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Changing the Rules:A Comprehensive Approa
h to Theory Re�nement�Dirk Ourston and Raymond J. MooneyDepartment of Computer S
ien
esUniversity of TexasAustin, TX 78712email: dirk�
s.utexas.edu, mooney�
s.utexas.eduAbstra
tThis paper presents a 
omprehensive approa
h toautomati
 theory re�nement. In 
ontrast to othersystems, the approa
h is 
apable of modifying atheory whi
h 
ontains multiple faults and faultswhi
h o

ur at intermediate points in the theory.The approa
h uses explanations to fo
us the 
or-re
tions to the theory, with the 
orre
tions beingsupplied by an indu
tive 
omponent. In this way,an attempt is made to preserve the stru
ture ofthe original theory as mu
h as possible. Be
ausethe approa
h begins with an approximate theory,learning an a

urate theory takes fewer examplesthan a purely indu
tive system. The approa
h hasappli
ation in expert system development, wherean initial, approximate theory must be re�ned.The approa
h also applies at any point in the ex-pert system life
y
le when the expert system gen-erates in
orre
t results. The approa
h has been ap-plied to the domain of mole
ular biology and showssigni�
antly better results then a purely indu
tivelearner. Introdu
tionThis paper presents a 
omprehensive approa
h to au-tomati
 theory re�nement. In expert system develop-ment, theory re�nement o

urs when an initial, approx-imately 
orre
t, knowledge base must be re�ned into ahigh performan
e system. The initial knowledge basemay 
orrespond to textbook knowledge or rough knowl-edge from an expert. The re�nement pro
ess uses a setof training 
ases to improve the empiri
al adequa
y ofthe knowledge base, i.e. its ability to rea
h 
orre
t 
on-
lusions within its problem spa
e [Ginsberg et al., 1988℄.�This resear
h was supported by the NASA Ames Re-sear
h Center under grant NCC 2-629. Equipment usedwas donated by the Texas Instruments Corporation.

Theory re�nement is also required at any point in thelifetime of an expert system when errors are dete
tedin its operation.Our approa
h to theory re�nement uses a 
ombina-tion of explanation-based and empiri
al learning meth-ods. Partial explanations of examples and 
hara
teris-ti
s of the dete
ted errors are used to fo
us 
orre
tionson the failing portion of the theory. Empiri
al methodsare used to learn new rules or modify the premises ofexisting rules.The remainder of the paper is organized as follows.The next se
tion presents some ba
kground and moti-vation for our approa
h. Then we show some simpleexamples of our system in a
tion, followed by a dis
us-sion of the re�nement algorithm. Next we present ex-perimental results demonstrating the system's abilityto re�ne a theory for re
ognizing biologi
al 
on
epts.In the �nal two se
tions we present areas for future re-sear
h and 
on
lusions.Ba
kgroundIn dis
ussing theories, we will restri
t ourselves topropositional Horn 
lause logi
1, although mu
h ofwhat we say 
an be applied to other formalisms su
h aspredi
ate 
al
ulus, or even s
hema representations. Wealso assume that the inferen
e engine makes a \
losedworld assumption," i.e. any example provable by the
urrent theory is positive, else it is negative.Errors in a theory 
an be 
lassi�ed in terms of thetype of examples that are provable. One form of in
or-re
tness is over-generality; i.e. negative examples areprovable. This 
an be 
aused by two types of errors: 1)an in
orre
t rule is present in the theory, or 2) an exist-ing rule is missing a 
onstraint from its premise. The1Our a
tual representation is somewhat more generalthan propositional logi
 sin
e an atomi
 proposition 
an alsobe an attribute value pair or a threshold on a numeri
al at-tribute.



