Deep Variational Inference

FLARE Reading Group Presentation
Wesley Tansey
9/28/2016
What is Variational Inference?
What is Variational Inference?

- Want to estimate some distribution, $p^*(x)$
What is Variational Inference?

- Want to estimate some distribution, $p^*(x)$
- Too expensive to estimate
What is Variational Inference?

- Want to estimate some distribution, $p^*(x)$
- Too expensive to estimate
- Approximate it with a tractable distribution, $q(x)$
What is Variational Inference?

- Fit $q(x)$ inside of $p^*(x)$
- Centered at a single mode
 - $q(x)$ is unimodal here
 - VI is a MAP estimate
What is Variational Inference?

- Mathematically:

$$KL(q \parallel p^*) = \sum_x q(x) \log(q(x) / p^*(x))$$

Still hard!

$p^*(x)$ usually has a tricky normalizing constant
What is Variational Inference?

- Mathematically:

\[\text{KL}(q \parallel p^*) = \sum x q(x) \log \left(\frac{q(x)}{p^*(x)} \right) \]

- Use unnormalized \(p^\sim \) instead
What is Variational Inference?

• Mathematically:

\[\text{KL}(q \parallel p^*) = \sum_x q(x) \log(q(x) / p^*(x)) \]

• Use unnormalized \(p_{\sim} \) instead

\[
\log(q(x) / p^*(x)) \\
= \log(q(x)) - \log(p^*(x)) \\
= \log(q(x)) - \log(p_{\sim}(x) / Z) \\
= \log(q(x)) - \log(p_{\sim}(x)) - \log(Z)
\]
What is Variational Inference?

- Mathematically:

\[KL(q \| p^*) = \sum_x q(x) \log(q(x) / p^*(x)) \]

- Use unnormalized \(p^\sim \) instead

\[
\begin{align*}
\log(q(x) / p^*(x)) &= \log(q(x)) - \log(p^*(x)) \\
&= \log(q(x)) - \log(p^\sim(x) / Z) \\
&= \log(q(x)) - \log(p^\sim(x)) - \log(Z)
\end{align*}
\]

Constant \(\Rightarrow \) Can ignore in our optimization problem
Mean Field VI

- Classical method
- Uses a factorized q:

$$q(x) = \prod_i q_i(x_i)$$

Mean Field VI

- Example: Multivariate Gaussian
- Product of independent Gaussians for q
- Spherical covariance underestimates true covariance
Variational Bayes

- Vanilla mean field VI assumes you know all the parameters, θ, of the true distribution, $p^*(x)$

Variational Bayes

- Vanilla mean field VI assumes you know all the parameters, θ, of the true distribution, $p^*(x)$
- Enter: Variational Bayes (VB)

Variational Bayes

- VB infers both the latent $q(x)$ variables, z, and the $p^*(x)$ parameters, θ
- VB-EM was popularized for LDA1
 - E for z, M for θ

Variational Bayes

- VB usually uses a mean field approximation of the form:

\[q(x) = q(z_i \mid \theta) \prod_i q_i(x_i \mid z_i) \]
Issues with Mean Field VB

- Requires analytical solutions of expectations w.r.t. q_i
 - Intractable in general
- Factored form limits the power of the approximation
Issues with Mean Field VB

- Requires analytical solutions of expectations w.r.t. q_i
 - Intractable in general
- Factored form limits the power of the approximation

Solution:
Auto-Encoding Variational Bayes (Kingma and Welling, 2013)
Issues with Mean Field VB

- Requires analytical solutions of expectations w.r.t. q_i
 - Intractable in general
- Factored form limits the power of the approximation

Solution:
- Auto-Encoding Variational Bayes (Kingma and Welling, 2014)
- Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015)
Auto-Encoding Variational Bayes1

High-level idea:

1) Optimizing the same lower bound that we get in VB
2) Data augmentation trick leads to lower-variance estimator
3) Lots of choices of $q(z|x)$ and $p(z)$ lead to partial closed-form
4) Use a neural network to parameterize $q_\phi(z \mid x)$ and $p_\theta(x \mid z)$
5) SGD to fit everything

1 Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR, 2014.
1) VB Lower Bound

- Given N iid data points, \((x^1, \ldots, x^n)\)

- Maximize the marginal likelihood:

\[
\log p_\theta(x^1, \ldots, x^n) = \sum_i \log p_\theta(x^{(i)})
\]
1) VB Lower Bound

- Given N iid data points, \((x^1, ..., x^n)\)
- Maximize the marginal likelihood:

 \[
 \log p_\theta(x^{(i)}) = D_{KL}(q_\phi(z|x^{(i)}) \| p_\theta(x^{(i)}|z)) + \mathcal{L}(\theta, \phi; x^{(i)})
 \]

\[
\log p_\theta(x^{(i)}) = \sum_i \log p_\theta(x^{(i)})
\]
1) VB Lower Bound

- Given N iid data points, (x_1, \ldots, x^n)
- Maximize the marginal likelihood:

\[
\log p_\theta(x_1, \ldots, x_n) = \sum_i \log p_\theta(x^{(i)})
\]

\[
\log p_\theta(x^{(i)}) = D_{KL}(q_\phi(z|x^{(i)}) || p_\theta(x^{(i)}|z)) + \mathcal{L}(\theta, \phi; x^{(i)})
\]

Always positive
1) VB Lower Bound

- Given N iid data points, \((x^1, \ldots, x^n)\)
- Maximize the marginal likelihood:

\[
\log p_\theta(x^{(i)}) = D_{KL}(q_\phi(z|x^{(i)}) || p_\theta(x^{(i)}|z)) + \mathcal{L}(\theta, \phi; x^{(i)})
\]

\[
\log p_\theta(x^1, \ldots, x^n) = \sum_i \log p_\theta(x^{(i)})
\]

Always positive

Lower bound
1) VB Lower Bound

- Write lower bound

\[
\mathcal{L}(\theta, \phi; x^{(i)}) = E_{q_\phi(z|x)}[-\log q_\phi(z|x) + \log p_\theta(x, z)]
\]
1) VB Lower Bound

- Write lower bound

\[
\mathcal{L}(\theta, \phi; x^{(i)}) = \mathbb{E}_{q_{\phi}(z|x)} \left[-\log q_{\phi}(z|x) + \log p_{\theta}(x, z) \right]
\]

Anyone want the derivation?
1) VB Lower Bound

- Write lower bound
- Rewrite lower bound

\[
\mathcal{L}(\theta, \phi; x^{(i)}) = E_{q_\phi(z|x)}[-\log q_\phi(z|x) + \log p_\theta(x, z)]
\]
1) VB Lower Bound

- Write lower bound
- Rewrite lower bound

\[
\mathcal{L}(\theta, \phi; x^{(i)}) = \\
\mathbb{E}_{q_{\phi}(z|x)} [-\log q_{\phi}(z|x) + \log p_{\theta}(x, z)] \\
= -D_{KL}(q_{\phi}(z|x) \| p_{\theta}(z)) + \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)]
\]
1) VB Lower Bound

- Write lower bound
- Rewrite lower bound

\[\mathcal{L}(\theta, \phi; x^{(i)}) = \]
\[\mathbb{E}_{q_\phi(z|x)}[-\log q_\phi(z|x) + \log p_\theta(x, z)] \]
\[= -D_{KL}(q_\phi(z|x) \| p_\theta(z)) + \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x | z)] \]

