite}

{W []} ∪ {cons(τ, f∗(y[m])) (σ, τ) ∈ R}
= {induction: f∗(y[m]) = f(y∗[m])}

{W []} ∪ {cons(τ, f(y∗[m])) (σ, τ) ∈ R}
= {closure expansion}

{W []} ∪ {cons(τ, f({y[m]} ∪ W [m∗])) (σ, τ) ∈ R}

3. t = y[am]: For a 6∈ source alphabet, replace τ by a in the proof above.

The smoothness result for infinite t follows from item (6) of section 4.2.2
(page 22).

Proposition 10 Sequential composition (transformer ;) of Section 3.3.15
(page 17) is smooth.

(H [m] ; z[n])∗
= {definition of ; }

(z[mn])∗
= {Closure expansion}

{z[mn]} ∪ W [(mn)∗′]
= {(mn)∗′ = m∗ ∪ (mn∗′); note that m is finite}

{z[mn]} ∪ W [m∗ ∪ (mn∗′)]
= {distribute W over the two terms in its argument}

{z[mn]} ∪ W [m∗] ∪ W [mn∗′]

And,

H [m]∗ ; z[n]∗
= {Closure expansion; note that m is finite}

(H [m] ∪ W [m∗]) ; (z[n] ∪ W [n∗′])
= {apply ; trace-wise}

{H [m] ; z[n]} ∪ (H [m] ; W [n∗′]) ∪ (W [m∗] ; z[n]) ∪ (W [m∗] ; W [n∗′])
= {rewrite}

{z[mn]} ∪ W [mn∗′] ∪ W [m∗] ∪ W [m∗]
= {rewrite}

{z[mn]} ∪ W [m∗] ∪ W [mn∗′]

The remaining proof, that (s ; z[n])∗ = (s∗ ; z[n]∗), is straightforward.

36

Proposition 11 For spec p, p∗ = p ∪ lim(p).

Proof: Every maximal trace of p∗ is in lim(p), by definition of lim(p), and every
non-maximal trace of p∗ is finite, and hence in p. Therefore, p∗ ⊆ p ∪ lim(p).
Conversely, p ⊆ p∗, from item (2a) (page 22), and lim(p) ⊆ p∗ by definition of
lim(p). So, p ∪ lim(p) ⊆ p∗.

Proposition 12 For any spec p, p∗ = lim∗(p).

Proof:

lim∗(p)
= {definition of lim(p)}

{s s a maximal trace in p∗}∗
= {prefix-closure distributes over set union}

∪{s∗ s a maximal trace in p∗}
= {every trace in a set is a prefix of some maximal trace in that set}

{t t a trace in p∗}
= {set theory}

p∗

Proposition 13 Let F be a family of upward-closed specs and P = ∪p∈F (p).
Then P ∗ = ∪p∈F (p∗) iff every chain in P belongs to some spec in F . For finite
F , P ∗ = ∪p∈F (p∗).

Proof: Suppose every chain in P belongs to some spec in F .

P ∗

= {definition of upward-closure}
{lim(c) c a chain in P}

= {every chain c in P belongs to some spec in F .
Conversely, every chain in any spec in F is a chain in P}
∪p∈F {lim(c) c a chain in p}

= {definition of upward-closure}
∪p∈F (p∗)

Conversely, suppose there is a chain c in P that does not belong to any spec
in F . Then lim(c) ∈ P ∗ whereas for any p, since c 6⊆ p, lim(c) 6∈ p∗. So,
P ∗ 6= ∪p∈F (p∗).

For a finite family of specs, every infinite chain in P has an infinite subset
in some p, using the pigeon-hole principle. Since p is a spec, if it includes an
infinite subset of a chain, it includes the entire chain. The result then follows
from the proof above.

Proposition 14 Let F be a family of specs and P = ∩p∈F (p). Then P ∗ =
∩p∈F (p∗).

37

Proof: For any trace t

t ∈ P ∗

≡ {using {t} for p and P for q in item (3) (page 23)}
t∗′ ⊆ P

≡ {P = ∩p∈F (p)}
t∗′ ⊆ p, for every p in F

≡ {using {t} for p and p for q in item (3) (page 23)}
t ∈ p∗, for every p in F

≡ {set theory}
t ∈ ∩p∈F (p∗)

Proposition 15 Let f be a finitely smooth transformer, and f(t) = lim(f(t∗′))
for every infinite trace t. Then, f is smooth.

