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Changing the Rules:A Comprehensive Approah to Theory Re�nement�Dirk Ourston and Raymond J. MooneyDepartment of Computer SienesUniversity of TexasAustin, TX 78712email: dirk�s.utexas.edu, mooney�s.utexas.eduAbstratThis paper presents a omprehensive approah toautomati theory re�nement. In ontrast to othersystems, the approah is apable of modifying atheory whih ontains multiple faults and faultswhih our at intermediate points in the theory.The approah uses explanations to fous the or-retions to the theory, with the orretions beingsupplied by an indutive omponent. In this way,an attempt is made to preserve the struture ofthe original theory as muh as possible. Beausethe approah begins with an approximate theory,learning an aurate theory takes fewer examplesthan a purely indutive system. The approah hasappliation in expert system development, wherean initial, approximate theory must be re�ned.The approah also applies at any point in the ex-pert system lifeyle when the expert system gen-erates inorret results. The approah has been ap-plied to the domain of moleular biology and showssigni�antly better results then a purely indutivelearner. IntrodutionThis paper presents a omprehensive approah to au-tomati theory re�nement. In expert system develop-ment, theory re�nement ours when an initial, approx-imately orret, knowledge base must be re�ned into ahigh performane system. The initial knowledge basemay orrespond to textbook knowledge or rough knowl-edge from an expert. The re�nement proess uses a setof training ases to improve the empirial adequay ofthe knowledge base, i.e. its ability to reah orret on-lusions within its problem spae [Ginsberg et al., 1988℄.�This researh was supported by the NASA Ames Re-searh Center under grant NCC 2-629. Equipment usedwas donated by the Texas Instruments Corporation.

Theory re�nement is also required at any point in thelifetime of an expert system when errors are detetedin its operation.Our approah to theory re�nement uses a ombina-tion of explanation-based and empirial learning meth-ods. Partial explanations of examples and harateris-tis of the deteted errors are used to fous orretionson the failing portion of the theory. Empirial methodsare used to learn new rules or modify the premises ofexisting rules.The remainder of the paper is organized as follows.The next setion presents some bakground and moti-vation for our approah. Then we show some simpleexamples of our system in ation, followed by a disus-sion of the re�nement algorithm. Next we present ex-perimental results demonstrating the system's abilityto re�ne a theory for reognizing biologial onepts.In the �nal two setions we present areas for future re-searh and onlusions.BakgroundIn disussing theories, we will restrit ourselves topropositional Horn lause logi1, although muh ofwhat we say an be applied to other formalisms suh asprediate alulus, or even shema representations. Wealso assume that the inferene engine makes a \losedworld assumption," i.e. any example provable by theurrent theory is positive, else it is negative.Errors in a theory an be lassi�ed in terms of thetype of examples that are provable. One form of inor-retness is over-generality; i.e. negative examples areprovable. This an be aused by two types of errors: 1)an inorret rule is present in the theory, or 2) an exist-ing rule is missing a onstraint from its premise. The1Our atual representation is somewhat more generalthan propositional logi sine an atomi proposition an alsobe an attribute value pair or a threshold on a numerial at-tribute.



