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Abstract

This paper presents a comprehensive approach to
automatic theory refinement. In contrast to other
systems, the approach is capable of modifying a
theory which contains multiple faults and faults
which occur at intermediate points in the theory.
The approach uses explanations to focus the cor-
rections to the theory, with the corrections being
supplied by an inductive component. In this way,
an attempt is made to preserve the structure of
the original theory as much as possible. Because
the approach begins with an approximate theory,
learning an accurate theory takes fewer examples
than a purely inductive system. The approach has
application in expert system development, where
an initial, approximate theory must be refined.
The approach also applies at any point in the ex-
pert system lifecycle when the expert system gen-
erates incorrect results. The approach has been ap-
plied to the domain of molecular biology and shows
significantly better results then a purely inductive
learner.

Introduction

This paper presents a comprehensive approach to au-
tomatic theory refinement. In expert system develop-
ment, theory refinement occurs when an initial, approx-
imately correct, knowledge base must be refined into a
high performance system. The initial knowledge base
may correspond to textbook knowledge or rough knowl-
edge from an expert. The refinement process uses a set
of training cases to improve the empirical adequacy of
the knowledge base, i.e. its ability to reach correct con-
clusions within its problem space [Ginsberg et al., 1988].
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Theory refinement is also required at any point in the
lifetime of an expert system when errors are detected
in its operation.

Our approach to theory refinement uses a combina-
tion of explanation-based and empirical learning meth-
ods. Partial explanations of examples and characteris-
tics of the detected errors are used to focus corrections
on the failing portion of the theory. Empirical methods
are used to learn new rules or modify the premises of
existing rules.

The remainder of the paper is organized as follows.
The next section presents some background and moti-
vation for our approach. Then we show some simple
examples of our system in action, followed by a discus-
sion of the refinement algorithm. Next we present ex-
perimental results demonstrating the system’s ability
to refine a theory for recognizing biological concepts.
In the final two sections we present areas for future re-
search and conclusions.

Background

In discussing theories, we will restrict ourselves to
propositional Horn clause logic!, although much of
what we say can be applied to other formalisms such as
predicate calculus, or even schema representations. We
also assume that the inference engine makes a “closed
world assumption,” i.e. any example provable by the
current theory is positive, else it is negative.

Errors in a theory can be classified in terms of the
type of examples that are provable. One form of incor-
rectness is over-generality; i.e. negative examples are
provable. This can be caused by two types of errors: 1)
an incorrect rule is present in the theory, or 2) an exist-
ing rule is missing a constraint from its premise. The

'Our actual representation is somewhat more general
than propositional logic since an atomic proposition can also
be an attribute value pair or a threshold on a numerical at-
tribute.



other form of incorrectness is over-specificity, i.e. posi-
tive examples are not provable. This can also be caused
by two types of errors: 1) a rule in the theory has an
additional incorrect constraint in its premise, or 2) the
theory is missing a rule which is necessary in the proof
of certain examples. In general, an incorrect theory can
have both overly-general and overly-specific aspects. A
comprehensive theory refinement system must be able
to handle multiple faults of all types.

Some previous theory refinement systems are only ca-
pable of generalizing an overly-specific theory [Wilkins,
1988; Danyluk, 1989; Pazzani, 1989; Ali, 1989] while
others are only capable of specializing an overly-
general theory [Flann and Dietterich, 1989; Mooney and
Ourston, 1989]. For example, the IOU system previ-
ously developed by the authors [Mooney and Ourston,
1989] adds constraints to an overly-general theory by
using an empirical method to find regularities in the
unexplained aspects of the examples.

Many systems do not revise the theory itself but
instead revise the operational definition of the con-
cept [Bergadano and Giordana, 1988; Hirsh, 1989;
Ginsberg, 1988; Shavlik and Towell, 1989; Flann and
Dietterich, 1989; Mooney and Ourston, 1989]. Still oth-
ers rely on active experimentation rather than a pro-
vided training set to detect and correct errors [Raja-
money and DeJong, 1988]. Finally, most existing the-
ory correction systems assume a single fault is respon-
sible for each failure [Wilkins, 1988; Danyluk, 1989;
Pazzani, 1989)].