Proof: We show that for any infinite trace t, f(t∗) = f∗(t).
Let c = t∗′ . Then, c∗ = c, and f(c∗) = f(c). Since f is smooth over finite

traces f(c∗) = f∗(c). Therefore, f(c) = f∗(c), or f(c) is a spec.

f(t∗)
= {t∗ = {t} ∪ c; f is trace-wise}

f(t) ∪ f(c)
= {Assumption: f(t) = lim(f(c))}

lim(f(c)) ∪ f(c)
= {using f(c) for p in item (2b) of section 4.2.2 (page 22)}

f∗(c)
= {f(c) is a spec; item (2c) of section 4.2.2 (page 22): f∗(c) = lim∗(f(c))}

lim∗(f(c))
= {Assumption: f(t) = lim(f(c))}

f∗(t)

Proposition 16 Let f be chain continuous. If a finite trace s is in f(t), for
some trace t, then s ∈ f(t∗′). Equivalently, f∗′(p) = f∗′(p∗) = f∗′(p∗′), for any
spec p.

Proof: Let c = t∗′ .

s ∈ f(t)
⇒ {c = t∗′ , so t ∈ c∗}

s ∈ f(c∗)
⇒ {f is chain continuous}

s ∈ f∗(c)
⇒ {s finite}

s ∈ f(c)
⇒ {c = t∗′}

s ∈ f(t∗′)

38

It follows that for any spec p, s ∈ f∗′(p) ⇒ s ∈ f∗′(p∗′); so, f∗′(p) ⊆ f∗′(p∗′).
Conversely, since p∗′ ⊆ p, f∗′(p∗′) ⊆ f∗′(p); so f∗′(p) = f∗′(p∗′). Now, substitute
p∗ for p in this identity to get f∗′(p∗) = f∗′((p∗)∗′). Since (p∗)∗′ = p∗′ , from
item (3a) (page 23), we get f∗′(p) = f∗′(p∗′) = f∗′(p∗).

Proposition 17 For spec p and filter g, g(p∗) ⊆ g∗(p).

Proof: Let b be the filter predicate associated with g.

x ∈ g(p∗)
⇒ {definition of filter}

x ∈ p∗ ∧ b(x)
⇒ {From item 3 (page 23), using {x} for p and p for q}

x∗′ ⊆ p ∧ b(x)
⇒ {From property [F2] of filter, Section 3.3.6 (page 12)}

x∗′ ⊆ p ∧ b(x∗′)
⇒ {definition of filter}

x∗′ ⊆ g(p)
⇒ {From item 3 (page 23), using {x} for p and g(p) for q}

x ∈ g∗(p)

Proposition 18 A transformer is bismooth if and only if it is finitely bismooth.

Proof: Clearly a bismooth transformer is finitely bismooth. We prove the con-
verse, that if f is finitely bismooth then f(p∗) = f∗(p) for any spec p (that may
contain infinite traces). Let q be the set of finite traces in p, ie., q = p∗′ .

f∗(p)
= {using f(p) for p in item (3b) (page 23)}

(f∗′(p))∗

= {f is finitely bismooth, so chain continuous.
Using item (7) (page 23)}

(f∗′(p∗′))∗

= {q = p∗′}
(f∗′(q))∗

= {using f(q) for p in item (3b) (page 23)}
f∗(q)

= {f is finitely bismooth}
f(q∗)

= {p∗′ = q∗′ . Using item (3d) (page 23), p∗ = q∗}
f(p∗)

Proposition 19 Suppose transformer f is (S0) smooth, (S1) chain continuous,
and (S2) corresponding to any chain d in f(p), where p is any spec, there is a
chain c in p such that d ⊆ f(c). Then f is bismooth.

f(p∗)
= {from item (4c) (page 23)}

39

f(∪{c∗ c a chain in p})
= {f is trace-wise}

∪{f(c∗) c a chain in p}
= {f is chain continuous}

∪{f∗(c) c a chain in p}
= {p = {c c a chain in p}. So, f(p) = ∪c(f(c)).

