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● Approximate it with a 
tractable distribution, 
q(x)
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Inference? p*(x) q(x)



● Fit q(x) inside of p*(x)
● Centered at a single 

mode 
○ q(x) is unimodal 

here
○ VI is a MAP 

estimate

What is Variational 
Inference? p*(x) q(x)



● Mathematically:

KL(q || p*)

= Σ
x
q(x)log(q(x) / p*(x))
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Still hard!

p*(x) usually has a 
tricky normalizing 
constant
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What is Variational 
Inference?

Constant
=> Can ignore in our 
optimization problem



● Classical method

● Uses a factorized q:

   q(x) = ∏
i
 q

i
(x

i
) 

Mean Field VI

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.



● Example: Multivariate 
Gaussian

● Product of 
independent 
Gaussians for q

● Spherical covariance 
underestimates true 
covariance

Mean Field VI



● Vanilla mean field VI 
assumes you know all 
the parameters, θ, of 
the true distribution, 
p*(x)

Variational Bayes

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.



● Vanilla mean field VI 
assumes you know all 
the parameters, θ, of 
the true distribution, 
p*(x)

● Enter: Variational 
Bayes (VB)

Variational Bayes

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.



● VB infers both the 
latent q(x) variables, z, 
and the p*(x) 
parameters, θ

● VB-EM was 
popularized for LDA1

○ E for z, M for θ

Variational Bayes

[1] Blei, Ng, Jordan, “Latent Dirichlet Allocation”, JMLR, 2003.



● VB usually uses a 
mean field 
approximation of the 
form:

q(x) = q(z
i
 | θ)∏

i
 q

i
(x

i
 | z

i
)

Variational Bayes
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● Requires analytical 
solutions of 
expectations w.r.t. q

i
○ Intractable in 

general
● Factored form limits 

the power of the 
approximation

Issues with Mean 
Field VB

Solution:
Variational Inference 
with Normalizing Flows
(Rezende and Mohamed, 2015)

Solution: 
Auto-Encoding 
Variational Bayes
(Kingma and Welling, 2014)



Auto-Encoding Variational Bayes1

High-level idea:

1) Optimizing the same lower bound that we get in VB

2) Data augmentation trick leads to lower-variance estimator

3) Lots of choices of q(z|x) and p(z) lead to partial closed-form

4) Use a neural network to parameterize qϕ(z | x) and pθ(x | z)

5) SGD to fit everything

[1] Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR, 2014.
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● Rewrite lower bound

● Monte Carlo gradient 
estimator of 
expectation part

1) VB Lower Bound



● Write lower bound

● Rewrite lower bound

● Monte Carlo gradient 
estimator of 
expectation part
○ Too high variance

1) VB Lower Bound



● Rewrite qϕ(z(l) | x)

● Separate q into a 
deterministic function 
of x and an auxiliary 
noise variable ϵ

● Leads to lower 
variance estimator

2) Reparameterization 
trick



● Example: univariate 
Gaussian

● Can rewrite as sum of 
mean and a scaled 
noise variable

2) Reparameterization 
trick



● Lots of distributions 
like this. Three classes 
given:
○ Tractable inverse 

CDF
○ Location-scale
○ Composition

2) Reparameterization 
trick Exponential, Cauchy, Logistic, 

Rayleigh, Pareto, Weibull, Reciprocal, 
Gompertz, Gumbel, Erlang

Laplace, Elliptical, Student’s t, Logistic, 
Uniform, Triangular, Gaussian

Log-Normal (exponentiated normal)
Gamma (sum of exponentials)
Dirichlet (sum of Gammas)
Beta, Chi-Squared, F



● Yields a new MC 
estimator

2) Reparameterization 
trick



● Plug estimator into 
the lower bound eq.

● KL term often can be 
integrated analytically
○ Careful choice of 

priors
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trick



● KL term often can be 
integrated analytically
○ Careful choice of 

priors
○ E.g. both Gaussian

3) Partial closed form



● Regularizer
 
 
● Reconstruction error

● Neural nets
○ Encode: q(z | x)
○ Decode: p(x | z)

4) Auto-encoder 
connection



● q(z | x) encodes
● p(x | z) decodes
● “Information layer(s)” 

need to compress
○ Reals = infinite info
○ Reals + random 

noise = finite info

4) Auto-encoder 
connection (alt.)

More info in Karol Gregor’s Deep Mind lecture: https://www.youtube.com/watch?v=P78QYjWh5sM



● Deep networks parameterize 
both q(z | x) and p(x | z)

● Lower-variance estimator of 
expected log-likelihood

● Can choose from lots of families of 
q(z | x) and p(z)

Where are we with VI now? (2013’ish)



● Problem:
○ Most parametric families 

available are simple
○ E.g. product of independent 

univariate Gaussians
○ Most posteriors are complex

Where are we with VI now? (2013’ish)



Variational Inference with 
Normalizing Flows1

High-level idea:

1) VAEs are great, but our posterior q(z|x) needs to be simple

2) Take simple q(z | x) and apply series of k transformations to z to 
get q_k(z | x). Metaphor: z “flows” through each transform.

3) Be clever in choice of transforms (computational issue)

4) Variational posterior q now converges to true posterior p

5) Deep NN now parameterizes q and flow parameters
[1] Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows." arXiv preprint arXiv:1505.05770 (2015)..



● Function that 
transforms a 
probability density 
through a sequence of 
invertible mappings

What is a normalizing 
flow?

q0(z | x)

qk(z | x)



● Chain rule lets us 
write q

k
 as product of 

q0 and inverted 
determinants

Key equations (1)



● Density q
k
(z’) 

obtained by 
successively 
composing k 
transforms 

Key equations (2)



● Log likelihood of q
k
(z’) 

has a nice additive 
form

Key equations (3)



● Expectation over q
k
 

can be written as an 
expectation under q

0

● Cute name: law of the 
unconscious 
statistician (LOTUS)

Key equations (4)



Types of flows

1) Infinitesimal Flows:
○ Can show convergence in the limit
○ Skipping (theoretical; computationally 

expensive)

2) Invertible Linear-Time Flows:
○ log-det can be calculated efficiently



● Applies the transform:

where:

Planar Flows



● Applies the transform:

where:

Radial Flows



● VI approx. p(x) via latent variable model 
○ p(x) = Σ

z 
p(z)p(x | z)

● VAE introduces an auto-encoder approach
○ Reparameterization trick makes it feasible
○ Deep NNs parameterize q(z | x) and p(x | z)

● NF takes q(z|x) from simple to complex
○ Series of linear-time transforms
○ Convergence in the limit

Summary