other form of in
orre
tness is over-spe
i�
ity, i.e. posi-tive examples are not provable. This 
an also be 
ausedby two types of errors: 1) a rule in the theory has anadditional in
orre
t 
onstraint in its premise, or 2) thetheory is missing a rule whi
h is ne
essary in the proofof 
ertain examples. In general, an in
orre
t theory 
anhave both overly-general and overly-spe
i�
 aspe
ts. A
omprehensive theory re�nement system must be ableto handle multiple faults of all types.Some previous theory re�nement systems are only 
a-pable of generalizing an overly-spe
i�
 theory [Wilkins,1988; Danyluk, 1989; Pazzani, 1989; Ali, 1989℄ whileothers are only 
apable of spe
ializing an overly-general theory [Flann and Dietteri
h, 1989; Mooney andOurston, 1989℄. For example, the IOU system previ-ously developed by the authors [Mooney and Ourston,1989℄ adds 
onstraints to an overly-general theory byusing an empiri
al method to �nd regularities in theunexplained aspe
ts of the examples.Many systems do not revise the theory itself butinstead revise the operational de�nition of the 
on-
ept [Bergadano and Giordana, 1988; Hirsh, 1989;Ginsberg, 1988; Shavlik and Towell, 1989; Flann andDietteri
h, 1989; Mooney and Ourston, 1989℄. Still oth-ers rely on a
tive experimentation rather than a pro-vided training set to dete
t and 
orre
t errors [Raja-money and DeJong, 1988℄. Finally, most existing the-ory 
orre
tion systems assume a single fault is respon-sible for ea
h failure [Wilkins, 1988; Danyluk, 1989;Pazzani, 1989℄.The system we are developing, 
alled EITHER(Explanation-based and Indu
tive THeory Extensionand Revision), is 
apable of handling any of the fail-ures des
ribed above. The approa
h 
an 
orre
t multi-ple faults, and uses one or more failing examples (pre-sented in \bat
h" format) to learn single or multiple
orre
tions to the theory, as appropriate. The 
orre
-tions 
an be made to intermediate points in the theory,rather than stri
tly involving operational predi
ates.The method uses positive and negative examples andis able to learn disjun
tive rules.EITHER uses the failures of the explanations 
reatedby the domain theory to fo
us a standard indu
tive sys-tem (
urrently ID3 [Quinlan, 1986℄) to supply 
orre
-tions to the theory. Be
ause it starts with an initialtheory, fewer examples are required to obtain an a

u-rate theory 
ompared with a purely indu
tive system.In addition, the purpose of our system is to extend theknowledge represented by the initial theory, preservingthe stru
ture of the original theory as mu
h as possible.This allows the system to provide better explanationsfor its 
on
lusions by making use of intermediate 
on-


epts in the initial theory.ExamplesBefore presenting the details of the system operation,we present some simple examples of how EITHERworks. The 
orre
t domain theory for the examples,that of drinking vessels, is shown below. This theoryis derived from the original 
up theory postulated byWinston [Winston et al., 1983℄.(stable) ^ (liftable) ^ (open-vessel) !(drinking-vessel)(has-bottom) ^ (
at-bottom) ! (stable)(graspable) ^ (lightweight) ! (liftable)(has-handle) ! (graspable)(width small) ^ (styrofoam) ! (graspable)(width small) ^ (
erami
) ! (graspable)(has-
on
avity) ^(upward-pointing-
on
avity) !(open-vessel)Examples 1 through 6 are a set of examples whi
h are
onsistent with this 
orre
t version of the theory.1. (+ (has-
on
avity) (has-bottom) (
at-bottom)(lightweight) (upward-pointing-
on
avity)(
olor yellow) (width small) (styrofoam))2. (+ (has-
on
avity) (has-bottom) (
at-bottom)(lightweight) (upward-pointing-
on
avity)(has-handle) (
olor bla
k) (width medium)(styrofoam))3. (+ (has-
on
avity) (has-bottom) (
at-bottom)(lightweight) (upward-pointing-
on
avity)(has-handle) (
olor blue) (width large)(
erami
))4. (- (has-bottom) (
at-bottom) (has-
on
avity)(lightweight) (upward-pointing-
on
avity)(width small) (
olor white) (shape 
ubi
al))5. (- (has-bottom) (has-
on
avity) (
at-bottom)(upward-pointing-
on
avity) (lightweight)(width medium) (styrofoam) (
olor 
opper))6. (- (has-bottom) (has-
on
avity) (
at-bottom)(upward-pointing-
on
avity) (lightweight)(width medium) (styrofoam) (
olor blue))The following subse
tions are examples of approxi-mate theories whi
h EITHER 
an be asked to 
orre
t.For simpli
ity, ea
h illustrates a single type of error.Nevertheless, EITHER is designed to handle multiple



