Using Perceptual Context to Ground Language

David Chen
Joint work with Joohyun Kim, Raymond Mooney
Department of Computer Sciences,
University of Texas at Austin

2009 IBM Statistical Machine Learning and Its Application(SMILE) Open House
October 8th and 9th, 2009
Learning Language from Perceptual Context

- Children do not learn language from annotated corpora.
- The natural way to learn language is to perceive language in the context of its use in the physical and social world.
Challenge
Challenge
Challenge

“西班牙守門員擋下了球”
Challenge

A linguistic input may correspond to many possible events

“西班牙守門員擋下了球”
Challenge

A linguistic input may correspond to many possible events

"西班牙守門員擋下了球"

Pass(GermanyPlayer1, GermanyPlayer2)

Block(SpanishGoalie)

Kick(GermanyPlayer2)
Overview

- Sportscasting task
- Tactical generation
- Human evaluation
Tractable Challenge Problem: Learning to Be a Sportscaster

- **Goal**: Learn from realistic data of natural language used in a representative context while avoiding difficult issues in computer perception (i.e. speech and vision).
- **Solution**: Learn from textually annotated traces of activity in a simulated environment.
- **Example**: Traces of games in the Robocup simulator paired with textual sportscaster commentary.
Purple goalie blocked the ball
Learning to Sportscast

• Learn to sportscast by observing sample human sportscasts

• Build a function that maps between natural language (NL) and meaning representation (MR)
 – NL: Textual commentaries about the game
 – MR: Predicate logic formulas that represent events in the game
Mapping between NL/MR

NL: “Purple3 passes the ball to Purple5”

MR: Pass (Purple3, Purple5)

Semantic Parsing (NL → MR)
Tactical Generation (MR → NL)
<table>
<thead>
<tr>
<th>Natural Language Commentary</th>
<th>Meaning Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple goalie turns the ball over to Pink8</td>
<td>badPass (Purple1, Pink8)</td>
</tr>
<tr>
<td>Purple team is very sloppy today</td>
<td>turnover (Purple1, Pink8)</td>
</tr>
<tr>
<td>Pink8 passes the ball to Pink11</td>
<td>kick (Pink8)</td>
</tr>
<tr>
<td>Pink11 looks around for a teammate</td>
<td>pass (Pink8, Pink11)</td>
</tr>
<tr>
<td>Pink11 makes a long pass to Pink8</td>
<td>kick (Pink11)</td>
</tr>
<tr>
<td>Pink8 passes back to Pink11</td>
<td>kick (Pink11)</td>
</tr>
<tr>
<td></td>
<td>ballstopped</td>
</tr>
<tr>
<td></td>
<td>kick (Pink11)</td>
</tr>
<tr>
<td></td>
<td>pass (Pink11, Pink8)</td>
</tr>
<tr>
<td></td>
<td>kick (Pink8)</td>
</tr>
<tr>
<td></td>
<td>pass (Pink8, Pink11)</td>
</tr>
<tr>
<td>Natural Language Commentary</td>
<td>Meaning Representation</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Purple goalie turns the ball over to Pink8</td>
<td>badPass (Purple1, Pink8)</td>
</tr>
<tr>
<td>Purple team is very sloppy today</td>
<td>turnover (Purple1, Pink8)</td>
</tr>
<tr>
<td>Pink8 passes the ball to Pink11</td>
<td>kick (Pink8)</td>
</tr>
<tr>
<td>Pink11 looks around for a teammate</td>
<td>pass (Pink8, Pink11)</td>
</tr>
<tr>
<td>Pink11 makes a long pass to Pink8</td>
<td>kick (Pink11)</td>
</tr>
<tr>
<td>Pink8 passes back to Pink11</td>
<td>ballstopped</td>
</tr>
<tr>
<td></td>
<td>pass (Pink11, Pink8)</td>
</tr>
<tr>
<td></td>
<td>kick (Pink8)</td>
</tr>
<tr>
<td></td>
<td>pass (Pink8, Pink11)</td>
</tr>
</tbody>
</table>
Purple goalie turns the ball over to Pink8

Purple team is very sloppy today
Pink8 passes the ball to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8
Pink8 passes back to Pink11