other form of inorretness is over-spei�ity, i.e. posi-tive examples are not provable. This an also be ausedby two types of errors: 1) a rule in the theory has anadditional inorret onstraint in its premise, or 2) thetheory is missing a rule whih is neessary in the proofof ertain examples. In general, an inorret theory anhave both overly-general and overly-spei� aspets. Aomprehensive theory re�nement system must be ableto handle multiple faults of all types.Some previous theory re�nement systems are only a-pable of generalizing an overly-spei� theory [Wilkins,1988; Danyluk, 1989; Pazzani, 1989; Ali, 1989℄ whileothers are only apable of speializing an overly-general theory [Flann and Dietterih, 1989; Mooney andOurston, 1989℄. For example, the IOU system previ-ously developed by the authors [Mooney and Ourston,1989℄ adds onstraints to an overly-general theory byusing an empirial method to �nd regularities in theunexplained aspets of the examples.Many systems do not revise the theory itself butinstead revise the operational de�nition of the on-ept [Bergadano and Giordana, 1988; Hirsh, 1989;Ginsberg, 1988; Shavlik and Towell, 1989; Flann andDietterih, 1989; Mooney and Ourston, 1989℄. Still oth-ers rely on ative experimentation rather than a pro-vided training set to detet and orret errors [Raja-money and DeJong, 1988℄. Finally, most existing the-ory orretion systems assume a single fault is respon-sible for eah failure [Wilkins, 1988; Danyluk, 1989;Pazzani, 1989℄.The system we are developing, alled EITHER(Explanation-based and Indutive THeory Extensionand Revision), is apable of handling any of the fail-ures desribed above. The approah an orret multi-ple faults, and uses one or more failing examples (pre-sented in \bath" format) to learn single or multipleorretions to the theory, as appropriate. The orre-tions an be made to intermediate points in the theory,rather than stritly involving operational prediates.The method uses positive and negative examples andis able to learn disjuntive rules.EITHER uses the failures of the explanations reatedby the domain theory to fous a standard indutive sys-tem (urrently ID3 [Quinlan, 1986℄) to supply orre-tions to the theory. Beause it starts with an initialtheory, fewer examples are required to obtain an au-rate theory ompared with a purely indutive system.In addition, the purpose of our system is to extend theknowledge represented by the initial theory, preservingthe struture of the original theory as muh as possible.This allows the system to provide better explanationsfor its onlusions by making use of intermediate on-

epts in the initial theory.ExamplesBefore presenting the details of the system operation,we present some simple examples of how EITHERworks. The orret domain theory for the examples,that of drinking vessels, is shown below. This theoryis derived from the original up theory postulated byWinston [Winston et al., 1983℄.(stable) ^ (liftable) ^ (open-vessel) !(drinking-vessel)(has-bottom) ^ (at-bottom) ! (stable)(graspable) ^ (lightweight) ! (liftable)(has-handle) ! (graspable)(width small) ^ (styrofoam) ! (graspable)(width small) ^ (erami) ! (graspable)(has-onavity) ^(upward-pointing-onavity) !(open-vessel)Examples 1 through 6 are a set of examples whih areonsistent with this orret version of the theory.1. (+ (has-onavity) (has-bottom) (at-bottom)(lightweight) (upward-pointing-onavity)(olor yellow) (width small) (styrofoam))2. (+ (has-onavity) (has-bottom) (at-bottom)(lightweight) (upward-pointing-onavity)(has-handle) (olor blak) (width medium)(styrofoam))3. (+ (has-onavity) (has-bottom) (at-bottom)(lightweight) (upward-pointing-onavity)(has-handle) (olor blue) (width large)(erami))4. (- (has-bottom) (at-bottom) (has-onavity)(lightweight) (upward-pointing-onavity)(width small) (olor white) (shape ubial))5. (- (has-bottom) (has-onavity) (at-bottom)(upward-pointing-onavity) (lightweight)(width medium) (styrofoam) (olor opper))6. (- (has-bottom) (has-onavity) (at-bottom)(upward-pointing-onavity) (lightweight)(width medium) (styrofoam) (olor blue))The following subsetions are examples of approxi-mate theories whih EITHER an be asked to orret.For simpliity, eah illustrates a single type of error.Nevertheless, EITHER is designed to handle multiple