The system we are developing, called EITHER
(Explanation-based and Inductive THeory Extension
and Revision), is capable of handling any of the fail-
ures described above. The approach can correct multi-
ple faults, and uses one or more failing examples (pre-
sented in “batch” format) to learn single or multiple
corrections to the theory, as appropriate. The correc-
tions can be made to intermediate points in the theory,
rather than strictly involving operational predicates.
The method uses positive and negative examples and
is able to learn disjunctive rules.

EITHER uses the failures of the explanations created
by the domain theory to focus a standard inductive sys-
tem (currently ID3 [Quinlan, 1986]) to supply correc-
tions to the theory. Because it starts with an initial
theory, fewer examples are required to obtain an accu-
rate theory compared with a purely inductive system.
In addition, the purpose of our system is to extend the
knowledge represented by the initial theory, preserving
the structure of the original theory as much as possible.
This allows the system to provide better explanations
for its conclusions by making use of intermediate con-

cepts in the initial theory.

Examples
Before presenting the details of the system operation,
we present some simple examples of how EITHER
works. The correct domain theory for the examples,
that of drinking vessels, is shown below. This theory
is derived from the original cup theory postulated by
Winston [Winston et al., 1983].

(stable) A (liftable) A (open-vessel) —
(drinking-vessel)

(has-bottom) A (flat-bottom) — (stable)
(graspable) A (lightweight) — (liftable)
(has-handle) — (graspable)

(width small) A (styrofoam) — (graspable)
(width small) A (ceramic) — (graspable)
(has-concavity) A

(upward-pointing-concavity) —
(open-vessel)

Examples 1 through 6 are a set of examples which are
consistent with this correct version of the theory.

1. (+ (has-concavity) (has-bottom) (flat-bottom)
lightweight) (upward-pointing-concavity)

color yellow) (width small) (styrofoam))

+ (has-concavity) (has-bottom) (flat-bottom)
lightweight) (upward-pointing-concavity)
has-handle) (color black) (width medium)
styrofoam))

+ (has-concavity) (has-bottom) (flat-bottom)
lightweight) (upward-pointing-concavity)
has-handle) (color blue) (width large)

ceramic))

- (has-bottom) (flat-bottom) (has-concavity)
lightweight) (upward-pointing-concavity)
width small) (color white) (shape cubical))

- (has-bottom) (has-concavity) (flat-bottom)
upward-pointing-concavity) (lightweight)
width medium) (styrofoam) (color copper))

- (has-bottom) (has-concavity) (flat-bottom)
upward-pointing-concavity) (lightweight)
width medium) (styrofoam) (color blue))
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The following subsections are examples of approxi-
mate theories which EITHER can be asked to correct.
For simplicity, each illustrates a single type of error.
Nevertheless, EITHER is designed to handle multiple



errors of different types. Note that in the following an
assumption is an assertion which, if assumed about a
particular example, would allow the proof of the exam-
ple to be completed.

Incorrect Theory: Additional Antecedent

In this case, the theory has been given an extraneous
antecedent in the premise of the second graspable rule:
(width small) A (styrofoam) A (color blue) —

(graspable).

The effect of this is that example 1 fails, requiring
the assumption (color blue) in order for it to be prov-
able. EITHER tentatively removes the assumption
(color blue) from the graspable rule and checks the neg-
ative examples. Since no negative example is provable,
EITHER returns the corrected theory with the assump-
tion removed.

Incorrect Theory: Missing Rule

In this case, the rule which accounts for objects which
have handles being graspable is omitted from the the-
ory:
[(has-handle) — (graspable)].

Examples 2 and 3 fail. Example 2 requires either the
assumption (width small) or the assumptions (width
small) A\ (ceramic) for its proof to be completed. Ex-
ample 3 requires either the assumption (width small)
or the assumptions (width small) A (styrofoam) for its
proof to be completed. EITHER selects the assumption
(width small), since it represents the smallest change
to the theory, and removes it from the rule in which
it participates, and checks the modified theory against
the negative examples.