Condition (S2): every chain d in ∪c(f(c)) is in some f(c).
Use item (4a) (page 23)
}

(∪{f(c) c a chain in p})∗

= {f is trace-wise. So, f(p) = (∪{f(c) c a chain in p})}
f∗(p)

Proposition 20 Suppose transformer f is bismooth. Then f is (S0) smooth,
(S1) chain continuous, and (S2) corresponding to any chain d in f(p), where p

is any spec, there is a chain c in p such that d ⊆ f(c).

Proof: Both (S0) and (S1) hold from the definition of bismooth. Next, we show
(S2). Let p be any spec, d a chain in f(p) and t = lim(d). Since d ⊆ f(p),
t ∈ f∗(p) = f(p∗). Therefore, for some s in p∗, we have t ∈ f(s). We show that
s∗′ is the desired chain c.

t ∈ f(s)
⇒ {monotonicity of downward-closure}

t∗ ⊆ f∗(s)
⇒ {f is smooth}

t∗ ⊆ f(s∗)
⇒ {from t = lim(d), d ⊆ t∗}

d ⊆ f(s∗)
⇒ {s∗ = s∗′ ∪ {s}}

d ⊆ f(s∗′) ∪ f(s)
⇒ {for any x in d, if x ∈ f(s) then x ∈ f(s∗′), from item (7) (page 23)}

d ⊆ f(s∗′)

Proposition 21 Let S and T be two non-empty trees with a bipartite relation,
cover, from the nodes of S to the nodes of T . For node x in S and y in T , say
that x covers y and y is covered by x whenever (x, y) ∈ cover. Suppose:
(C1) the set of nodes of S that cover any node of T is non-empty and finite,
and
(C2) if x covers y then the ancestors of x (which includes x) together cover the
ancestors of y.
Then, every path in T is covered by some path in S.

First, without loss in generality, add a new root s to S, t to T and the pair
(s, t) to cover. Neither the hypotheses nor the conclusion are affected by this
construction.

40

Let p be a path in T starting at t. Construct a tree R from S and p as
follows. The nodes of R are {(x, y) | (x, y) ∈ cover, y ∈ p}. Node (x, y) is the
parent of (x′, y′), y′ 6= t, where y is the parent of y′ in p and x the ancestor of
x′ closest to it that covers y. Such an x exists because of condition (C2). Node
x may possibly be x′. Every node in R except (s, t) has a parent. Observe:

1. R is a tree with root (s, t). Every node of p is the second component of a
distinct node in R. Hence, if p is infinite so is R.

2. Every node in R has finite degree: node (x, y) of R has children of the
form (x′, y′) where y′ is the unique child of y in p. From (C1), y′ is covered
by a finite number of nodes.

3. Apply Koenig’s lemma in conjunction with items (1) and (2) to establish
the existence of an infinite path q in R. Let q1 and q2 be the sequences of
first and second components, respectively, of q. By construction, q2 = p.
And q1 corresponds to a path of S that covers p, because (x, y) is the parent
of (x′, y′) in q where x is an ancestor of x′ in S. The path corresponding
to q1 is finite if some node of S appears infinitely often in q1.

Proposition 22 Define a transformer to be co-finite if it maps only a finite
number of finite traces to any finite trace. A transformer that is smooth, co-
finite and chain continuous is bismooth.

Proof: We show that f satisfies the sufficient conditions for bismoothness given
in Proposition 19 (page 39) for any spec p. Conditions (S0) and (S1) are met
by the hypotheses of this proposition. We next prove (S2), that for every chain
d in f(p) there is a chain c in p such that d ⊆ f(c). We use Proposition 21
(page 40) to establish this claim. Below, we show that the conditions (C1) and
(C2) required by Proposition 21 are met.

