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e \Want to estimate
some distribution,

p*(x) - |
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tractable distribution, o
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What is Variational
Inference?

e Fitqg(x)inside of p*(x)
e Centered at asingle

o q(x) is unimodal T o)
here .
o VlisaMAP

estimate o
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Mean Field VI

e Classical method

e Uses afactorized q:

q(x) =TI. g.(x)

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.



Mean Field VI

Example: Multivariate
Gaussian

Product of
independent
Gaussians for g
Spherical covariance
underestimates true
covariance




Variational Bayes

e Vanilla mean field VI
assumes you know all
the parameters, 6, of
the true distribution,

p*(x)

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.



Variational Bayes

e Vanillamean field VI
assumes you know all
the parameters, 6, of
the true distribution,
p*(x)

Enter: Variational
Bayes (VB)

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.




Variational Bayes

e VB infers both the
latent q(x) variables, z,
and the p*(x)
parameters, 6

e VB-EMwas

popularized for LDA?
o Eforz,Mfor9o

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.




Variational Bayes

e VB usually usesa
mean field

approximation of the
form:

a(x) = alz | O)T. a.,(x. | z)
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solutions of
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Auto-Encoding Variational Bayes*

High-level idea:

1) Optimizing the same lower bound that we get in VB

2) Data augmentation trick leads to lower-variance estimator
3) Lots of choices of q(z|x) and p(z) lead to partial closed-form
4) Use a neural network to parameterize q¢(z | x) and p,(x | 2)

5) SGD to fit everything

[1] Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR, 2014.
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1) VB Lower Bound

e Write lower bound
e Rewrite lower bound

e Monte Carlo gradient
estimator of
expectation part
o Too high variance




2) Reparameterization
trick

e Rewriteq ¢(z(') | )

e Separateqintoa
deterministic function
of x and an auxiliary
noise variable €

e lLeadstolower
variance estimator




2) Reparameterization
trick

e Example: univariate
Gaussian

e Canrewrite as sum of
mean and a scaled
noise variable




2) Reparameterization
trick

e Lots of distributions
like this. Three classes

given:

o Tractableinverse
CDF

o Location-scale

o Composition




2) Reparameterization
trick

e Yields anew MC
estimator
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3) Partial closed form

e KL term often can be
integrated analytically

o Careful choice of
priors
o E.g.both Gaussian




4) Auto-encoder
connection

Regularizer

Reconstruction error

Neural nets
o Encode: q(z | x)
o Decode: p(x| z)




4) Auto-encoder
connection (alt.)

e ((z|x)encodes
e p(x|z)decodes

e “Information layer(s)”
need to compress
o Reals = infinite info
o Reals +random
noise = finite info o

More info in Karol Gregor’s Deep Mind lecture:



Where are we with VI now? (2013’ish)

e Deep networks parameterize

both q(z | x) and p(x | z)

e |Lower-variance estimator of
expected log-likelihood

e Canchoose from lots of families of
q(z | x) and p(z)




Where are we with VI now? (2013’ish)

e Problem:
o Most parametric families
available are simple
o E.g.product of independent
univariate Gaussians
o Most posteriors are complex




Variational Inference with

Normalizing Flows*
High-level idea:

1) VAEs are great, but our posterior q(z|x) needs to be simple

2) Take simple q(z | x) and apply series of k transformations to z to
get g_k(z | x). Metaphor: z “flows” through each transform.

3) Be clever in choice of transforms (computational issue)
4) Variational posterior g now converges to true posterior p

5) Deep NN now parameterizes q and flow parameters

[1] Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows." arXiv preprint arXiv:15605.05770 (2015)..



What is a normalizing
flow?

e Functionthat
transforms a
probability density

through a sequence of
invertible mappings




Key equations (1)

e Chainruleletsus
write g, as product of

g0 and inverted
determinants




Key equations (2)

e Density q ()
obtained by
successively
composing k
transforms




Key equations (3)

e loglikelihood of qk(z’)
has a nice additive
form




Key equations (4)

e Expectationoverq,
can be written as an

expectation under g,

e Cute name:law of the

UNCONSCIOUS
statistician (LOTUS)




Types of flows

1) Infinitesimal Flows:
o Canshow convergence in the limit
o Skipping (theoretical; computationally
expensive)
2) Invertible Linear-Time Flows:
o log-det can be calculated efficiently




Planar Flows

e Applies the transform:

f(z) =z +uh(w'z+b)

where:
weRP ueRP beR




Radial Flows

e Applies the transform:
f(z) =z + Bh(a,r)(z — 2o)

where:
r = |Z —Zo‘
hia,7) =1/(ac+ 1)
zo c RP.a e RT. S eR




—~Summary

e VI approx. p(x) via latent variable model
O p(x) =2 p(z)p(x]|2)

e VAE introduces an auto-encoder approach
o Reparameterization trick makes it feasible
o Deep NNs parameterize q(z | x) and p(x | z)

e NF takes q(z|x) from simple to complex

o Series of linear-time transforms
o Convergence in the limit