errors of di�erent types. Note that in the following anassumption is an assertion whi
h, if assumed about aparti
ular example, would allow the proof of the exam-ple to be 
ompleted.In
orre
t Theory: Additional Ante
edentIn this 
ase, the theory has been given an extraneousante
edent in the premise of the se
ond graspable rule:(width small) ^ (styrofoam) ^ (
olor blue) !(graspable).The e�e
t of this is that example 1 fails, requiringthe assumption (
olor blue) in order for it to be prov-able. EITHER tentatively removes the assumption(
olor blue) from the graspable rule and 
he
ks the neg-ative examples. Sin
e no negative example is provable,EITHER returns the 
orre
ted theory with the assump-tion removed.In
orre
t Theory: Missing RuleIn this 
ase, the rule whi
h a

ounts for obje
ts whi
hhave handles being graspable is omitted from the the-ory:[(has-handle) ! (graspable)℄.Examples 2 and 3 fail. Example 2 requires either theassumption (width small) or the assumptions (widthsmall) ^ (
erami
) for its proof to be 
ompleted. Ex-ample 3 requires either the assumption (width small)or the assumptions (width small) ^ (styrofoam) for itsproof to be 
ompleted. EITHER sele
ts the assumption(width small), sin
e it represents the smallest 
hangeto the theory, and removes it from the rule in whi
hit parti
ipates, and 
he
ks the modi�ed theory againstthe negative examples.In this 
ase, example 5 (a negative example) is prov-able. EITHER removes the ante
edent (graspable) fromthe rule for liftable, and re-tests the negative examples.Those that are provable (4, 5 and 6) are used (alongwith 2 and 3) to dis
over a new rule for graspable. EI-THER adds the rule (has-handle) ! (graspable) to thetheory.In
orre
t Theory: Missing Ante
edentThe theory has been modi�ed su
h that the se
ond gras-pable rule is missing the ante
edent (width small):[(width small)℄ ^ (styrofoam) ! (graspable).Negative examples 5 and 6 be
ome provable. EITHERreturns the erroneous graspable rule as a 
andidate ruleto retra
t (this is partially due to the fa
t that otherrules used in the proofs of examples 5 and 6 are used inthe proofs of all examples). EITHER removes the gras-pable rule from the theory and 
he
ks to see if all ofthe positive examples are still provable. Sin
e example1 is not provable, EITHER sends examples 1, 5 and 6

to the indu
tive learner for the purpose of learning an-te
edents to add to the graspable rule. EITHER addsthe 
onjun
t (width small) to the rule and returns the
orre
ted theory.Theory Re�nement AlgorithmThe issues to be addressed by a theory re�nement algo-rithm are: determining that there is an error, identify-ing the in
orre
t part of the theory, and �nding the re-quired 
orre
tion. This se
tion dis
usses the approa
hto theory 
orre
tion separately for overly-general andoverly-spe
i�
 aspe
ts. The approa
h whi
h EITHERuses in either 
ase is one-sided: the algorithm for spe-
ializing theories is su
h that no positive examples areeliminated, and the algorithm for generalizing theoriesis su
h that no negative examples are admitted. As aresult, the 
orre
tions dis
ussed below 
an be sequen-tially added to obtain a total 
orre
tion to an arbitrarilyin
orre
t theory.Generalizing the TheoryFor a theory with overly-spe
i�
 aspe
ts, the ultimateform of the theory 
orre
tion will be to add rules, toloosen the 
onstraints of existing rules, or both.Identifying an Error. The problem of identifyingthat a theory has overly-spe
i�
 aspe
ts is straightfor-ward: a positive example fails to be proven.Finding the Lo
ation of the Error. The possibleproofs of a given goal in a theory 
an be represented asan and-or tree (or in the more general 
ase an and-orgraph), whi
h we will 
all the theory tree. The originaltheory tree may be partitioned into a set of and-trees:one for ea
h possible 
ombination of or-bran
hes in theoriginal theory, ea
h one representing a separate possi-ble proof. These are traditionally 
alled proof trees.For ea
h su
h proof tree, the leaves of the tree mayor may not unify with fa
ts 
orresponding to the par-ti
ular example given to the system. In the event thatthey do not, the system will identify the assumptionsrequired for the proof of the given example. Ea
h su
hproof is 
alled a partial proof, as it requires assumptionsin order to be 
ompleted. As mentioned in the previ-ous se
tion, assumptions are fa
ts whi
h, if true for theexample, would allow a proof to be 
ompleted. Moreimportantly, from our point of view, assumptions areliterals whi
h, if removed from the premises of the rulein whi
h they are used, would generalize the theory insu
h a way that the proof attempt would su