Let S and T be the set of finite traces in specs p and f(p), respectively, in
Proposition 21. Parent of any trace in either tree is its immediate predecessor
in the prefix order. Thus, x∗ is the ancestors of trace x. And, the relation cover

is {(x, y) x ∈ p, y ∈ f(x)}. Since f is chain continuous, every finite trace in
f(p) is mapped to by some finite trace in p, from item (7) (page 23). Therefore,
every node in T is covered by some node in S. Further, from co-finiteness of
f , every trace in f(p) is covered by a finite set of traces of S, thus satisfying
condition (C1) of Proposition 21. We show that condition (C2), that if x covers
y then ancestors of x cover the ancestors of y, is met:

x covers y

= {meaning of cover}
y ∈ f(x)

⇒ {prefix closure is monotonic}
y∗ ⊆ f∗(x)

= {f is smooth}
y∗ ⊆ f(x∗)

= {meaning of cover}

41

x∗ covers y∗
= {meaning of ancestor}

ancestors of x cover the ancestors of y

Proposition 23 A status map transformer is bismooth.

Proof: We show that any status map transformer, f , satisfies the conditions in
Proposition 22. Hence, it is bismooth.

1. A status map transformer is smooth, from Proposition 4 (page 32).

2. Clearly, f is co-finite.

3. Chain continuity is seen easily for any finite chain. We show that for any
infinite trace t with associated chain c, f(t) = lim(f(c)). Trace t being
infinite is of the form D[m] where m is infinite; and, f(D[m]) = D[m].
Also, f(c) is c because every element of the chain has status W . So,
lim(f(c)) = lim(c) = D[m].

Proposition 24 A drop transformer is bismooth.

Proof: First, we show that transformer drop′ that drops the first occurrence,
if any, of a specific event τ in every trace is bismooth. To drop a finite set of
events, compose the corresponding drop′ for each event individually. Since finite
compositions of bismooth transformers is bismooth, drop is bismooth. Similarly,
a transformer that drops the first n occurrences of events from a finite event set
is bismooth, by composing n successive drop.

Henceforth, use f(t) for drop′(τ, t); we show f is bismooth. We appeal to
Proposition 22 (page 41).

1. drop′ is a special case of hide and hide is smooth, from Proposition 6
(page 33).

2. To see that f is co-finite, consider any finite trace s. Then s ∈ f(t) if (1)
s has no τ event and t is the same as s with at most one τ event inserted
somewhere within its event sequence, or (2) s has a τ event and t is the
same as s with a τ event inserted somewhere within its event sequence
preceding the first τ event. In both cases, the number of possible traces t

is finite.

3. Chain continuity is seen easily for any finite chain. We show that f(lim(c)) =
lim(f(c)) for any infinite chain c. Let t = lim(c).

Case 1) t does not include τ : Then none of the traces in c include τ . We have
f(t) = t, and lim(f(c)) = lim(c) = t.

Case 2) t = D[aτm] for some finite sequence a and infinite sequence m. Then
c = W [a∗] ∪ W [aτm∗′].

42

lim(f(c))
= {c = W [a∗] ∪ W [aτm∗′]}

lim(f(W [a∗] ∪ W [aτm∗′]))
= {f trace-wise}

lim(f(W [a∗]) ∪ f(W [aτm∗′]))
= {f(W [a∗]) = W [a∗], f(W [aτm∗′]) = W [am∗′]}

lim(W [a∗] ∪ W [am∗′])
= {definition of prefix-closure}

lim(W [(am)∗′])
= {definition of lim}

D[am]
= {t = D[aτm]}

f(t)

Proposition 25 A cons transformer is bismooth.

Proof: We show that a cons transformer, f , satisfies the conditions in Proposi-
tion 22. Hence, it is bismooth.

1. cons is smooth, from Proposition 7 (page 33).

2. Clearly, f is co-finite.

3. Chain continuity is seen easily for any finite chain. Let c be an infinite
chain in p and t = lim(c). Trace t, being infinite, is of the form D[m]. Ev-
ery trace in c is of the form W [n] where n ∈ m∗′ . So, f(c) = f{W [n] n ∈
m∗′} = {W []} ∪ {W [an] n ∈ m∗′}. Now, f(D[m]) = D[am]. And,
lim(f(c)) = D[am].

Proposition 26 A discontinuous filter is not bismooth.

Proof: Consider a discontinuous filter f that accepts all finite traces and rejects
some infinite trace t. Let c be the chain corresponding to t. Then for the chain
c, f(c∗) = c whereas f∗(c) = c ∪ lim(c), violating the bismoothness condition
applied to spec c.

Proposition 27 A continuous filter is bismooth.

Proof: We appeal to Proposition 19 (page 39).

(S0) Every filter is smooth.