In this case, example 5 (a negative example) is prov-
able. EITHER removes the antecedent (graspable) from
the rule for liftable, and re-tests the negative examples.
Those that are provable (4, 5 and 6) are used (along
with 2 and 3) to discover a new rule for graspable. EI-
THER adds the rule (has-handle) — (graspable) to the
theory.

Incorrect Theory: Missing Antecedent

The theory has been modified such that the second gras-
pable rule is missing the antecedent (width small):
[(width small)] A (styrofoam) — (graspable).
Negative examples 5 and 6 become provable. EITHER
returns the erroneous graspable rule as a candidate rule
to retract (this is partially due to the fact that other
rules used in the proofs of examples 5 and 6 are used in
the proofs of all examples). EITHER removes the gras-
pable rule from the theory and checks to see if all of
the positive examples are still provable. Since example
1 is not provable, EITHER sends examples 1, 5 and 6

to the inductive learner for the purpose of learning an-
tecedents to add to the graspable rule. EITHER adds
the conjunct (width small) to the rule and returns the
corrected theory.

Theory Refinement Algorithm

The issues to be addressed by a theory refinement algo-
rithm are: determining that there is an error, identify-
ing the incorrect part of the theory, and finding the re-
quired correction. This section discusses the approach
to theory correction separately for overly-general and
overly-specific aspects. The approach which EITHER
uses in either case is one-sided: the algorithm for spe-
cializing theories is such that no positive examples are
eliminated, and the algorithm for generalizing theories
is such that no negative examples are admitted. As a
result, the corrections discussed below can be sequen-
tially added to obtain a total correction to an arbitrarily
incorrect theory.

Generalizing the Theory

For a theory with overly-specific aspects, the ultimate
form of the theory correction will be to add rules, to
loosen the constraints of existing rules, or both.

Identifying an Error. The problem of identifying
that a theory has overly-specific aspects is straightfor-
ward: a positive example fails to be proven.

Finding the Location of the Error. The possible
proofs of a given goal in a theory can be represented as
an and-or tree (or in the more general case an and-or
graph), which we will call the theory tree. The original
theory tree may be partitioned into a set of and-trees:
one for each possible combination of or-branches in the
original theory, each one representing a separate possi-
ble proof. These are traditionally called proof trees.
For each such proof tree, the leaves of the tree may
or may not unify with facts corresponding to the par-
ticular example given to the system. In the event that
they do not, the system will identify the assumptions
required for the proof of the given example. Each such
proof is called a partial proof, as it requires assumptions
in order to be completed. As mentioned in the previ-
ous section, assumptions are facts which, if true for the
example, would allow a proof to be completed. More
importantly, from our point of view, assumptions are
literals which, if removed from the premises of the rule
in which they are used, would generalize the theory in
such a way that the proof attempt would succeed. Con-
structing partial proofs is a form of abduction [Char-
niak and McDermott, 1985]. In order to restrict the
assumptions to observables (assertions expressed using



operational predicates) we use most specific abduction
[Stickel, 1988]. The system which we use to generate
partial proofs is a modified version of the ABDUCE
system, described in [Ng and Mooney, 1989)].

For a complex theory, there will be many such partial
proofs and associated assumptions for each unprovable
example. In order to minimize the changes to the initial
theory, we have adopted the Occam’s razor heuristic of
finding the minimum number of assumptions required
to cover all of the failing examples. Stating the problem
as a logical expression we have:

EiNEyN...NE,
where each of the E’s represents the statement that a
failing positive example has one or more partial proofs,
ie.

E7EP11\/P72\/\/P“—,~L
where the P’s represent the statement that a given par-
tial proof for the example is satisfied, i.e.

ij = Ajkl A Ajkg... A Ajkp
where the A;i; represents the /th assumption used in the
kth partial proof of the jth example. We then find the
minimal set of assumptions, A;;; = True, which satisfy
this expression.

The missing rule example, expressed in these terms
is:

Ey: (width small) V ((width small) A (ceramic))
Ej5: (width small) v ((width small) A (styrofoam))

and the minimum set of assumptions would consist of
the assumption (width small).

In our research, we are comparing two methods for
finding the minimum cover of assumptions: a version of
the greedy covering algorithm [Johnson, 1974, and the
branch and bound algorithm. The greedy algorithm is
not guaranteed to find the minimal cover, but will come
within a logarithmic factor of it and runs in polynomial
time. The branch and bound algorithm is guaranteed
to find the minimal cover which accounts for all of the
examples, but the process may take exponential time.