Derivation?
1) VB Lower Bound

- Write lower bound

- Rewrite lower bound

- Monte Carlo gradient estimator of expectation part

\[\mathcal{L}(\theta, \phi; x^{(i)}) = \]

\[\mathbb{E}_{q_\phi(z|x)} \left[-\log q_\phi(z|x) + \log p_\theta(x, z) \right] \]

\[= -D_{KL}(q_\phi(z|x) \| p_\theta(z)) + \mathbb{E}_{q_\phi(z|x)} \left[\log p_\theta(x | z) \right] \]

\[\nabla_\phi \mathbb{E}_{q_\phi(z|x)} [f(z)] = \mathbb{E}_{q_\phi(z|x)} [f(z) \nabla_\phi \log q_\phi(z|x)] \]

\[\approx \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \nabla_\phi \log q_\phi(z^{(l)} | x) \]
1) VB Lower Bound

- Write lower bound
- Rewrite lower bound
- Monte Carlo gradient estimator of expectation part
 - Too high variance

\[\mathcal{L}(\theta, \phi; x^{(i)}) = \]

\[= -D_{KL}(q_{\phi}(z|x) \| p_{\theta}(z)) + \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] \]

\[\nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)}[f(z)] = \mathbb{E}_{q_{\phi}(z|x)}[f(z) \nabla_{\phi} \log q_{\phi}(z|x)] \]

\[\approx \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \nabla_{\phi} \log q_{\phi}(z^{(l)}|x) \]
2) Reparameterization trick

- Rewrite $q_\phi(z^{(l)} | x)$
- Separate q into a deterministic function of x and an auxiliary noise variable ϵ
- Leads to lower variance estimator

$$z \sim q_\phi(z|x)$$

$$z = g_\phi(\epsilon, x)$$

$$\epsilon \sim p(\epsilon)$$
2) Reparameterization trick

- Example: univariate Gaussian

- Can rewrite as sum of mean and a scaled noise variable

\[z \sim q_\phi(z|x) = \mathcal{N}(\mu, \sigma^2) \]

\[z = \mu + \sigma \epsilon \]

\[\epsilon \sim \mathcal{N}(0, 1) \]
2) Reparameterization trick

- Lots of distributions like this. Three classes given:
 - Tractable inverse CDF
 - Location-scale
 - Composition

 - Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, Gumbel, Erlang
 - Laplace, Elliptical, Student’s t, Logistic, Uniform, Triangular, Gaussian
 - Log-Normal (exponentiated normal)
 Gamma (sum of exponentials)
 Dirichlet (sum of Gammas)
 Beta, Chi-Squared, F
2) Reparameterization trick

- Yields a new MC estimator

\[
\mathbb{E}_{q_\phi(z|x)} [f(z)] = \mathbb{E}_{p(\epsilon)} [f(g_\phi(\epsilon, x))]
\approx \frac{1}{L} \sum_{l=1}^{L} f(g_\phi(\epsilon^{(l)}, x))
\]
2) Reparameterization trick

- Plug estimator into the lower bound eq.

- KL term often can be integrated analytically
 - Careful choice of priors

\[
\tilde{\mathcal{L}} = -D_{KL}(q_{\phi}(z|x) \| p_{\theta}(z)) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x|z^{(l)})
\]
2) Reparameterization trick

- Plug estimator into the lower bound eq.
- KL term often can be integrated analytically
 - Careful choice of priors

\[\hat{\mathcal{L}} = -D_{KL}(q_{\phi}(z|x) \parallel p_{\theta}(z)) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x|z^{(l)}) \]
3) Partial closed form

- KL term often can be integrated analytically
 - Careful choice of priors
 - E.g. both Gaussian

\[\tilde{L} = -D_{KL}(q_\phi(z|x) \| p_\theta(z)) \]
\[+ \frac{1}{L} \sum_{l=1}^{L} \log p_\theta(x|z^{(l)}) \]
4) Auto-encoder connection

- Regularizer
- Reconstruction error
- Neural nets
 - Encode: $q(z \mid x)$
 - Decode: $p(x \mid z)$

\[
\hat{\mathcal{L}} = -D_{KL}(q_{\phi}(z \mid x) \mid \mid p_{\theta}(z)) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x \mid z^{(l)})
\]
4) Auto-encoder connection (alt.)