(S1) Chain continuity follows from the definition of continuous filter.

(S2) We show that for any spec p and chain d in f(p) there exists a chain c in
p such that d ⊆ f(c). For any filter f , f(p) ⊆ p. So, any chain d in f(p)
is a chain in p that fulfills the condition. Further, d = f(d).

43

Proposition 28 Unfair merge is bismooth.

Proof: We appeal to Proposition 22 (page 41). The definition of unfair merge
from Section 3.3.11 (page 14) is:

y[m] | z[n] = (y ∩ z)(m ⊗ n), where both y and z are from {H, W}
D[m] | z[n] = D[m ⊗ n∗], where z is from {H, W}
D[m] | D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

1. Unfair merge is smooth, from Proposition 8 (page 34).

2. It is clear that | is co-finite.

3. Chain continuity is seen easily for any finite chain. We show that for
any infinite trace t with associated chain c, f(t) = lim(f(c)). Chain c

consists of tuples from the Cartesian product of two specs. At least one
of the component subchains in c is infinite. So, t = lim(c) is of the form
(D[m], W [n]) for infinite m or (D[m], D[n]) for infinite m and n. The
remaining case, (W [m], D[n]) for infinite n, is symmetric to (D[m], W [n]).

Case 1) t = (D[m], W [n]), where m is infinite:

f(t) = D[m] | W [n] = D[m ⊗ n∗]
c = (D[m], W [n])∗′ = {(W [k], W [k′]) k ∈ m∗′ , k′ ∈ n∗}
f(c) = {W [k ⊗ k′] k ∈ m∗′ , k′ ∈ n∗} = W [m∗′ ⊗ n∗]
lim(f(c)) = D[m ⊗ n∗]

Case 2) t = (D[m], D[n]), where m and n are infinite:

f(t) = D[m] | D[n] = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]
c = (D[m], D[n])∗′ = {(W [k], W [k′]) k ∈ m∗′ , k′ ∈ n∗′}
f(c) = {W [k ⊗ k′] k ∈ m∗′ , k′ ∈ n∗′} = W [m∗′ ⊗ n∗′]
lim(f(c)) = D[m ⊗ n∗] ∪ D[m∗ ⊗ n]

Proposition 29 Fair merge is not bismooth.

Proof: Fair merge is a discontinuous filter applied to unfair merge. Since dis-
continuous filter is not bismooth, fair merge is not bismooth either.

Proposition 30 replace is bismooth.

Proof: We appeal to Proposition 22 (page 41). Henceforth, let f(t) = replace(R, t).

1. replace is smooth, from Proposition 9 (page 35).

2. To see that f is co-finite, for any trace s, replace all target symbols by
the corresponding sources in all possible ways. Since the number of target
symbols is finite in a finite trace and the number of corresponding sources
is finite, only a finite number of traces map to s under f .

44

3. Chain continuity is seen easily.

Proposition 31 Sequential composition is bismooth.

Proof: We repeat the definition of sequential composition from Section 3.3.15
(page 17)

H [m] ; z[n] = z[mn],
s ; z[n] = s, otherwise

We appeal to Proposition 22 (page 41).

1. Sequential composition is smooth, from Proposition 10 (page 36).

2. Transformer ; is co-finite because for any finite trace z[m], z[m] =
H [m′] ; z[n] where m = m′n, or z[m] = W [m]. In either case, only a
finite number of traces map to z[n].

3. Chain continuity is seen easily for any finite chain. An infinite chain c for
this 2-arity transformer is a pair of chains (d, d′). There are three cases to
consider, and we show that for the corresponding transformer f in each
case f(lim(c)) = lim(f(c)), which implies chain continuity.

(a) d includes a trace of the form H [m]: Then lim(d) = H [m], and d′ is
an infinite chain with distinct elements. So, lim(d′) = D[n] for some
n.

lim(c) = (H [m], D[n]), f(lim(c)) = H [m] ; D[n] = D[mn]
f(c) = W [(mn)∗′], lim(f(c)) = D[mn]

(b) d does not include a trace of the form H [m] and d is an infinite chain
with distinct elements: Let lim(d) = D[m], for some infinite m.

lim(c) = (D[m],−), f(lim(c)) = D[m]
f(c) = W [m∗′], lim(f(c)) = D[m]

(c) d does not include a trace of the form H [m] and d is a finite chain:
Let lim(d) = W [m], for some m. The proof is similar to that for the
previous case with W [m] in place of D[m].