eed. Con-stru
ting partial proofs is a form of abdu
tion [Char-niak and M
Dermott, 1985℄. In order to restri
t theassumptions to observables (assertions expressed using



operational predi
ates) we use most spe
i�
 abdu
tion[Sti
kel, 1988℄. The system whi
h we use to generatepartial proofs is a modi�ed version of the ABDUCEsystem, des
ribed in [Ng and Mooney, 1989℄.For a 
omplex theory, there will be many su
h partialproofs and asso
iated assumptions for ea
h unprovableexample. In order to minimize the 
hanges to the initialtheory, we have adopted the O

am's razor heuristi
 of�nding the minimum number of assumptions requiredto 
over all of the failing examples. Stating the problemas a logi
al expression we have:E1 ^E2 ^ ::: ^ Enwhere ea
h of the E's represents the statement that afailing positive example has one or more partial proofs,i.e. Ei � Pi1 _ Pi2 _ ::: _ Pimwhere the P's represent the statement that a given par-tial proof for the example is satis�ed, i.e.Pjk � Ajk1 ^ Ajk2::: ^ Ajkpwhere the Ajkl represents the lth assumption used in thekth partial proof of the jth example. We then �nd theminimal set of assumptions, Ajkl = True, whi
h satisfythis expression.The missing rule example, expressed in these termsis:E2: (width small) _ ((width small) ^ (
erami
))E3: (width small) _ ((width small) ^ (styrofoam))and the minimum set of assumptions would 
onsist ofthe assumption (width small).In our resear
h, we are 
omparing two methods for�nding the minimum 
over of assumptions: a version ofthe greedy 
overing algorithm [Johnson, 1974℄, and thebran
h and bound algorithm. The greedy algorithm isnot guaranteed to �nd the minimal 
over, but will 
omewithin a logarithmi
 fa
tor of it and runs in polynomialtime. The bran
h and bound algorithm is guaranteedto �nd the minimal 
over whi
h a

ounts for all of theexamples, but the pro
ess may take exponential time.Modifying the Theory. On
e the minimum 
overhas been found, the next step is to determine how bestto modify the theory so as to a

ount for the failedpositive examples. This generalization must also notentail any negative examples.The heart of the theory modi�
ation algorithm is asfollows. Assumptions are grouped by the rules in whi
hthey parti
ipate. The assumptions for ea
h rule aretentatively removed from the ante
edents of the rule.If no negative examples be
ome provable, the assump-tions are permanently removed. If negative examplesbe
ome proven, one or more new rules are learned withthe same 
onsequent as the 
urrent rule. The rules are

learned indu
tively so as to dis
riminate the appropri-ate positive and negative examples. The positive ex-amples are those who have a partial proof 
ompletedby the assumptions. The negative examples are thosethat are provable when the 
urrent rule 
onsequent isremoved from the ante
edent of its parent rule2. In thisway, rules are learned whi
h augment the theory stri
tlyto a