- $q(z \mid x)$ encodes
- $p(x \mid z)$ decodes
- “Information layer(s)” need to compress
 - Reals = infinite info
 - Reals + random noise = finite info

More info in Karol Gregor’s Deep Mind lecture: https://www.youtube.com/watch?v=P78QYjWh5sM
Where are we with VI now? (2013’ish)

- Deep networks parameterize both \(q(z \mid x) \) and \(p(x \mid z) \)
- Lower-variance estimator of expected log-likelihood
- Can choose from lots of families of \(q(z \mid x) \) and \(p(z) \)
Where are we with VI now? (2013’ish)

• Problem:
 ○ Most parametric families available are simple
 ○ E.g. product of independent univariate Gaussians
 ○ Most posteriors are complex
Variational Inference with Normalizing Flows\(^\dagger\)

High-level idea:

1) VAEs are great, but our posterior \(q(z|x)\) needs to be simple

2) Take simple \(q(z|x)\) and apply series of \(k\) transformations to \(z\) to get \(q_k(z|x)\). Metaphor: \(z\) “flows” through each transform.

3) Be clever in choice of transforms (computational issue)

4) Variational posterior \(q\) now converges to true posterior \(p\)

5) Deep NN now parameterizes \(q\) and flow parameters

What is a normalizing flow?

- Function that transforms a probability density through a sequence of invertible mappings

$$q_0(z \mid x)$$

$$f$$

$$q_k(z \mid x)$$
Chain rule lets us write q_k as product of q_0 and inverted determinants

\[q(z') = q(z) \left| \det \frac{\partial f^{-1}}{\partial z'} \right| = q(z) \left| \det \frac{\partial f}{\partial z} \right|^{-1} \]
Key equations (2)

- Density $q_k(z')$ obtained by successively composing k transforms

\[Z_K = f_K \circ \cdots \circ f_2 \circ f_1(Z_0) \]
Key equations (3)

- Log likelihood of $q_k(z')$ has a nice additive form

$$\log q_K(z_K) = \log q_0(z_0) - \sum_{k=1}^{K} \log \left| \det \frac{\partial f_k}{\partial z_{k-1}} \right|$$
Key equations (4)

- Expectation over q_k can be written as an expectation under q_0

- Cute name: law of the unconscious statistician (LOTUS)

$$E_{q_K}[h(z)] = E_{q_0}[h(f_K \circ f_{K-1} \circ \cdots \circ f_1(z_0))]$$
Types of flows

1) Infinitesimal Flows:
 ○ Can show convergence in the limit
 ○ Skipping (theoretical; computationally expensive)

2) Invertible Linear-Time Flows:
 ○ log-det can be calculated efficiently
Planar Flows

- Applies the transform:

\[f(\mathbf{z}) = \mathbf{z} + \mathbf{u} h(\mathbf{w}^T \mathbf{z} + b) \]

where:

\[\mathbf{w} \in \mathbb{R}^D, \mathbf{u} \in \mathbb{R}^D, b \in \mathbb{R} \]
Radial Flows

- Applies the transform:

\[f(\mathbf{z}) = \mathbf{z} + \beta h(\alpha, r)(\mathbf{z} - \mathbf{z}_0) \]

where:

\[r = |\mathbf{z} - \mathbf{z}_0| \]
\[h(\alpha, r) = 1/(\alpha + r) \]
\[\mathbf{z}_0 \in \mathbb{R}^D, \alpha \in \mathbb{R}^+, \beta \in \mathbb{R} \]
Summary

- VI approx. $p(x)$ via latent variable model
 - $p(x) = \sum_z p(z)p(x \mid z)$
- VAE introduces an auto-encoder approach
 - Reparameterization trick makes it feasible
 - Deep NNs parameterize $q(z \mid x)$ and $p(x \mid z)$
- NF takes $q(z \mid x)$ from simple to complex
 - Series of linear-time transforms
 - Convergence in the limit