45

Proposition 32 For bismooth f , lufp(f) = lfp∗(f).

Proof: Let p be an abbreviation for lfp(f). We have to show that (1) p∗ is a
fixed point of f , (2) p∗ is upward-closed, and (3) for any fixed point q of f that
is upward-closed, p∗ ⊆ q.

1. f(p∗) = p∗:

f(p∗)
= {f is bismooth}

f∗(p)
= {p is lfp(f); so f(p) = p}

p∗

2. p∗ is upward-closed: (p∗)∗ = p∗, from the idempotence of upward-closure.

3. p∗ ⊆ q:

p∗

⊆ {p = lfp(f) and q any fixed point of f , so p ⊆ q.
upward-closure is monotonic, so, p∗ ⊆ q∗}

q∗

= {q is upward-closed; so, q∗ = q}
q

Proposition 33 Let f be a smooth transformer and p = lfp(f). Then mmfp(f)
is the greatest fixed point of f in p∗.

Proof: Since f is smooth, p is a spec and p∗ is defined. Further, p∗ includes
at least one fixed point, namely p. Let q be the greatest fixed point of f in p∗;
then it is the union of all fixed points of f in p∗. We show that q is the min-max
fixed point.

First, q is a fixed point of f because union of fixed points is a fixed point.
Second, q is maximal because, q ⊆ p∗ ⇒ q∗ ⊆ p∗; since q is the greatest fixed
point of f in p∗, it is the greatest fixed point of f in q∗. Finally, q is the least
maximal fixed point because for any maximal fixed point s of f , q ⊆ s:

true

⇒ {p = lfp(f) and s is a fixed point of f}
p ⊆ s

⇒ {apply upward-closure to both sides}
p∗ ⊆ s∗

⇒ {q ⊆ p∗}
q ⊆ s∗

⇒ {q is a fixed point of f in s∗; s is the greatest fixed point of f in s∗}
q ⊆ s

46

Proposition 34 Suppose f(p∗) ⊆ p∗. Then the greatest fixed point of f in p∗

is the greatest solution of E(p∗).

Proof: From Proposition 33 (page 46) the greatest fixed point of f in p∗ exists.
Recall that E(X) is the equation r = X ∩ f(r) in unknown r. We show

that, given f(X) ⊆ X , q is a fixed point of f in X iff it is a solution of E(X).
Therefore, the greatest fixed point of f in p∗ is the greatest solution of E(p∗).

q is a solution of E(X)
≡ {definition of E(X)}

q = X ∩ f(q)
≡ {q = X ∩ f(q) implies q ⊆ X}

q = X ∩ f(q) ∧ q ⊆ X

≡ {q ⊆ X ⇒ f(q) ⊆ f(X). From f(X) ⊆ X , f(q) ⊆ X}
q = f(q) ∧ q ⊆ X

≡ {simple deduction}
q is a fixed point of f in X

Proposition 35 Let p be a fixed point of a chain continuous transformer f .
Then f(p∗) ⊆ p∗.

Proof:

f(p∗)
= {item (4c) (page 23)}

f(∪{c∗ c a chain in p})
= {f is trace-wise. So, it distributes over union of tracesets}

∪{f(c∗) c a chain in p}
= {f is chain continuous: f(c∗) = f∗(c)}

∪{f∗(c) c a chain in p}
⊆ {(c ⊆ p) ⇒ (f(c) ⊆ f(p)) ⇒ (f∗(c) ⊆ f∗(p))}

∪{f∗(p) c a chain in p}
⊆ {Each term in the set is f∗(p). There is at least one term, W [].}

f∗(p)
= {p is a fixed point of f}

p∗

Proposition 36 Let f = g◦h where g is a filter, h is bismooth and p = lfp(f).
Then mmfp(f) is the greatest solution of the equation (1) E(p∗), as well as of
(2) E′(p∗), where E′(X) is the equation r = g(X) ∩ h(r).