errors of di�erent types. Note that in the following anassumption is an assertion whih, if assumed about apartiular example, would allow the proof of the exam-ple to be ompleted.Inorret Theory: Additional AnteedentIn this ase, the theory has been given an extraneousanteedent in the premise of the seond graspable rule:(width small) ^ (styrofoam) ^ (olor blue) !(graspable).The e�et of this is that example 1 fails, requiringthe assumption (olor blue) in order for it to be prov-able. EITHER tentatively removes the assumption(olor blue) from the graspable rule and heks the neg-ative examples. Sine no negative example is provable,EITHER returns the orreted theory with the assump-tion removed.Inorret Theory: Missing RuleIn this ase, the rule whih aounts for objets whihhave handles being graspable is omitted from the the-ory:[(has-handle) ! (graspable)℄.Examples 2 and 3 fail. Example 2 requires either theassumption (width small) or the assumptions (widthsmall) ^ (erami) for its proof to be ompleted. Ex-ample 3 requires either the assumption (width small)or the assumptions (width small) ^ (styrofoam) for itsproof to be ompleted. EITHER selets the assumption(width small), sine it represents the smallest hangeto the theory, and removes it from the rule in whihit partiipates, and heks the modi�ed theory againstthe negative examples.In this ase, example 5 (a negative example) is prov-able. EITHER removes the anteedent (graspable) fromthe rule for liftable, and re-tests the negative examples.Those that are provable (4, 5 and 6) are used (alongwith 2 and 3) to disover a new rule for graspable. EI-THER adds the rule (has-handle) ! (graspable) to thetheory.Inorret Theory: Missing AnteedentThe theory has been modi�ed suh that the seond gras-pable rule is missing the anteedent (width small):[(width small)℄ ^ (styrofoam) ! (graspable).Negative examples 5 and 6 beome provable. EITHERreturns the erroneous graspable rule as a andidate ruleto retrat (this is partially due to the fat that otherrules used in the proofs of examples 5 and 6 are used inthe proofs of all examples). EITHER removes the gras-pable rule from the theory and heks to see if all ofthe positive examples are still provable. Sine example1 is not provable, EITHER sends examples 1, 5 and 6

to the indutive learner for the purpose of learning an-teedents to add to the graspable rule. EITHER addsthe onjunt (width small) to the rule and returns theorreted theory.Theory Re�nement AlgorithmThe issues to be addressed by a theory re�nement algo-rithm are: determining that there is an error, identify-ing the inorret part of the theory, and �nding the re-quired orretion. This setion disusses the approahto theory orretion separately for overly-general andoverly-spei� aspets. The approah whih EITHERuses in either ase is one-sided: the algorithm for spe-ializing theories is suh that no positive examples areeliminated, and the algorithm for generalizing theoriesis suh that no negative examples are admitted. As aresult, the orretions disussed below an be sequen-tially added to obtain a total orretion to an arbitrarilyinorret theory.Generalizing the TheoryFor a theory with overly-spei� aspets, the ultimateform of the theory orretion will be to add rules, toloosen the onstraints of existing rules, or both.Identifying an Error. The problem of identifyingthat a theory has overly-spei� aspets is straightfor-ward: a positive example fails to be proven.Finding the Loation of the Error. The possibleproofs of a given goal in a theory an be represented asan and-or tree (or in the more general ase an and-orgraph), whih we will all the theory tree. The originaltheory tree may be partitioned into a set of and-trees:one for eah possible ombination of or-branhes in theoriginal theory, eah one representing a separate possi-ble proof. These are traditionally alled proof trees.For eah suh proof tree, the leaves of the tree mayor may not unify with fats orresponding to the par-tiular example given to the system. In the event thatthey do not, the system will identify the assumptionsrequired for the proof of the given example. Eah suhproof is alled a partial proof, as it requires assumptionsin order to be ompleted. As mentioned in the previ-ous setion, assumptions are fats whih, if true for theexample, would allow a proof to be ompleted. Moreimportantly, from our point of view, assumptions areliterals whih, if removed from the premises of the rulein whih they are used, would generalize the theory insuh a way that the proof attempt would sueed. Con-struting partial proofs is a form of abdution [Char-niak and MDermott, 1985℄. In order to restrit theassumptions to observables (assertions expressed using