Modifying the Theory. Once the minimum cover
has been found, the next step is to determine how best
to modify the theory so as to account for the failed
positive examples. This generalization must also not
entail any negative examples.

The heart of the theory modification algorithm is as
follows. Assumptions are grouped by the rules in which
they participate. The assumptions for each rule are
tentatively removed from the antecedents of the rule.
If no negative examples become provable, the assump-
tions are permanently removed. If negative examples
become proven, one or more new rules are learned with
the same consequent as the current rule. The rules are

learned inductively so as to discriminate the appropri-
ate positive and negative examples. The positive ex-
amples are those who have a partial proof completed
by the assumptions. The negative examples are those
that are provable when the current rule consequent is
removed from the antecedent of its parent rule?. In this
way, rules are learned which augment the theory strictly
to account for the failure in the given rule chain.

For the missing rule example, EITHER removes the
assumption (width small) from the graspable rule and
tests to see if negative examples are provable. Since
they are, EITHER removes (graspable) from the rule for
(liftable) and sees which negative examples are proven
(examples 4, 5 and 6). These are passed to the inductive
learner along with the positive examples which required
the original assumption (2 and 3) in order to learn a new
rule with the consequent (graspable). The rule (has-
handle) — (graspable) is added to the theory.

There are exceptions to the procedure described
above. If all of the antecedents of a rule are removed,
and no negative examples become provable, then re-
move the consequent of the rule from its parent rule in-
stead and recurse. This accounts for the situation where
aANbAc— dand a b and c have all been removed with
no inconsistency with respect to the examples. Since
the result is the rule True — d, which will cause d to
always be provable, it is appropriate to remove d from
its parent rule instead. This is a less drastic change to
the theory, since in the case where the theory is a graph,
d may have participated in multiple rules, and we are
only interested in those which were actually used in the
proofs of the examples.

A second exception is when rules are being learned
which are used in the proof of a second, higher level rule.
If a majority of the antecedents of a given rule are going
to have new rules learned for them on average, then
learn a new rule for the consequent of the given rule,
instead. As a justification for this heuristic, consider
the following example:

aANb—d

chNe—a

fAg—=b,
and assume that the theory is missing the rule: h At —
d. Then an example which is a perfect discriminator for
the additional d rule will cause a and b to fail (i.e. h and
i will be true but ¢ and e and f and g will not be true).
But the positive examples can have arbitrary feature
values, as long as they are provable. Any combination of
a and b may be provable for examples that are provable

2The rule which which precedes the given rule in the rule
chain used in the partial proof which includes the assump-
tion.



using h A i — d. Given all possible examples of h A
i — d, a majority of the time we would be learning
new rules for a and b and hence we will learn a new
rule for d instead. This form of rule learning is also
done recursively, since the higher level rule may also
participate in the proof of a yet higher level rule, etc.

Specializing the Theory

In the case of a theory with overly-general aspects, the
options are to remove rules or add conjuncts to the
premises of rules. An overly-general theory manifests
itself by having negative examples that are provable.
We would like to modify the theory in such a way that
the negative examples are not provable, without los-
ing any of the positive examples. In analogy with the
previous section, we would like to make the following
statement true:

-FE1 AN —Fy...mEn
i.e. none of the currently provable negative examples
FE;...E, are provable where

_|Ei =P A _|Pi2... /\Pim
i.e. an example is not provable when none of its current
proofs are satisfied. And

P = —|Rjk1 V —IR]'kQ... \Y _‘Rjkl
where Ry, is the Ith rule used in the kth proof of the jth
example, i.e. a proof is not complete if at least one of
the rules used in the proof is negated. In analogy with
most specific abduction, we consider only rules which
occur at the leaves of the proof tree for the particular
example. Because of the closed world assumption, the
negation of a rule is equivalent to removing it from the
theory. Therefore each of the —R;j; is equivalent to a
rule retraction.

