
Deep Variational
Inference

FLARE Reading Group Presentation
Wesley Tansey
9/28/2016

●

What is Variational
Inference?

● Want to estimate
some distribution,
p*(x)

What is Variational
Inference? p*(x)

● Want to estimate
some distribution,
p*(x)

● Too expensive to
estimate

What is Variational
Inference? p*(x)

● Want to estimate
some distribution,
p*(x)

● Too expensive to
estimate

● Approximate it with a
tractable distribution,
q(x)

What is Variational
Inference? p*(x) q(x)

● Fit q(x) inside of p*(x)
● Centered at a single

mode
○ q(x) is unimodal

here
○ VI is a MAP

estimate

What is Variational
Inference? p*(x) q(x)

● Mathematically:

KL(q || p*)

= Σ
x
q(x)log(q(x) / p*(x))

What is Variational
Inference?

Still hard!

p*(x) usually has a
tricky normalizing
constant

● Mathematically:

KL(q || p*)

= Σ
x
q(x)log(q(x) / p*(x))

● Use unnormalized p~
instead

What is Variational
Inference?

log(q(x) / p*(x))

= log(q(x)) - log(p*(x))

= log(q(x)) - log(p~(x) / Z)

= log(q(x)) - log(p~(x)) - log(Z)

● Mathematically:

KL(q || p*)

= Σ
x
q(x)log(q(x) / p*(x))

● Use unnormalized p~
instead

What is Variational
Inference?

log(q(x) / p*(x))

= log(q(x)) - log(p*(x))

= log(q(x)) - log(p~(x) / Z)

= log(q(x)) - log(p~(x)) - log(Z)

● Mathematically:

KL(q || p*)

= Σ
x
q(x)log(q(x) / p*(x))

● Use unnormalized p~
instead

What is Variational
Inference?

Constant
=> Can ignore in our
optimization problem

● Classical method

● Uses a factorized q:

 q(x) = ∏
i
 q

i
(x

i
)

Mean Field VI

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.

● Example: Multivariate
Gaussian

● Product of
independent
Gaussians for q

● Spherical covariance
underestimates true
covariance

Mean Field VI

● Vanilla mean field VI
assumes you know all
the parameters, θ, of
the true distribution,
p*(x)

Variational Bayes

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.

● Vanilla mean field VI
assumes you know all
the parameters, θ, of
the true distribution,
p*(x)

● Enter: Variational
Bayes (VB)

Variational Bayes

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.

● VB infers both the
latent q(x) variables, z,
and the p*(x)
parameters, θ

● VB-EM was
popularized for LDA1

○ E for z, M for θ

Variational Bayes

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.

● VB usually uses a
mean field
approximation of the
form:

q(x) = q(z
i
 | θ)∏

i
 q

i
(x

i
 | z

i
)

Variational Bayes

● Requires analytical
solutions of
expectations w.r.t. q

i
○ Intractable in

general
● Factored form limits

the power of the
approximation

Issues with Mean
Field VB

● Requires analytical
solutions of
expectations w.r.t. q

i
○ Intractable in

general
● Factored form limits

the power of the
approximation

Issues with Mean
Field VB

Solution:
Auto-Encoding
Variational Bayes
(Kingma and Welling, 2013)

● Requires analytical
solutions of
expectations w.r.t. q

i
○ Intractable in

general
● Factored form limits

the power of the
approximation

Issues with Mean
Field VB

Solution:
Variational Inference
with Normalizing Flows
(Rezende and Mohamed, 2015)

Solution:
Auto-Encoding
Variational Bayes
(Kingma and Welling, 2014)

Auto-Encoding Variational Bayes1

High-level idea:

1) Optimizing the same lower bound that we get in VB

2) Data augmentation trick leads to lower-variance estimator

3) Lots of choices of q(z|x) and p(z) lead to partial closed-form

4) Use a neural network to parameterize qϕ(z | x) and pθ(x | z)

5) SGD to fit everything

[1] Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR, 2014.

● Given N iid data
points, (x1, ... , xn)

● Maximize the
marginal likelihood:

 log pθ(x1,...,xn) = Σ
i
 log pθ(x(i))

1) VB Lower Bound

● Given N iid data
points, (x1, ... , xn)

● Maximize the
marginal likelihood:

 log pθ(x1,...,xn) = Σ
i
 log pθ(x(i))

1) VB Lower Bound

● Given N iid data
points, (x1, ... , xn)

● Maximize the
marginal likelihood:

 log pθ(x1,...,xn) = Σ
i
 log pθ(x(i))

1) VB Lower Bound

Always
positive

● Given N iid data
points, (x1, ... , xn)

● Maximize the
marginal likelihood:

 log pθ(x1,...,xn) = Σ
i
 log pθ(x(i))

1) VB Lower Bound

Always
positive

Lower bound

● Write lower bound

1) VB Lower Bound

● Write lower bound

1) VB Lower Bound

Anyone want the
derivation?