operational prediates) we use most spei� abdution[Stikel, 1988℄. The system whih we use to generatepartial proofs is a modi�ed version of the ABDUCEsystem, desribed in [Ng and Mooney, 1989℄.For a omplex theory, there will be many suh partialproofs and assoiated assumptions for eah unprovableexample. In order to minimize the hanges to the initialtheory, we have adopted the Oam's razor heuristi of�nding the minimum number of assumptions requiredto over all of the failing examples. Stating the problemas a logial expression we have:E1 ^E2 ^ ::: ^ Enwhere eah of the E's represents the statement that afailing positive example has one or more partial proofs,i.e. Ei � Pi1 _ Pi2 _ ::: _ Pimwhere the P's represent the statement that a given par-tial proof for the example is satis�ed, i.e.Pjk � Ajk1 ^ Ajk2::: ^ Ajkpwhere the Ajkl represents the lth assumption used in thekth partial proof of the jth example. We then �nd theminimal set of assumptions, Ajkl = True, whih satisfythis expression.The missing rule example, expressed in these termsis:E2: (width small) _ ((width small) ^ (erami))E3: (width small) _ ((width small) ^ (styrofoam))and the minimum set of assumptions would onsist ofthe assumption (width small).In our researh, we are omparing two methods for�nding the minimum over of assumptions: a version ofthe greedy overing algorithm [Johnson, 1974℄, and thebranh and bound algorithm. The greedy algorithm isnot guaranteed to �nd the minimal over, but will omewithin a logarithmi fator of it and runs in polynomialtime. The branh and bound algorithm is guaranteedto �nd the minimal over whih aounts for all of theexamples, but the proess may take exponential time.Modifying the Theory. One the minimum overhas been found, the next step is to determine how bestto modify the theory so as to aount for the failedpositive examples. This generalization must also notentail any negative examples.The heart of the theory modi�ation algorithm is asfollows. Assumptions are grouped by the rules in whihthey partiipate. The assumptions for eah rule aretentatively removed from the anteedents of the rule.If no negative examples beome provable, the assump-tions are permanently removed. If negative examplesbeome proven, one or more new rules are learned withthe same onsequent as the urrent rule. The rules are

learned indutively so as to disriminate the appropri-ate positive and negative examples. The positive ex-amples are those who have a partial proof ompletedby the assumptions. The negative examples are thosethat are provable when the urrent rule onsequent isremoved from the anteedent of its parent rule2. In thisway, rules are learned whih augment the theory stritlyto aount for the failure in the given rule hain.For the missing rule example, EITHER removes theassumption (width small) from the graspable rule andtests to see if negative examples are provable. Sinethey are, EITHER removes (graspable) from the rule for(liftable) and sees whih negative examples are proven(examples 4, 5 and 6). These are passed to the indutivelearner along with the positive examples whih requiredthe original assumption (2 and 3) in order to learn a newrule with the onsequent (graspable). The rule (has-handle) ! (graspable) is added to the theory.There are exeptions to the proedure desribedabove. If all of the anteedents of a rule are removed,and no negative examples beome provable, then re-move the onsequent of the rule from its parent rule in-stead and reurse. This aounts for the situation wherea^ b^ ! d and a b and  have all been removed withno inonsisteny with respet to the examples. Sinethe result is the rule True ! d, whih will ause d toalways be provable, it is appropriate to remove d fromits parent rule instead. This is a less drasti hange tothe theory, sine in the ase where the theory is a graph,d may have partiipated in multiple rules, and we areonly interested in those whih were atually used in theproofs of the examples.A seond exeption is when rules are being learnedwhih are used in the proof of a seond, higher level rule.If a majority of the anteedents of a given rule are goingto have new rules learned for them on average, thenlearn a new rule for the onsequent of the given rule,instead. As a justi�ation for this heuristi, onsiderthe following example:a ^ b! d ^ e! af ^ g ! b,and assume that the theory is missing the rule: h^ i!d. Then an example whih is a perfet disriminator forthe additional d rule will ause a and b to fail (i.e. h andi will be true but  and e and f and g will not be true).But the positive examples an have arbitrary featurevalues, as long as they are provable. Any ombination ofa and b may be provable for examples that are provable2The rule whih whih preedes the given rule in the rulehain used in the partial proof whih inludes the assump-tion.