ount for the failure in the given rule 
hain.For the missing rule example, EITHER removes theassumption (width small) from the graspable rule andtests to see if negative examples are provable. Sin
ethey are, EITHER removes (graspable) from the rule for(liftable) and sees whi
h negative examples are proven(examples 4, 5 and 6). These are passed to the indu
tivelearner along with the positive examples whi
h requiredthe original assumption (2 and 3) in order to learn a newrule with the 
onsequent (graspable). The rule (has-handle) ! (graspable) is added to the theory.There are ex
eptions to the pro
edure des
ribedabove. If all of the ante
edents of a rule are removed,and no negative examples be
ome provable, then re-move the 
onsequent of the rule from its parent rule in-stead and re
urse. This a

ounts for the situation wherea^ b^ 
! d and a b and 
 have all been removed withno in
onsisten
y with respe
t to the examples. Sin
ethe result is the rule True ! d, whi
h will 
ause d toalways be provable, it is appropriate to remove d fromits parent rule instead. This is a less drasti
 
hange tothe theory, sin
e in the 
ase where the theory is a graph,d may have parti
ipated in multiple rules, and we areonly interested in those whi
h were a
tually used in theproofs of the examples.A se
ond ex
eption is when rules are being learnedwhi
h are used in the proof of a se
ond, higher level rule.If a majority of the ante
edents of a given rule are goingto have new rules learned for them on average, thenlearn a new rule for the 
onsequent of the given rule,instead. As a justi�
ation for this heuristi
, 
onsiderthe following example:a ^ b! d
 ^ e! af ^ g ! b,and assume that the theory is missing the rule: h^ i!d. Then an example whi
h is a perfe
t dis
riminator forthe additional d rule will 
ause a and b to fail (i.e. h andi will be true but 
 and e and f and g will not be true).But the positive examples 
an have arbitrary featurevalues, as long as they are provable. Any 
ombination ofa and b may be provable for examples that are provable2The rule whi
h whi
h pre
edes the given rule in the rule
hain used in the partial proof whi
h in
ludes the assump-tion.



using h ^ i ! d. Given all possible examples of h ^i ! d, a majority of the time we would be learningnew rules for a and b and hen
e we will learn a newrule for d instead. This form of rule learning is alsodone re
ursively, sin
e the higher level rule may alsoparti
ipate in the proof of a yet higher level rule, et
.Spe
ializing the TheoryIn the 
ase of a theory with overly-general aspe
ts, theoptions are to remove rules or add 
onjun
ts to thepremises of rules. An overly-general theory manifestsitself by having negative examples that are provable.We would like to modify the theory in su
h a way thatthe negative examples are not provable, without los-ing any of the positive examples. In analogy with theprevious se
tion, we would like to make the followingstatement true::E1 ^ :E2::::Eni.e. none of the 
urrently provable negative examplesE1:::En are provable where:Ei � :Pi1 ^ :Pi2::: ^ Pimi.e. an example is not provable when none of its 
urrentproofs are satis�ed. And:Pjk � :Rjk1 _ :Rjk2::: _ :RjklwhereRjkl is the lth rule used in the kth proof of the jthexample, i.e. a proof is not 
omplete if at least one ofthe rules used in the proof is negated. In analogy withmost spe
i�
 abdu
tion, we 
onsider only rules whi
ho

ur at the leaves of the proof tree for the parti
ularexample. Be
ause of the 
losed world assumption, thenegation of a rule is equivalent to removing it from thetheory. Therefore ea
h of the :Rjkl is equivalent to arule retra
tion.As with assumptions, EITHER forms a minimum
over of rule retra
tions. If this 
ase, the obje
t is to re-move all proofs of all of the provable negative examples.Note that in 
omputing retra
tions, EITHER removesfrom 
onsideration those rules whi
h do not have anydisjun
ts in their proof path to the goal sin
e these rulesare needed to prove any example.EITHER removes ea
h of the rules in the minimum
over. If all of the positive examples remain provable,then the rule is permanently removed. If any positiveexamples fail to be proven, then additional ante
edentsare added to the rule to prevent it from providing proofsfor negative examples while still providing proofs forpositive examples. An appropriate set of ante
edents isfound by giving the indu
tive learner the positive exam-ples whi
h fail be proven with the rule removed and thenegative examples whi
h used the rule in a proof. Thefeatures used in the original rule are removed from theexamples before they are sent to the indu
tive learner,and then added ba
k in to the rule that is learned. In