Meaning Representation:
- badPass (Purple1, Pink8)
- turnover (Purple1, Pink8)
- kick (Pink8)
- pass (Pink8, Pink11)
- kick (Pink11)
- kick (Pink8)
- kick (Pink11)
- ballstopped
<table>
<thead>
<tr>
<th>Natural Language Commentary</th>
<th>Meaning Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple goalie turns the ball over to Pink8</td>
<td>P6 (C1, C19)</td>
</tr>
<tr>
<td>Purple team is very sloppy today</td>
<td>P5 (C1, C19)</td>
</tr>
<tr>
<td>Pink8 passes the ball to Pink11</td>
<td>P1 (C19)</td>
</tr>
<tr>
<td>Pink11 looks around for a teammate</td>
<td>P2 (C19, C22)</td>
</tr>
<tr>
<td>Pink11 makes a long pass to Pink8</td>
<td>P1 (C22)</td>
</tr>
<tr>
<td>Pink8 passes back to Pink11</td>
<td>P0</td>
</tr>
<tr>
<td></td>
<td>P1 (C22)</td>
</tr>
<tr>
<td></td>
<td>P2 (C22, C19)</td>
</tr>
<tr>
<td></td>
<td>P1 (C19)</td>
</tr>
<tr>
<td></td>
<td>P2 (C19, C22)</td>
</tr>
</tbody>
</table>
Robocup Data

 - Avg # events/game = 2,613
 - Avg # English sentences/game = 509
 - Avg # Korean sentences/game = 499
- Each sentence matched to all events within previous 5 seconds.
 - Avg # MRs/sentence = 2.5 (min 1, max 12)
- Manually annotated with correct matchings of sentences to MRs (for evaluation purposes only).
Overview

- Sportscasting task
- **Tactical generation**
- Human evaluation
Tactical Generation

• Learn how to generate NL from MR

• Example:

Pass(Pink2, Pink3) → “Pink2 kicks the ball to Pink3”

• Two steps

1. Disambiguate the training data
2. Learn a language generator
WASP: Word Alignment-based Semantic Parsing

- Uses statistical machine translation techniques
 - Synchronous context-free grammars (SCFG) [Wu, 1997; Melamed, 2004; Chiang, 2005]
 - Word alignments [Brown et al., 1993; Och & Ney, 2003]

- SCFG supports both:
 - Semantic Parsing: NL → MR
 - Tactical Generation: MR → NL
WASPER: WASP with EM-like Retraining

Sportscaster Robocup Simulator

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (pink2, pink5)
Pass (purple5, purple7)
Kick (pink2)
Kick (pink5)
Ballstopped
Kick (pink8)

Ambiguous Training Data
Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (purple5, purple7)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)

Ball stopped
Kick (pink8)

WASPER: WASP with EM-like Retraining

Sportscaster Robocup Simulator

Ambiguous Training Data

Initial Semantic Parser

WASP
WASPER: WASP with EM-like Retraining

Sportscaster

Robocup Simulator

Ambiguous Training Data

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Pass (purple5, purple7)

Unambiguous Training Data

Initial Semantic Parser
WASPER: WASP with EM-like Retraining

Ambiguous Training Data
- Purple7 loses the ball to Pink2
- Pink2 kicks the ball to Pink5
- Pink5 makes a long pass to Pink8
- Pink8 shoots the ball

Unambiguous Training Data
- Kick (pink2)
- Pass (pink2, pink5)
- Kick (pink5)
- Kick (pink8)

Semantic Parser

WASP
WASPER: WASP with EM-like Retraining

Sportscaster Robocup Simulator

Ambiguous Training Data

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball
Turnover (purple7, pink2)
Pass (pink2, pink5)
Kick (pink5)

Unambiguous Training Data

Pass (purple5, purple7)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Semantic Parser

WASP
WASPER: WASP with EM-like Retraining

Sportscaster Robocup Simulator

Ambiguous Training Data

Unambiguous Training Data

Semantic Parser

WASP

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (pink2, pink5)
Pass (purple5, purple7)
Kick (pink5)
Kick (pink8)

WASPER:

WASP with E_M-like R

Retraining
WASPER: WASP with EM-like Retraining

Sportscaster Robocup Simulator

Ambiguous Training Data

Turnover (purple7, pink2)
Pass (pink2, pink5)
Pass (pink5, pink8)
Kick (pink8)

Pass (purple5, purple7)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Semantic Parser