● Write lower bound

● Rewrite lower bound

1) VB Lower Bound

● Write lower bound

● Rewrite lower bound

1) VB Lower Bound

● Write lower bound

● Rewrite lower bound

1) VB Lower Bound

Derivation?

● Write lower bound

● Rewrite lower bound

● Monte Carlo gradient
estimator of
expectation part

1) VB Lower Bound

● Write lower bound

● Rewrite lower bound

● Monte Carlo gradient
estimator of
expectation part
○ Too high variance

1) VB Lower Bound

● Rewrite qϕ(z(l) | x)

● Separate q into a
deterministic function
of x and an auxiliary
noise variable ϵ

● Leads to lower
variance estimator

2) Reparameterization
trick

● Example: univariate
Gaussian

● Can rewrite as sum of
mean and a scaled
noise variable

2) Reparameterization
trick

● Lots of distributions
like this. Three classes
given:
○ Tractable inverse

CDF
○ Location-scale
○ Composition

2) Reparameterization
trick Exponential, Cauchy, Logistic,

Rayleigh, Pareto, Weibull, Reciprocal,
Gompertz, Gumbel, Erlang

Laplace, Elliptical, Student’s t, Logistic,
Uniform, Triangular, Gaussian

Log-Normal (exponentiated normal)
Gamma (sum of exponentials)
Dirichlet (sum of Gammas)
Beta, Chi-Squared, F

● Yields a new MC
estimator

2) Reparameterization
trick

● Plug estimator into
the lower bound eq.

● KL term often can be
integrated analytically
○ Careful choice of

priors

2) Reparameterization
trick

● Plug estimator into
the lower bound eq.

● KL term often can be
integrated analytically
○ Careful choice of

priors

2) Reparameterization
trick

● KL term often can be
integrated analytically
○ Careful choice of

priors
○ E.g. both Gaussian

3) Partial closed form

● Regularizer

● Reconstruction error

● Neural nets
○ Encode: q(z | x)
○ Decode: p(x | z)

4) Auto-encoder
connection

● q(z | x) encodes
● p(x | z) decodes
● “Information layer(s)”

need to compress
○ Reals = infinite info
○ Reals + random

noise = finite info

4) Auto-encoder
connection (alt.)

More info in Karol Gregor’s Deep Mind lecture: https://www.youtube.com/watch?v=P78QYjWh5sM

● Deep networks parameterize
both q(z | x) and p(x | z)

● Lower-variance estimator of
expected log-likelihood

● Can choose from lots of families of
q(z | x) and p(z)

Where are we with VI now? (2013’ish)

● Problem:
○ Most parametric families

available are simple
○ E.g. product of independent

univariate Gaussians
○ Most posteriors are complex

Where are we with VI now? (2013’ish)

Variational Inference with
Normalizing Flows1

High-level idea:

1) VAEs are great, but our posterior q(z|x) needs to be simple

2) Take simple q(z | x) and apply series of k transformations to z to
get q_k(z | x). Metaphor: z “flows” through each transform.

3) Be clever in choice of transforms (computational issue)

4) Variational posterior q now converges to true posterior p

5) Deep NN now parameterizes q and flow parameters
[1] Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows." arXiv preprint arXiv:1505.05770 (2015)..

● Function that
transforms a
probability density
through a sequence of
invertible mappings

What is a normalizing
flow?

q0(z | x)

qk(z | x)

● Chain rule lets us
write q

k
 as product of

q0 and inverted
determinants

Key equations (1)

● Density q
k
(z’)

obtained by
successively
composing k
transforms

Key equations (2)

● Log likelihood of q
k
(z’)

has a nice additive
form

Key equations (3)

● Expectation over q
k

can be written as an
expectation under q

0

● Cute name: law of the
unconscious
statistician (LOTUS)

Key equations (4)

Types of flows

1) Infinitesimal Flows:
○ Can show convergence in the limit
○ Skipping (theoretical; computationally

expensive)

2) Invertible Linear-Time Flows:
○ log-det can be calculated efficiently

● Applies the transform:

where:

Planar Flows

● Applies the transform:

where:

Radial Flows

● VI approx. p(x) via latent variable model
○ p(x) = Σ

z
p(z)p(x | z)

● VAE introduces an auto-encoder approach
○ Reparameterization trick makes it feasible
○ Deep NNs parameterize q(z | x) and p(x | z)

● NF takes q(z|x) from simple to complex
○ Series of linear-time transforms
○ Convergence in the limit

Summary