this way, we are guaranteed that the learned rule, whi
hrepla
es the original rule in the theory, is a spe
ializa-tion of the original rule.For the missing ante
edent example, EITHER re-moves the rule (styrofoam) ! (graspable) from the the-ory sin
e this is the only disjun
tive rule required in theproofs of the negative examples. Sin
e a positive ex-ample be
omes unprovable when this is done, EITHERsends the failing positive example and the provable neg-ative examples to the indu
tive learner after removingthe feature (styrofoam) from the examples. The indu
-tive learner learns the rule (width small) ! (graspable)and EITHER adds the feature (styrofoam) ba
k in toform the rule (width small) ^ (styrofoam)! (graspable)whi
h repla
es the original rule in the theory.Experimental ResultsThe EITHER algorithm was tested on a theory usedfor re
ognizing biologi
al 
on
epts in DNA sequen
es.The original theory is a modi�ed version of the the-ory des
ribed in [Towell et al., 1990℄. The goal of thetheory is to re
ognize promoters in strings 
omposedof nu
leotides (one of A, G, T, or C). A promoter is ageneti
 region whi
h initiates the �rst step in the ex-pression of an adja
ent gene (trans
ription), by RNApolymerase. We modi�ed the original theory by remov-ing the tests for 
onformation in order to improve itstra
tability. The redu
ed theory then 
orresponds to\Pribrow Boxes". The input features are 57 sequentialDNA nu
leotides. The examples used in the tests 
on-sisted of 53 positive and 53 negative examples, assem-bled by a biologist from the biologi
al literature. Theinitial theory 
lassi�ed four of the positive examplesand all of the negative examples 
orre
tly. This indi-
ates that the initial theory was entirely overly-spe
i�
.Figure 1 shows the performan
e results obtainedwhen EITHER was used to re�ne this theory. In ea
htest, performan
e was measured against twenty �ve testexamples. The number of training examples was var-ied from one to 80, with the training and test exam-ples drawn from the entire example population, withno overlap. The results were averaged over 50 samples.The �gure shows that using the approximate theoryprovides a signi�
ant performan
e advantage, and thatthis advantage is maintained over the entire training in-terval. An analysis of the runs showed that EITHERwas modifying both leaf level and intermediate 
on
eptsin obtaining these results.A one-tailed Student t-test on paired di�eren
esshowed that the superior performan
e of EITHER isstatisti
ally signi�
ant at the 1% level for every pointplotted on the learning 
urves. After 80 training ex-



amples, the 95% 
on�den
e interval for the di�eren
ebetween EITHER and ID3 is 5.8% to 10.0% (i.e. witha probability of 0.95 EITHER's a

ura
y is between 5.8and 10.0 per
entage points higher than ID3's).
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hEmpiri
al tests on additional domains and theoreti
alanalysis of 
omputational 
omplexity and learnabilityissues are obvious areas for future resear
h. Other di-re
tions in
lude extending the approa
h to deal withnoisy data and predi
ate 
al
ulus and allowing the ini-tial theory to be used as a sour
e of rules for 
onstru
-tive indu
tion. Con
lusionsThis report has outlined a te
hnique for theory revisionwhi
h 
ombines elements of empiri
al and explanation-based learning. The approa
h attempts to preserve thestru
ture of the theory as mu
h as possible so that theintermediate 
on
epts represented in the original the-ory are preserved. Sin
e the te
hnique uses an initialtheory it shows de�nite performan
e advantages when
ompared to a purely indu
tive system. Unlike othertheory re�nement systems, the proposed approa
h is
apable of handling multiple faults and handles bothoverly-general and overly-spe
i�
 aspe
ts of an in
or-re
t theory. A
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