Unambiguous Training Data

WASP

Ambiguous Training Data
Additional Systems

- **WASPER-GEN**
 - Uses tactical generator instead of semantic parser
- **WASPER-GEN-IGSL**
 - Same as WASPER-GEN except uses Iterative Generation Strategy Learning (IGSL) to initialize the first iteration
- **WASP with random matching** (lower baseline)
- **WASP with gold matching** (upper baseline)
Matching

• 4 Robocup championship games from 2001-2004.
 – Avg # events/game = 2,613
 – Avg # English sentences/game = 509
 – Avg # Korean sentences/game = 499
• Leave-one-game-out cross-validation
• Metric:
 – **Precision**: % of system’s annotations that are correct
 – **Recall**: % of gold-standard annotations produced
 – **F-measure**: Harmonic mean of precision and recall
Matching Results

![Bar chart showing F-measure for English and Korean languages with different methods: random, WASPER, WASPER-GEN, WASPER-GEN-IGSL, and [Liang et al, 2009] initialization.]
Tactical Generation

• Measure how accurately NL generator produces English sentences for chosen MRs in the test games.
• Use gold-standard matches to determine the correct sentence for each MR that has one.
• Leave-one-game-out cross-validation
• Metric:
 – **BLEU score**: [Papineni et al, 2002], N=4
Tactical Generation Results
Overview

- Sportscasting task
- Tactical generation
- Human evaluation
Human Evaluation

- Used Amazon’s Mechanical Turk to recruit human judges (~40 judges per video)
- 8 commented game clips
 - 4 minute clips randomly selected from each of the 4 games
 - Each clip commented once by a human, and once by the machine
- Presented in random counter-balanced order
- Judges were not told which ones were human or machine generated
Human Evaluation

<table>
<thead>
<tr>
<th>Score</th>
<th>English Fluency</th>
<th>Semantic Correctness</th>
<th>Sportscasting Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Flawless</td>
<td>Always</td>
<td>Excellent</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
<td>Usually</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Non-native</td>
<td>Sometimes</td>
<td>Average</td>
</tr>
<tr>
<td>2</td>
<td>Disfluent</td>
<td>Rarely</td>
<td>Bad</td>
</tr>
<tr>
<td>1</td>
<td>Gibberish</td>
<td>Never</td>
<td>Terrible</td>
</tr>
</tbody>
</table>
Human Evaluation

<table>
<thead>
<tr>
<th>Year</th>
<th>Human</th>
<th>Syntax</th>
<th>Semantic</th>
<th>Overall</th>
<th>Human?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Human</td>
<td>3.735</td>
<td>3.588</td>
<td>3.147</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>Machine</td>
<td>3.888</td>
<td>3.806</td>
<td>3.611</td>
<td>0.4</td>
</tr>
<tr>
<td>2002</td>
<td>Human</td>
<td>4.132</td>
<td>4.579</td>
<td>4.027</td>
<td>0.421</td>
</tr>
<tr>
<td></td>
<td>Machine</td>
<td>3.971</td>
<td>3.735</td>
<td>3.286</td>
<td>0.118</td>
</tr>
<tr>
<td>2003</td>
<td>Human</td>
<td>3.541</td>
<td>3.730</td>
<td>2.611</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>Machine</td>
<td>3.893</td>
<td>4.263</td>
<td>3.368</td>
<td>0.193</td>
</tr>
<tr>
<td>2004</td>
<td>Human</td>
<td>4.029</td>
<td>4.171</td>
<td>3.543</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Machine</td>
<td>4.125</td>
<td>4.375</td>
<td>4.0</td>
<td>0.563</td>
</tr>
</tbody>
</table>
Conclusion

• Current language learning work uses expensive, annotated training data.
• We have developed a language learning system that can learn from language paired with an ambiguous perceptual environment.
• We have evaluated it on the task of learning to sportscast simulated Robocup games.
• The system learns to sportscast as well as CS students who don’t watch soccer
Demo Clip

- Game clip commentated using WASPER-GEN with IGSL, since this gave the best results for generation.
- FreeTTS was used to synthesize speech from textual output.
- YouTube link:
 http://www.youtube.com/watch?v=L_MIRS7NBpU
backup slides
Overview

- Sportscasting task
- **Related works**
- Tactical generation
- Strategic generation
- Human evaluation
Semantic Parser Learners

• Learn a function from **NL** to **MR**

NL: “Purple3 passes the ball to Purple5”

MR: Pass (Purple3, Purple5)

• We experiment with two semantic parser learners
 – WASP (Wong & Mooney, 2006; 2007)
 – KRISP (Kate & Mooney, 2006)
KRISP: **Kernel-based Robust Interpretation by Semantic Parsing**

- Productions of MR language are treated like semantic concepts
- SVM classifier is trained for each production with string subsequence kernel
- These classifiers are used to compositionally build MRs of the sentences
- More resistant to noisy supervision but incapable of tactical generation
Overview

- Sportscasting task
- Related works
- Tactical generation
- **Strategic generation**
- Human evaluation
Strategic Generation

• Generation requires not only knowing *how* to say something (tactical generation) but also *what* to say (strategic generation).