As with assumptions, EITHER forms a minimum
cover of rule retractions. If this case, the object is to re-
move all proofs of all of the provable negative examples.
Note that in computing retractions, EITHER removes
from consideration those rules which do not have any
disjuncts in their proof path to the goal since these rules
are needed to prove any example.

EITHER removes each of the rules in the minimum
cover. If all of the positive examples remain provable,
then the rule is permanently removed. If any positive
examples fail to be proven, then additional antecedents
are added to the rule to prevent it from providing proofs
for negative examples while still providing proofs for
positive examples. An appropriate set of antecedents is
found by giving the inductive learner the positive exam-
ples which fail be proven with the rule removed and the
negative examples which used the rule in a proof. The
features used in the original rule are removed from the
examples before they are sent to the inductive learner,
and then added back in to the rule that is learned. In

this way, we are guaranteed that the learned rule, which
replaces the original rule in the theory, is a specializa-
tion of the original rule.

For the missing antecedent example, EITHER re-
moves the rule (styrofoam) — (graspable) from the the-
ory since this is the only disjunctive rule required in the
proofs of the negative examples. Since a positive ex-
ample becomes unprovable when this is done, EITHER
sends the failing positive example and the provable neg-
ative examples to the inductive learner after removing
the feature (styrofoam) from the examples. The induc-
tive learner learns the rule (width small) — (graspable)
and EITHER adds the feature (styrofoam) back in to
form the rule (width small) A (styrofoam) — (graspable)
which replaces the original rule in the theory.

Experimental Results

The EITHER algorithm was tested on a theory used
for recognizing biological concepts in DNA sequences.
The original theory is a modified version of the the-
ory described in [Towell et al., 1990]. The goal of the
theory is to recognize promoters in strings composed
of nucleotides (one of A, G, T, or C). A promoter is a
genetic region which initiates the first step in the ex-
pression of an adjacent gene (transcription), by RNA
polymerase. We modified the original theory by remov-
ing the tests for conformation in order to improve its
tractability. The reduced theory then corresponds to
“Pribrow Boxes”. The input features are 57 sequential
DNA nucleotides. The examples used in the tests con-
sisted of 53 positive and 53 negative examples, assem-
bled by a biologist from the biological literature. The
initial theory classified four of the positive examples
and all of the negative examples correctly. This indi-
cates that the initial theory was entirely overly-specific.

Figure 1 shows the performance results obtained
when EITHER was used to refine this theory. In each
test, performance was measured against twenty five test
examples. The number of training examples was var-
ied from one to 80, with the training and test exam-
ples drawn from the entire example population, with
no overlap. The results were averaged over 50 samples.
The figure shows that using the approximate theory
provides a significant performance advantage, and that
this advantage is maintained over the entire training in-
terval. An analysis of the runs showed that EITHER
was modifying both leaf level and intermediate concepts
in obtaining these results.

A one-tailed Student t-test on paired differences
showed that the superior performance of EITHER is
statistically significant at the 1% level for every point
plotted on the learning curves. After 80 training ex-
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amples, the 95% confidence interval for the difference
between EITHER and ID3 is 5.8% to 10.0% (i.e. with
a probability of 0.95 EITHER’s accuracy is between 5.8
and 10.0 percentage points higher than ID3’s).

EITHER

95.00 B3~

Correctness on Test Data
=]
8
.

65.00
60.00 / i
5500y - /
50.00
45,00
0.00 20,00 40,00 60.00 80.00

Number of Training Examples

Figure 1: EITHER Results for the DNA Theory

Future Research

Empirical tests on additional domains and theoretical
analysis of computational complexity and learnability
issues are obvious areas for future research. Other di-
rections include extending the approach to deal with
noisy data and predicate calculus and allowing the ini-
tial theory to be used as a source of rules for construc-
tive induction.

Conclusions

This report has outlined a technique for theory revision
which combines elements of empirical and explanation-
based learning. The approach attempts to preserve the
structure of the theory as much as possible so that the
intermediate concepts represented in the original the-
ory are preserved. Since the technique uses an initial
theory it shows definite performance advantages when
compared to a purely inductive system. Unlike other
theory refinement systems, the proposed approach is
capable of handling multiple faults and handles both
overly-general and overly-specific aspects of an incor-
rect theory.
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