Proof: We first show that f(p∗) ⊆ p∗. Then (1) follows from the second part of
Theorem 3 (page 27).

f(p∗)
= {f = g ◦ h}

g(h(p∗))
= {h is bismooth}

47

g(h∗(p))
⊆ {From Proposition 17 (page 39), g(h∗(p)) ⊆ g∗(h(p))}

g∗(h(p))
= {g∗(h(p)) = (g(h(p)))∗ = f∗(p)}

f∗(p)
= {p is a fixed point of f}

p∗

To show (2), we prove that the rights sides of E(X) and E′(X) are identical.

X ∩ f(r)
= {using the definition of f}

X ∩ g(h(r))
= {from property of filter, Section 3.3.6 (page 12)}

g(X ∩ h(r))
= {from property of filter, Section 3.3.6 (page 12)}

g(X) ∩ h(r)

Proposition 37 Let f = g ◦ h where g is a filter, h is bismooth, and for any
infinite trace t, t ∈ h(t). Then mmfp(f) = g(p∗), where p = lfp(f).

Proof: First, we show g(p∗) ⊆ h(g(p∗)). Let i = p∗− p; then i is a set of infinite
traces. Let n be the subset of i that g accepts, so g(i) = n.

Since p is a fixed point of f , g(h(p)) = p. Apply g to both sides and note
that g is idempotent, so g(h(p)) = g(p). Hence, g(p) = g(h(p)) = p. Further,
since g(h(p)) ⊆ h(p) and g(h(p)) = p, p ⊆ h(p).

g(p∗)
= {p∗ = p ∪ i, g(p) = p, g(i) = n}

p ∪ n

⊆ {for infinite t, t ∈ h(t). So, n ⊆ h(n)}
p ∪ h(n)

⊆ {p ⊆ h(p). So, p ∪ h(n) ⊆ h(p) ∪ h(n). h is trace-wise}
h(p ∪ n)

= {g(p∗) = p ∪ n, from the first line of this proof}
h(g(p∗))

As given by Theorem 4 (page 28), mmfp(f) is the greatest fixed point of
the equation r = g(p∗) ∩ h(r) in r. Any solution of this equation is a subset of
g(p∗). We show that g(p∗) is a solution, therefore mmfp(f) = g(p∗). Replace r

by g(p∗) in the right side of the equation to get

g(p∗) ∩ h(g(p∗))
= {g(p∗) ⊆ h(g(p∗)), from the above proof}

g(p∗)

which is the left side of the equation.

48

References

[1] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communi-
cating sequential processes. J. ACM, 31(3):560–599, June 1984.

[2] S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operational semantics
for CSP. Technical report, Carnegie Mellon University.

[3] Manfred Broy and Greg Nelson. Adding fair choice to Dijkstra’s calculus.
TOPLAS, 16(3):924–938, May 1994.

[4] Jayadev Misra et. al. Orc language project. Web site. Browse at
http://orc.csres.utexas.edu.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall Inter-
national, 1984.

[6] David Kitchin, Adrian Quark, and Jayadev Misra. Quicksort: Combining
concurrency, recursion, and mutable data structures. In A. W. Roscoe,
Cliff B. Jones, and Ken Wood, editors, Reflections on the Work of C.A.R.

Hoare, History of Computing. Springer, 2010. Written in honor of Sir Tony
Hoare’s 75th birthday.

[7] S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.

[8] J. Meseguer. Completions, Factorizations and Colimits for Omega-posets.
Reports, U. of California, Los Angeles. 1978.

[9] J. Meseguer. Order completion monads. Algebra Universalis, 16(1):63–82,
1983.

[10] R. Milner. Communication and Concurrency. International Series in Com-
puter Science, C.A.R. Hoare, series editor. Prentice-Hall, 1989.

[11] D. Scott. Outline of a mathematical theory of computation. In 4th Annual

Princeton Conference on Inform. Sc. and Systems, pages 169–176, 1970.

[12] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific

Journal of Mathematics, 5:285–309, 1955.

[13] I. Wehrman, D. Kitchin, W. Cook, and J. Misra. A timed semantics of
Orc. Theoretical Computer Science, 402(2-3):234–248, August 2008.

[14] J. Wright, E. Wagner, and J. Thatcher. A uniform approach to inductive
posets and inductive closure. Theoretical Computer Science, 7:57 – 77,
1978.

49