• For automated sportscasting, one must be able to effectively choose which events to describe.
Example of Strategic Generation

pass (purple7 , purple6)
ballstopped
kick (purple6)
pass (purple6 , purple2)
ballstopped
kick (purple2)
pass (purple2 , purple3)
kick (purple3)
badPass (purple3 , pink9)
turnover (purple3 , pink9)
Example of Strategic Generation

pass (purple7 , purple6)
ballstopped
kick (purple6)
pass (purple6 , purple2)
ballstopped
kick (purple2)
pass (purple2 , purple3)
kick (purple3)
badPass (purple3 , pink9)
turnover (purple3 , pink9)
Strategic Generation

• For each event type (e.g. pass, kick) estimate the probability that it is described by the sportscaster.

• Requires correct NL/MR matching
 – Use estimated matching from tactical generation
 – Iterative Generation Strategy Learning
Iterative Generation Strategy Learning (IGSL)

- Directly estimates the likelihood of an event being commented on
- Self-training iterations to improve estimates
- Uses events not associated with any NL as negative evidence
purple6 passes to purple2

purple3 loses the ball to pink9

purple2 makes a short pass to purple3

Meaning Representation

ballstopped

kick (purple6)

pass (purple6 , purple2)

turnover (purple3 , pink9)

kick (purple2)

pass (purple2 , purple3)

kick (purple3)
purple6 passes to purple2

pass (purple6 , purple2)

purple3 loses the ball to pink9

pass (purple2 , purple3)

purple2 makes a short pass to purple3
purple6 passes to purple2

purple3 loses the ball to pink9

purple2 makes a short pass to purple3
Robocup Sportscaster Trace

Natural Language Commentary

- purple6 passes to purple2
- purple3 loses the ball to pink9
- purple2 makes a short pass to purple3

Meaning Representation

- kick (purple3)
- ballstopped
- kick (purple6)
- pass (purple6 , purple2)
- kick (purple2)
- turnover (purple3 , pink9)
- kick (purple2)
- pass (purple2 , purple3)
- kick (purple3)
- kick (purple3)
purple6 passes to purple2

purple3 loses the ball to pink9

purple2 makes a short pass to purple3

kick (purple2)
kick (purple3)
kick (purple6)
Robocup Sportscaster Trace

Natural Language Commentary

- purple6 passes to purple2
- purple3 loses the ball to pink9
- purple2 makes a short pass to purple3

Meaning Representation

- kick (purple 3)
- kick (purple 6)
- kick (purple 2)
- kick (purple 2)
- kick (purple 3)
- kick (purple 3)
Strategic Generation Performance

• Evaluate how well the system can predict which events a human comments on

• Metric:
 – \textbf{Precision}: \% of system’s annotations that are correct
 – \textbf{Recall}: \% of gold-standard annotations correctly produced
 – \textbf{F-measure}: Harmonic mean of precision and recall
Strategic Generation Results

Average results on leave-one-game-out cross-validation

<table>
<thead>
<tr>
<th>Method</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASP</td>
<td>0.6</td>
</tr>
<tr>
<td>KRISPER</td>
<td>0.7</td>
</tr>
<tr>
<td>WASPER</td>
<td>0.8</td>
</tr>
<tr>
<td>WASPER-GEN</td>
<td>0.9</td>
</tr>
<tr>
<td>IGSL</td>
<td>0.1</td>
</tr>
<tr>
<td>gold matching</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Demo Clip

- Game clip commentated using WASPER-GEN with IGSL, since this gave the best results for generation.
- FreeTTS was used to synthesize speech from textual output.
- **English:** http://www.youtube.com/watch?v=L_MIRS7NBpU
- **Korean:** http://www.youtube.com/watch?v=Dur9K5AiK8Y