using h ^ i ! d. Given all possible examples of h ^i ! d, a majority of the time we would be learningnew rules for a and b and hene we will learn a newrule for d instead. This form of rule learning is alsodone reursively, sine the higher level rule may alsopartiipate in the proof of a yet higher level rule, et.Speializing the TheoryIn the ase of a theory with overly-general aspets, theoptions are to remove rules or add onjunts to thepremises of rules. An overly-general theory manifestsitself by having negative examples that are provable.We would like to modify the theory in suh a way thatthe negative examples are not provable, without los-ing any of the positive examples. In analogy with theprevious setion, we would like to make the followingstatement true::E1 ^ :E2::::Eni.e. none of the urrently provable negative examplesE1:::En are provable where:Ei � :Pi1 ^ :Pi2::: ^ Pimi.e. an example is not provable when none of its urrentproofs are satis�ed. And:Pjk � :Rjk1 _ :Rjk2::: _ :RjklwhereRjkl is the lth rule used in the kth proof of the jthexample, i.e. a proof is not omplete if at least one ofthe rules used in the proof is negated. In analogy withmost spei� abdution, we onsider only rules whihour at the leaves of the proof tree for the partiularexample. Beause of the losed world assumption, thenegation of a rule is equivalent to removing it from thetheory. Therefore eah of the :Rjkl is equivalent to arule retration.As with assumptions, EITHER forms a minimumover of rule retrations. If this ase, the objet is to re-move all proofs of all of the provable negative examples.Note that in omputing retrations, EITHER removesfrom onsideration those rules whih do not have anydisjunts in their proof path to the goal sine these rulesare needed to prove any example.EITHER removes eah of the rules in the minimumover. If all of the positive examples remain provable,then the rule is permanently removed. If any positiveexamples fail to be proven, then additional anteedentsare added to the rule to prevent it from providing proofsfor negative examples while still providing proofs forpositive examples. An appropriate set of anteedents isfound by giving the indutive learner the positive exam-ples whih fail be proven with the rule removed and thenegative examples whih used the rule in a proof. Thefeatures used in the original rule are removed from theexamples before they are sent to the indutive learner,and then added bak in to the rule that is learned. In

this way, we are guaranteed that the learned rule, whihreplaes the original rule in the theory, is a speializa-tion of the original rule.For the missing anteedent example, EITHER re-moves the rule (styrofoam) ! (graspable) from the the-ory sine this is the only disjuntive rule required in theproofs of the negative examples. Sine a positive ex-ample beomes unprovable when this is done, EITHERsends the failing positive example and the provable neg-ative examples to the indutive learner after removingthe feature (styrofoam) from the examples. The indu-tive learner learns the rule (width small) ! (graspable)and EITHER adds the feature (styrofoam) bak in toform the rule (width small) ^ (styrofoam)! (graspable)whih replaes the original rule in the theory.Experimental ResultsThe EITHER algorithm was tested on a theory usedfor reognizing biologial onepts in DNA sequenes.The original theory is a modi�ed version of the the-ory desribed in [Towell et al., 1990℄. The goal of thetheory is to reognize promoters in strings omposedof nuleotides (one of A, G, T, or C). A promoter is ageneti region whih initiates the �rst step in the ex-pression of an adjaent gene (transription), by RNApolymerase. We modi�ed the original theory by remov-ing the tests for onformation in order to improve itstratability. The redued theory then orresponds to\Pribrow Boxes". The input features are 57 sequentialDNA nuleotides. The examples used in the tests on-sisted of 53 positive and 53 negative examples, assem-bled by a biologist from the biologial literature. Theinitial theory lassi�ed four of the positive examplesand all of the negative examples orretly. This indi-ates that the initial theory was entirely overly-spei�.Figure 1 shows the performane results obtainedwhen EITHER was used to re�ne this theory. In eahtest, performane was measured against twenty �ve testexamples. The number of training examples was var-ied from one to 80, with the training and test exam-ples drawn from the entire example population, withno overlap. The results were averaged over 50 samples.The �gure shows that using the approximate theoryprovides a signi�ant performane advantage, and thatthis advantage is maintained over the entire training in-terval. An analysis of the runs showed that EITHERwas modifying both leaf level and intermediate oneptsin obtaining these results.A one-tailed Student t-test on paired di�erenesshowed that the superior performane of EITHER isstatistially signi�ant at the 1% level for every pointplotted on the learning urves. After 80 training ex-



amples, the 95% on�dene interval for the di�erenebetween EITHER and ID3 is 5.8% to 10.0% (i.e. witha probability of 0.95 EITHER's auray is between 5.8and 10.0 perentage points higher than ID3's).
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